Transport dynamics. From the bicircular to the real Solar System problem

M. Ollé (UPC)
E. Barrabés (UdG) G. Gómez (UB)
J.M. Mondelo (UAB)

HAMSYS 2014, CRM, Bellaterra, June, 2-6, 2014

Outline

- Motivation
- Goal \& Models
- Methodology \& results
- Conclusions

Motivation

Comets, asteroids and small particles in the solar system are capable of performing transfers from their original location to very distant places: NATURAL TRANSPORT

General setting

- Goal: give a dynamical mechanism to explain transport in the Solar System.
- Model for the Solar System
- Model 1: a chain of Bicircular Problems (BCP) with the Sun, Jupiter, a different planet and a massless particle
- Model 2: real JPL Solar system model problem and a massless particle
- Tools: Dynamical systems theory
- unstable invariant objects and their manifolds
- equilibrium points, periodic and quasi-periodic orbits

General framework: theoretical background and models

The RTBP Differential equations:

$$
\begin{aligned}
& \dot{x}=p_{x}+y, \quad \dot{p}_{x}=-\partial H / \partial x, \\
& \dot{y}=p_{y}-x, \quad \dot{p}_{y}=-\partial H / \partial y, \\
& \dot{z}=p_{z}, \quad \dot{p}_{z}=-\partial H / \partial z, \\
& \text { Mass ratio: } \mu=\frac{m_{2}}{m_{1}+m_{2}} .
\end{aligned}
$$

Hamiltonian:

$$
H\left(x, y, z, p_{z}, p_{y}, p_{z}\right)=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)-x p_{y}+y p_{x}-\frac{1-\mu}{r_{1}}-\frac{\mu}{r_{2}}
$$

with $r_{1}=\sqrt{(x-\mu)^{2}+y^{2}+z^{2}}, r_{2}=\sqrt{(x-\mu+1)^{2}+y^{2}+z^{2}}$.
Jacobi constant:

$$
C=-2 H+\mu(1-\mu)
$$

The equilibrium points L_{1} and L_{2} will play an important role

Model 2: the BCP

A BCP: Sun, Jupiter, Planet, a particle (S-J-Planet-particle)

Given a BCP: S-J-Planet-particle in rotating coordinates

Given a BCP: S-J-Planet-particle in rotating coordinates

Defining momenta $p_{x}=\dot{x}-y, p_{y}=\dot{y}+x, p_{z}=\dot{z}$, the equations may be written as a Hamiltonian system

$$
\begin{align*}
H\left(x, y, z, p_{x}, p_{y}, p_{z}\right)= & \frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)+y p_{x}-x p_{y} \\
& -\frac{1-\mu}{\rho_{1}}-\frac{\mu}{\rho_{2}}-\frac{\mu_{P}}{\rho_{P}}-\frac{\mu_{P}}{a_{P}^{2}}(y \sin \theta-x \cos \theta) \tag{1}
\end{align*}
$$

A non autonomous but periodic in t with period $T_{P}=\frac{2 \pi}{1-n_{P}}$ $\left(\theta=\theta_{0}+\left(1-n_{P}\right) t\right)$.

Theoretical background

- RTBP: Sun, Planet and a particle, $H_{R T B P}(u, v)$.
- $L_{1,2}$
- BCP: Sun, Jupiter, Planet (of mass m_{P}) and a particle $H_{B C P}(u, v, \theta)=H_{R T B P}(u, v)+m_{P} * \bar{H}(u, v, \theta)$
- $L_{1,2}$ become periodic orbits (PO), called dynamical substitutes.
- PO is of type $\mathrm{C} * \mathrm{C} * \mathrm{~S}$

Model: The JPL Solar system

The Solar system. Transport from the exterior region to the interior one Planets: Mercury ($i p=1$), Venus ($i p=2$),...., Saturn $(i p=6)$, Uranus ($i p=7$), Neptune $(i p=8)$

Model: The JPL Solar system

- n bodies (Sun and planets are taken into account) interacting
- a particle attracted by them.
- For any given time, we take the REAL positions and velocities

Theoretical background

- RTBP: Sun, Planet and a particle, $H_{R T B P}(u, v)$.
- $L_{1,2}$
- BCP: Sun, Jupiter, Planet (of mass m_{P}) and a particle $H_{B C P}(u, v, \theta)=H_{R T B P}(u, v)+m_{P} * \bar{H}(u, v, \theta)$
- $L_{1}, L_{2}(\mathrm{PO})$, substitutes ($\mathrm{C}^{*} \mathrm{C}^{*} \mathrm{~S}$ type).
- JPL Solar System + a particle: quasi-periodic system
- the dynamical substitutes are quasi-periodic orbits

Papers:

- A. Jorba, C. Simó, On quasiperiodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal. 1996
- A. Jorba, J. Villanueva, On the persistence of lower dimensional invariant tori under quasi-periodic perturbations, J. Nonlinear Sci. 1997

1st PART: SIMULATIONS WITH (SOME) BCP

Methodology to explain transport from Neptune $i p=8$ to Uranus $i p=7$ (similarly from $i p$ to $i p-1$)

Where do we start? FIRST STEP: Computation of the dynamical substitutes.

- Given a BCP: Sun-Jupiter-Planet in rotating coordinates
- L_{1}, L_{2} (for the RTBP: Sun-Planet+particle) \rightarrow computation of periodic orbits (PO) for the BCP: Sun-Jupiter-Planet+particle (multiple shooting is required)
- For each BCP, we obtain 2 unstable PO: dynamical substitutes of L_{1} and L_{2}

Given a BCP: Sun-Jupiter-Planet

- 2 unstable periodic orbits, ie the dynamical substitutes of the equilibrium points L_{1} and L_{2} of the RTBP

Dynamical substitutes of L1, L2 for the exterior planets

Methodology to explain transport from Neptune $i p=8$ to Uranus $i p=7$ (similarly from ip to $i p-1$)

SECOND STEP

- Exterior planets: Neptune ($i p=8$), Uranus ($i p=7$)
- Consider a Bicircular Problem (BCP) with the Sun, Jupiter, Neptune ($i p=8$) and a particle
- Compute the unstable manifold (inwards branch) of PO L1, $W^{u}(L 1)$
- Consider a Bicircular Problem (BCP) with the Sun, Jupiter, Uranus ($i p=7$) and a particle
- Compute the stable manifold (outwards branch) of PO L2, $W^{s}(L 2)$

THIRD STEP: Look for intersections of invariant manifolds, ie heteroclinic orbits

Transport using Wu and Ws

- $W^{u}(L 1)$ and $W^{s}(L 2)$ for $t \in\left[0, T_{m a x}\right]$.
- Poincaré section $\Sigma: r=c t a n t$
- Intersections? Heteroclinic orbits

Some orbits of the manifolds for $t \in\left[0, T_{\max }\right]$

$\Sigma: r=4.7$
Plot of $(t, r(t))$

- A given PO is parametrized by an angle $\theta: \varphi(\theta)=\phi_{\frac{\theta}{2 \pi} T_{P}}(q)$, $\phi_{T_{P}}(q)=q$
- Points in Σ at the FIRST crossing for $t \in\left[0, T_{\max }\right], T_{\max }=10000$

$W^{u}(P O L 1) \cap \Sigma,(\mathrm{x}, \mathrm{y})$

$W^{s}(P O L 2) \cap \Sigma,(\mathrm{x}, \mathrm{y})$
- Points in Σ at the FIRST crossing for $t \in\left[0, T_{\max }\right]$

(x, y)

$\left(x, p_{x}\right)$

$\left(x, p_{y}\right)$
- Points in Σ at the FIRST crossing for $t \in\left[0, T_{\max }\right], T_{\max }=10000$

So "there are NO" heteroclinic connections (for this interval of time) at first crossing.

- Points in Σ, ALL the crossings for $t \in\left[0, T_{\max }\right], T_{\max }=50000$

(x, y)

$\left(x, p_{x}\right)$
- Points in Σ, ALL the crossings for $t \in\left[0, T_{\max }\right]$

$\left(x, p_{y}\right)$

$\left(p_{x}, p_{y}\right)$

Minimum distance between points in Σ for the ALL the crossings for $t \in\left[0, T_{\max }\right], T_{\max }=50000$

Minimum distance between points in Σ for the ALL the

 crossings for $t \in\left[0, T_{\max }\right], T_{\max }=50000$
dist $_{\min } \geq 0.0001, \quad$ dist $_{\text {min }, \text { position }}=10^{-11}$, good enough!

2nd PART: SIMULATIONS WITH THE REAL JPL SOLAR SYSTEM

The JPL Solar system

The Solar system. 3D model. Transport from the exterior region to the interior one.
Sun and planets: Mercury, Venus,...., Saturn, Uranus, Neptune

The JPL Solar System. Transport: the same mechanism. Dynamical substitutes of L1, L2 are quasi-periodic orbits

Model: the JPL Solar System

Ingredients and methodology:

- To fix ideas: let us consider the BCP Sun-Jupiter-Neptune+particle.
- The dynamical substitutes of L_{1} and L_{2} : quasiperiodic orbits.
- We should be able to compute them and their manifolds.
- Consider the BCP Sun-Jupiter-Uranus+particle, take the associated L_{1} and L_{2},
- We should compute them and their manifolds.
- Check possible connections between $W^{u}(L 1)(\mathrm{N})$ and $W^{s}\left(L_{2}\right)(\mathrm{U})$. Are there other phenomena?

Some simulations. Computation of the dynamical substitutes:

- Representation:
- either in the synodical Sun-Jupiter RTBP system of coordinates
- or in the JPL coordinates
- Take the synodical period of Neptune in the BCP
- take n points on the PO (of the BCP) as initial seed
- Refine them using multiple shooting techniques to obtain a quasi-periodic orbit

Multiple shooting

$(x, y, z)(\mathrm{BCP})$

$(x, y, z)(J P L)$

Refined Dynamical substitutes and Neptune's orbit (in JPL, rotating system)

$$
(x, y, z)\left(L_{1}\right)
$$

$(x, y, z)\left(L_{1}, L_{2}\right)$

Other DS Dynamical substitutes and Neptune's orbit (in JPL, rotating system).
We take the inertial period of Neptune.

$$
(x, y, z)(\mathrm{DS})
$$

(x, y, z) (DS and Neptune's orbit)

Representation in JPL coordinates. Dynamical substitutes of L1, L2 and

Neptune's orbit

Consider the first DS L1

- We should like to see the hyperbolic behaviour...BUT
- Close encounters with other planets play a role

Consider the first DS L1 (in JPL, rotating system) Long time span: 820 years
T46_ art nodes oll. at u 423.4

$$
(x, y, z)\left(L_{1}\right)
$$

(x, y, z)

Consider the first DS L1 (in JPL, rotating system) red: distance (particle, Sun) black: osculating semiaxis $\left(a / 10^{9}\right)$ blue: osculating eccentricity

red: distance (particle, Sun)
green: distance (particle, Neptune)
pink: distance (particle, Saturn)
blue: $z(t)$ (for one of the points of the dynamical substitute)

Conclusions

- The behaviour of the manifolds of the Lyapunov periodic orbits in a chain of BCP gives a first mechanism of transport in the Solar System
- Some numerical simulations in the real Solar Sytem remain to be done...

This is a work in progress, so any suggestions are welcome....

Thank you!!

