Normal forms at relative equilibria

Cristina Stoica Wilfrid Laurier University, Waterloo, Canada with Tanya Schmah, Rotman Research Institute, Baycrest, Toronto

HamSys 2014, June, 2014

4

Mechanical Systems

 (P, Ω) = a finite dimensional symplectic manifold

 $H: P \rightarrow \mathbb{R}$ determines the dynamics:

$$d\Omega_z(X_H(z), v) = dH(z) \cdot v$$
 for all $v \in T_z P$

Alternatively, one can use the Poisson bracket

$$\{F,H\} := \Omega\left(X_F,X_H
ight) \qquad ext{for all} \quad F,H \in \mathcal{C}^\infty(P)$$

and then X_H is determined by $\dot{F} = \{F, H\}$ for all $F, H \in \mathcal{C}^{\infty}(P)$.

Interested in $(T^*Q, \Omega_{can}) \equiv (T^*Q, \{\cdot, \cdot\}_{can})$

$$\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}$$

(P, Ω_{can}) Dynamics near Equilibria. Poincaré-Birkhoff normalization

Let z_0 be an equilibrium ($DH(z_0) = 0$). Wlog $z_0 = 0$.

We apply iteratively changes of coordinates $H \rightarrow \hat{H}$ such that \hat{H} , the *k*-jet of \hat{H} , becomes

$$j^k \hat{H} = \hat{H}^{(2)} + \hat{H}^{(3)} + \ldots + \hat{H}^{(k)}$$

so that

$$\{H^{(2)}, \hat{H}^{(i)}\} = 0 \quad \forall \ i = 2, 3, \dots k$$

For the term " $H^{(i)}$ " of degree *i* we look for a homogeneous polynomial *F* of degree *i* so that

 $H^{(i)} + \{H_2, F\} = 0$ (as much as possible)

Having F, we apply a time-1 flow X_F^1 change of coordinates and obtain the new H.

Symmetries

G = a (compact) Lie group acting freely and properly on QDenote g and g^{*} its Lie algebra and co-algebra, respectively.

The *momentum map* is $J : P \to \mathfrak{g}^*$ such that for any $\omega \in \mathfrak{g}$ the Hamiltonian vector field of J_{ω} where $J_{\omega}(z) := \langle J(z), \omega \rangle$ satisfies

$$X_{J_{\omega}}(z) = \omega_{P}(z) = \frac{d}{dt}\Big|_{t=0} \exp(t\omega) \cdot (z)$$

(i.e., $X_{J_{\omega}}$ points along group orbits)

 $J_{\omega}(q, p) = \sum \langle p_i, \omega imes q_i
angle$ and $J(q imes p) = \sum q_i imes p_i$

Theorem (Noether) If $H : P \to \mathbb{R}$ is *G*-invariant, then *J* is conserved along the motion.

Definition: a *relative equilibrium* is a solution of the dynamics that is also a group orbit; that is, there exist $\omega \in \mathfrak{g}$ and $z_0 \in T^*Q$ such that

$$z(t) = \exp(t\omega)z_0$$

is a solution.

E.g. For *N*-body problems,

 $(q(t), p(t)) = R(t) \cdot (q_0, p_0)$ where $R(t) = \exp(t\omega)$

for some fixed angular velocity $\omega \in \mathbb{R}^3 \simeq so(3)^*$.

Co-tangent Bundle Reduction (with G = SO(3))

 $(T^*Q, \Omega_{can}, SO(3))$. The momentum map is $J : T^*Q \rightarrow so(3)^*$.

N-body systems: $J(q, p) = \sum q_i \times p_i$.

H invariant \Rightarrow for each momentum $\mu \in so(3)^*$

 $J^{-1}(\mu) := \{(q, p) | J(q, p) = \mu\}$ are invariant submanifolds.

Fix $\mu_0 = J(q \times p) \in so(3)^*$ (e.g. a rotation about *Oz*).

 $J(q \times p) = \mu_0 = R_z \mu_0 = J(R_z q, R_z p) \quad \forall R_z = \text{Rot. about } Oz$

 $\implies J^{-1}(\mu_0) \text{ quotients by the subgroup of vertical rotations}$ $SO(3)_{\mu_0} := \{ R \in SO(3) \mid R\mu_0 = \mu_0 \} \text{ isotropy group of } \mu_0$

Let $\mu_0 \in so(3)^*$ and $SO(3)_{\mu_0}$ its isotropy group. Then $J^{-1}(\mu_0)$ quotients by $SO(3)_{\mu_0}$ and, provided the action is free, the *reduced* space

$$(T^{*}Q)_{\mu_{0}}:=J^{-1}(\mu_{0})/SO(3)_{\mu_{0}}$$

is a smooth manifold.

Theorem (Meyer; Marsden-Weinstein)

There is a unique symplectic structure Ω_{μ_0} on $(T^*Q)_{\mu_0}$ such that for every *G*-invariant Hamiltonian *H*, dynamical solutions of $(T^*Q, \Omega_{can}, H, G)$ project into dynamical solutions of $((T^*Q)_{\mu_0}, \Omega_{\mu_0}, h)$ where $h \circ \pi = H$.

In general, we want to know: dynamics in the reduced space, its reconstruction to the un-reduced space, understand the mechanism of symmetry-breaking perturbations, etc.

Good starting point \Rightarrow relative equilibria = equilibria in the reduced space.

For non-symmetric systems, dynamics near equilibria are studied using Poincaré-Birkhoff normalization.

For symmetric " $(q, p) \in T^*Q$ " co-tangent bundle systems, we have (local) Darboux coordinates, both for the unreduced and the symplectically reduced spaces, but how does one "sit" inside the other?

 $(T^*Q, \Omega_{can}, SO(3), H) \longrightarrow$ the reduced space $((T^*Q)_{\mu_0}, \Omega_{\mu_0})$.

$$[1] \qquad (T^*Q)_{\mu_0} = J^{-1}(\mu_0)/\left(SO(3)\right)_{\mu_0} \longrightarrow T^*\left(Q/\left(SO(3)\right)_{\mu_0}\right)$$

where one uses a *shift* map $(q, p) \rightarrow (q, p) - A_{\mu_0}(q)$. Then $\Omega_{\mu_0} = \omega_{can} - \beta_{\mu_0}$. *Non-canonical*, unless $\mu = 0$.

$$[2] \qquad (T^*Q)_{\mu_0} = J^{-1}(\mu_0) / \left(SO(3)\right)_{\mu_0} \simeq T^* \left(Q/SO(3)\right) \times \mathcal{O}_{\mu_0}$$

where Q/SO(3) := the shape space and

 $\mathcal{O}_{\mu_0} := \{ R\mu_0 \, | \, R \in SO(3) \} = a \text{ 2-sphere of radius } |\mu_0|$

 $(T^*(Q/G), \Omega_{can})$ and $(\mathcal{O}_{\mu_0}, \Omega_{can})$

Adopt [2], since it comes with a canonical symplectic form.

$$(T^{*}Q)_{\mu_{0}} = J^{-1}(\mu_{0})/\left(SO(3)
ight)_{\mu_{0}} \simeq T^{*}\left(Q/SO(3)
ight) imes \mathcal{O}_{\mu_{0}}$$

where

$$Q/SO(3) :=$$
 the shape space

 $\mathcal{O}_{\mu_0} := \{ R\mu_0 \, | \, R \in SO(3) \} =$ a 2-sphere of radius $|\mu_0|$

Easiest case: Q = SO(3). In plain words, the *rigid body*.

$$\left(\left(T^{*}SO(3)
ight)_{\mu_{0}}=J^{-1}(\mu_{0})/\left(SO(3)
ight)_{\mu_{0}}\simeq\mathcal{O}_{\mu_{0}}$$

The free rigid body with a fixed point.

$$\left(\left(T^{*}SO(3)
ight)_{\mu_{0}}=J^{-1}(\mu_{0})/\left(SO(3)
ight)_{\mu_{0}}\simeq\mathcal{O}_{\mu_{0}}$$

1) Reduced dynamics: we have canonical coordinates on the 2-sphere \mathcal{O}_{μ_0} (obviously, one needs two charts).

2) If we are interested in the dynamics in the full phase space, we can use Serret-Andoyer-Deprit coordinates.

However, if we want to study the dynamics of systems with more general Lie symmetries (e.g., SO(4)), we need a systematic approach.

Free rigid body with a fixed point

$$\left(\left(T^{*}SO(3)
ight)_{\mu_{0}}=J^{-1}(\mu_{0})/\left(SO(3)
ight)_{\mu_{0}}\simeq\mathcal{O}_{\mu_{0}}$$

$$egin{aligned} T^*SO(3) &
ightarrow SO(3) imes so(3)^* \simeq SO(3) imes \mathbb{R}^3 \ (A,P) &
ightarrow & (A,A^{-1}P) &= (A,\mu) \ & ext{body coordinates} \end{aligned}$$

Let \mathbb{I}_1 , \mathbb{I}_2 , \mathbb{I}_3 be the principal moments of inertia of the body.

$$H(A,\mu) = H(\mu) = \frac{1}{2} \left(\frac{\mu_1^2}{\mathbb{I}_1} + \frac{\mu_2^2}{\mathbb{I}_2} + \frac{\mu_3^2}{\mathbb{I}_3} \right)$$

Spatial angular momentum is conserved $\Longrightarrow \frac{d}{dt}(A\mu) = 0 \iff$

 $\dot{\mu} = \mu \times (\mathbb{I}^{-1}\mu)$ Euler's equations and $|\mu| = const. =: \mu_0$

Symplectically reduced spaces: 2-spheres = symplectic leafs of the Poisson reduced space $(SO(3) \times so(3)^*)/SO(3) = so(3)^*$.

$$\mathcal{O}_{\mu_0} = \{ R\mu_0 \, | \, R \in SO(3) \} = \text{ sphere of radius } |\mu_0|$$
$$H(A, \mu) = H(\mu) = \frac{1}{2} \left(\frac{\mu_1^2}{\mathbb{I}_1} + \frac{\mu_2^2}{\mathbb{I}_2} + \frac{\mu_3^2}{\mathbb{I}_3} \right) = h = \text{const.}$$

Given μ_0 fixed, how the dynamics changes when μ_0 is increased to a $\mu_0 + \delta$? ($\delta \not\parallel \mu_0$; say δ small).

In the reduced space, we just move to the sphere $\mathcal{O}_{\mu_0+\delta}$ of radius $|\mu_0 + \delta|$. And the energy increases:

$$H_{\mu_0+\nu} = \frac{1}{2} \left(\frac{(\mu_{10} + \delta_1)^2}{\mathbb{I}_1} + \frac{(\mu_{20} + \delta_2)^2}{\mathbb{I}_2} + \frac{(\mu_{30} + \delta_3)^2}{\mathbb{I}_3} \right) = const.$$

Coordinates for the perturbed rigid-body:

(a) $|\mu_0 + \delta|$ = the radius of the sphere of the new momentum level \rightarrow (modified) Serret-Deprit-Andoyer coordinates

(b) perhaps a *Slice Theorem* would provide a new parametrization.

Slice Theorems \rightarrow a symmetry-adapted framework

Theorem (Symplectic Slice Theorem - free action)

Consider \mathcal{P} be a symplectic manifold, $z_0 \in \mathcal{P}$ a RE with momentum μ_0 , and let \mathcal{N} a normal space transverse to $G \cdot z_0$ and z_0 , i.e.

$$T_{z_0}P\stackrel{\mathit{loc.}}{=} T_{z_0}(Gz_0)\oplus\mathcal{N}$$

There is a choice of \mathcal{N} and coordinates such that near Gz_0 we have $\mathcal{N} = \mathcal{N}_0 \oplus \mathcal{N}_1 \simeq \mathfrak{g}^*_{\mu_0} \oplus (\text{kerDJ}(\mu_0) \cap \mathcal{N})$ s. t. $z_0 \simeq (e, 0, 0)$,

$$z\stackrel{\textit{loc.}}{\simeq}(\pmb{g},
u,\pmb{w})\,,\qquad \pmb{g}\in\pmb{G}\,,\,\,
u\in\mathfrak{g}^*_{\mu_0}\,,\,\,\pmb{w}\in\mathcal{N}_1\,.$$

$$\begin{split} \dot{g} &= g \, D\nu h(\nu, w) & \dot{A} &= A \, D\nu h(\nu, w) \; (attitude \, dynamics) \\ \dot{\nu} &= a d^*_{D_{\nu} h(\nu, w)} \nu & \dot{\nu} &= \nu \times D_{\nu} h(\nu, w) \; (where \; \nu \mid\mid \mu_0) \\ \dot{w} &= \mathbb{J}_{\mathcal{N}_1} D_w h(\nu, w) & \dot{w} &= \mathbb{J} \, D_w h(\nu, w) \; (dynamics \; on \; \mathcal{O}_{\mu_0}) \end{split}$$

In this framework there is quite a body of work - long bibliography - . Some relevant papers (free case):

M. Roberts and de M.E.R. Sousa Dias: *Bifurcations from relative equilibria of Hamiltonian systems*, Nonlinearity, 10, 1997

J.P. Ortega and T. Ratiu: *Stability of Hamiltonian relative equilibria*, Nonlinearity, 12, 1999

C. Wulff, A. Schebesch: *Numerical continuation of Hamiltonian relative periodic orbits*, J. Nonl. Science 18, 2008.

C. Wulff and F. Schilder: *Numerical bifurcation of Hamiltonian relative periodic orbits*, SIAM J. Appl. Dyn. Syst., 8, 2009.

For co-tangent bundles, the slice framework is great at the theoretical level, but there are no *constructive* slice theorems (even for free actions) except for

- abelian groups -

- for compact groups at zero momentum \rightarrow T. Schmah: A cotangent bundle slice theorem Diff. Geom. Appl. 25, 2007

- for $SO(3) \rightarrow$ T. Schmah & C.S.: Normal forms for Lie symmetric cotangent bundle systems with free and proper actions, to appear in Fields Institute Communications series, Vol. "Geometry, Mechanics and Dynamics: the Legacy of Jerry Marsden"

$$egin{array}{ll} T^*SO(3)
ightarrow SO(3) imes so(3)^* \ ({\it A},{\it P}) \
ightarrow ({\it A},\mu) \end{array}$$

$$egin{aligned} & oldsymbol{so}(3)^* = egin{aligned} & oldsymbol{so}(3)^* & \mu_0 imes oldsymbol{so}(3)^* & \mu_0 imes oldsymbol{so}(3)^* & \mu_0 imes oldsymbol{T}_{\mu_0} imes oldsymbol{so}(3)^* & \mu_0 imes oldsymbol{T}_{\mu_0} imes oldsymbol{T}_$$

Look for a SO(3)-equivariant symplectic diffeomorphism

$$\begin{split} \left(SO(3) \times \textit{so}(3)^*_{\mu_0} \times \textit{T}_{\mu_0}\mathcal{O}_{\mu_0} \,, \Omega_{\textit{Y}} \right) & \longrightarrow \left(SO(3) \times \textit{so}(3)^*, \Omega_{\textit{can}} \right) \,, \\ \text{such that} \ (\mathsf{Id}, 0, 0) & \longrightarrow \left(\mathsf{Id}, \mu_0 \right), \end{split}$$

Theorem (A symplectic tube for SO(3), Schmah 2007/2013)

The following is an SO(3)-equivariant symplectic local diffeomorphism with respect to the symplectic form

$$\Omega_{Y}(\boldsymbol{R},\nu,\eta)\left(\left(\xi_{1},\dot{\nu}_{1},\eta_{1}\right),\left(\xi_{2},\dot{\nu}_{2},\eta_{2}\right)\right)$$

:= $\langle \mu_{0}+\nu, [\xi_{1},\xi_{2}] \rangle + \langle \dot{\nu}_{2},\xi_{1} \rangle - \langle \dot{\nu}_{1},\xi_{2} \rangle - \langle \mu_{0}, [\eta_{1},\eta_{2}] \rangle$

in a neighbourhood of (Id, 0, 0):

$$egin{aligned} \phi: SO(3) imes so(3)^*_{\mu_0} imes so(3)^\perp_{\mu_0} \longrightarrow SO(3) imes so(3)^* \,, \ (R,
u,\eta) \longrightarrow \left(RF(
u,\eta)^{-1}, F(
u,\eta) \left(\mu_0 +
u
ight)
ight) = (A,\mu) \end{aligned}$$

where

$$\mathcal{F}(
u,\eta) = \exp\left(heta rac{\hat{\eta}}{\|\eta\|}
ight), \quad \sin\left(rac{ heta}{2}
ight) = rac{\|\eta\|}{2}\sqrt{rac{\|\mu_0\|}{\|\mu_0+
u\|}}.$$

 $(\textit{\textit{R}}, \nu, \eta) \in \textit{SO}(3) imes \textit{so}(3)^*_{\mu_0} imes \textit{T}_{\mu_0}\mathcal{O}_{\mu_0} \,$ symplectic form

$$\Omega_{Y}(R,
u,\eta) = egin{bmatrix} 0 & (\mu_{0}+
u) & 0 & 0 & 0 & 0 \ -(\mu_{0}+
u) & 0 & 0 & 0 & 0 & 0 \ -(\mu_{0}+
u) & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & -1 & 0 & 0 & 0 \ 0 & 0 & -1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & -\mu_{0} \ 0 & 0 & 0 & 0 & \mu_{0} & 0 \end{bmatrix}$$

Normal forms at relative equilibria

Equations of motion

$$\begin{bmatrix} \xi_{X} \\ \xi_{y} \\ \xi_{z} \\ \dot{\nu} \\ \dot{\eta}_{X} \\ \dot{\eta}_{y} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{\mu_{0}+\nu} & 0 & 0 & 0 & 0 \\ -\frac{1}{\mu_{0}+\nu} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{\mu_{0}} \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{\mu_{0}} \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{\mu_{0}} & 0 \end{bmatrix} \begin{bmatrix} (R^{-1}\partial_{R}H)_{X} \\ (R^{-1}\partial_{R}H)_{Y} \\ (R^{-1}\partial_{R}H)_{Z} \\ \partial_{\nu}H \\ \partial_{\eta_{X}}H \\ \partial_{\eta_{Y}}H \end{bmatrix}$$

where $\xi = R^{-1}\dot{R} \in so(3)$.

SO(3) symmetric systems defined on $T^*SO(3)$

Let $H: T^*SO(3) \rightarrow \mathbb{R}$ be SO(3)-invariant.

$$h: \mathit{so}(3)^*_{\mu_0} imes \mathit{T}_{\mu_0}\mathcal{O}_{\mu_0} \simeq \mathit{so}(3)^* o \mathbb{R}\,, \quad h=h(
u,\eta)=h(\mu)$$

$$\begin{aligned} \xi_{z} &= \partial_{\nu} h \big|_{(\nu = \nu_{0}, \eta(t))} \\ \dot{\nu} &= 0 \implies \nu = const. = \nu_{0} \implies h = h(\eta; \nu_{0}) \\ \dot{\eta} &= -\frac{1}{\mu_{0}} \mathbb{J} \partial_{\eta} h \end{aligned}$$

On \mathcal{O}_{μ_0} is just a one degree of freedom system.

Normal forms at relative equilibria

Normal forms at relative equilibria

Coupled systems (e.g. *N*-body problems)

Applying a slice theorem \implies $S \stackrel{\textit{loc.}}{\simeq} Q/SO(3)$ shape space (or internal space)

 $SO(3) imes S \stackrel{\textit{loc.}}{\simeq} Q$

$$SO(3) imes S \stackrel{\textit{loc.}}{\simeq} Q \Rightarrow \ldots \Rightarrow T^*SO(3) imes T^*S \stackrel{\textit{loc.}}{\simeq} T^*Q$$

"Body" coordinates

 $(\textit{A},\mu,(\textit{s},\sigma))\in\textit{SO}(3) imes\textit{so}^*(3) imes\textit{T}^*\textit{S}\simeq\textit{T}^*\textit{SO}(3) imes\textit{T}^*\textit{S}$

Symplectic slice coordinates: $(A, \mu, (s, \sigma)) \rightarrow (R, \nu, \eta, (s, \sigma))$

$$(\pmb{R},
u, \eta, (\pmb{s}, \sigma)) \in ig(\pmb{SO}(3) imes \pmb{so}(3)^*_{\mu_0} imes T_{\mu_0} \mathcal{O}_{\mu_0}ig)_{\Omega_Y} imes T^* m{S}_{\Omega_{can}} \stackrel{\textit{loc.}}{\simeq} T^* m{Q}_{\Omega_{can}}$$

$$\dot{R} = R \left[\left(\begin{array}{ccc} 0 & -(\mu_0 + \nu) & 0 \\ (\mu_0 + \nu) & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \left(R^{-1} \frac{\partial H}{\partial R} \right) + \left(\begin{array}{c} 0 \\ 0 \\ \frac{\partial H}{\partial \nu} \end{array} \right) \right]$$

$$\dot{\nu} = -\left(R^{-1}\frac{\partial H}{\partial R}\right)_{z}, \quad \dot{\eta} = -\frac{1}{\mu_{0}} \mathbb{J} \partial_{\eta} H, \quad \begin{pmatrix} \dot{s} \\ \dot{\sigma} \end{pmatrix} = \mathbb{J} \begin{pmatrix} \frac{\partial H}{\partial s} \\ \frac{\partial H}{\partial \sigma} \end{pmatrix}$$

If $H(R, \nu, \eta, s, \sigma) \equiv h(\nu, \eta, s, \sigma) \implies$

$$\nu(t) = \nu_0$$
 and $h = h(\eta, (\boldsymbol{s}, \sigma); \nu_0)$.

Normal forms at relative equilibria

Simple mechanical systems

$$egin{aligned} \mathcal{H}(q,p) &= rac{1}{2} \, p^t \, \mathbb{K}^{-1}(q) \, p + V(q) \,, \ (q,p) \in T^* G \ (A,\mu,s,\sigma) \in SO(3) imes so(3)^* imes T^* S \stackrel{loc.}{\simeq} T^* Q \end{aligned}$$

H invariant $\Rightarrow \mathbb{K}(q) \equiv \mathbb{K}(s)$ and $V(q) \equiv V(s)$

$$\mathbb{K}(s) = \left[egin{array}{cc} \mathbb{I}(s) & \mathbb{C}(s) \ \mathbb{C}^{ op}(s) & m(s) \end{array}
ight]$$

Define $\mathbb{A} := \mathbb{I}^{-1}\mathbb{C}$ and $\mathbb{M} := m - \mathbb{C}^T \mathbb{I}^{-1}\mathbb{C}$.

$$h(\mu, s, \sigma) = \frac{1}{2} \left[\mu, s \right] \left[\begin{array}{cc} \mathbb{I}^{-1} + \mathbb{A} \mathbb{M}^{-1} \mathbb{A}^t & -\mathbb{A} \mathbb{M}^{-1} \\ -\mathbb{M}^{-1} \mathbb{A}^t & \mathbb{A}^t \end{array} \right] \left[\begin{array}{c} \mu \\ s \end{array} \right] + V(s)$$

Normal forms at relative equilibria

The rigid body in the full phase space

Option (a): the Serret-Andoyer-Deprit canonical coordinates Option (b): the parametrization given by the Slice Theorem

Option (a): there is a singularity at $\mu = \mu_3$. Not a problem, it is removable.

G. Benettin & F. Fasso: *Long Term Stability of Proper Rotations of the Perturbed Euler Rigid Body*, Commun. Math Phys. 250, 2004

M.L. Lidov & A.I.Neishtadt: *The method of canonical transformations in problems of the rotation of celestial bodies and Cassini Laws*, Determination of the motion of a spacecraft (in Russian), P.E. Eliasberg, Ed., Moscow: Nauka, 1975

The rigid body in the full phase space

Option (a): the Serret-Andoyer-Deprit canonical coordinates Option (b): the parametrization given by the Slice Theorem

Option (a): there is a singularity at $\mu = \mu_3$. Not a problem, it is removable.

G. Benettin & F. Fasso: *Long Term Stability of Proper Rotations of the Perturbed Euler Rigid Body*, Commun. Math Phys. 250, 2004

M.L. Lidov & A.I.Neishtadt: *The method of canonical transformations in problems of the rotation of celestial bodies and Cassini Laws*, Determination of the motion of a spacecraft (in Russian), P.E. Eliasberg, Ed., Moscow: Nauka, 1975

But a calculation shows that the Serret-Andoyer-Deprit \equiv the slice coordinates :(

Coming back to:

Many general bifurcation and persistence results are done in the framework of the symplectic slice theorem, but we don't have constructive methods for finding these coordinates.

"General" \rightarrow most of the dynamical results are for free and proper actions.

Can we say anything constructive in this more general case?

Compact G which acts freely and properly on a T^*Q

We want a constructive method to find a *G*-equivariant symplectic diffeomorphism

$$\phi: \left(\boldsymbol{G} imes \mathfrak{g}_{\mu_0}^* imes \mathfrak{g}_{\mu_0}^{\perp}, \Omega_Y
ight) \longrightarrow \left(\boldsymbol{G} imes \mathfrak{g}^*, \Omega_{can}
ight),$$

such that $(\boldsymbol{e}, 0, 0) \rightarrow (\boldsymbol{e}, \mu_0)$

Lucky to find the *tube* ϕ in general. *SO*(3) is quite special and no wonder the calculations lead to the regularized Serret-Andoyer-Deprit coordinates.

The key relation for finding the "tube" ϕ

$$\begin{split} \phi : \left(G \times \mathfrak{g}_{\mu_0}^* \times \mathfrak{g}_{\mu_0}^\perp, \Omega_Y \right) &\longrightarrow \left(G \times \mathfrak{g}^*, \Omega_{can} \right), \\ \text{such that } (e, 0, 0) &\to (e, \mu_0) \\ \phi^* \Omega_{can} &= \Omega_Y \Rightarrow \ldots \Rightarrow \phi(g, \nu, \eta) = \left(gF(\nu, \eta)^{-1}, \operatorname{Ad}^*_{F(\nu, \eta)}(\mu_0 + \nu) \right) \\ \text{for some } F : \mathfrak{g}_{\mu_0}^* \times \mathfrak{g}_{\mu_0}^\perp \to G. \text{ Moreover, } F \text{ must be of the form} \\ F(\nu, \eta) &= \exp\left(h(\nu, \eta) \, \frac{\eta}{\|\eta\|} \right) \end{split}$$

for some $h : \mathfrak{g}_{\mu_0}^* \times \mathfrak{g}_{\mu_0}^\perp \to \mathbb{R}$.

 ϕ

Note: if we know F, then we know the "tube" ϕ

$$F(
u,\eta) = \exp\left(h(
u,\eta) \; rac{\eta}{\|\eta\|}
ight), \; \;
u \in \mathfrak{g}^*_{\mu_0} \simeq \mathcal{M}(\mathbb{R}^?), \; \eta \in \mathfrak{g}^\perp_{\mu_0} \simeq \mathcal{M}(\mathbb{R}^?)$$

must satisfy

$$\begin{split} &\left\langle \mu_0 + \nu, \left[F(\nu,\eta)^{-1} \left(DF(\nu,\eta) \cdot (\dot{\nu}_1,\zeta_1) \right), F(\nu,\eta)^{-1} \left(DF(\nu,\eta) \cdot (\dot{\nu}_2,\zeta_2) \right) \right] \\ &+ \left\langle \dot{\nu}_2, F(\nu,\eta)^{-1} \left(DF(\nu,\eta) \cdot (\dot{\nu}_1,\zeta_1) \right) \right\rangle \\ &- \left\langle \dot{\nu}_1, F(\nu,\eta)^{-1} \left(DF(\nu,\eta) \cdot (\dot{\nu}_2,\zeta_2) \right) \right\rangle = \left\langle \mu_0, [\zeta_1,\zeta_2] \right\rangle. \end{split}$$

One may compute: $DF(\nu, \eta)\Big|_{(0,0)}$. Then take the derivative of the above and compute $D^2F(\nu, \eta)\Big|_{(0,0)}$, and so forth...

Note: if we know F, then we know the "tube" ϕ

Unlikely to find F globally, but one can calculate the its derivatives at (0, 0).

$$egin{aligned} \phi &: \left(G imes \mathfrak{g}_{\mu_0}^* imes \mathfrak{g}_{\mu_0}^\perp, \Omega_Y
ight) \longrightarrow \left(G imes \mathfrak{g}^*, \Omega_{can}
ight), \ & (e, 0, 0)
ightarrow \phi(e, 0, 0) = (e, \mu_0) \ & \phi(g,
u, \eta) = \left(gF(
u, \eta)^{-1}, \operatorname{Ad}^*_{F(
u, \eta)}(\mu_0 +
u)
ight) \end{aligned}$$

...and so we know the derivatives of ϕ at the base point (i.e., at the relative equilibrium).

Normal forms at relative equilibria

is a method based on canonical changes of coordinates which are applied to term of a *truncated* Taylor expansion at the equilibrium of the Hamiltonian.

At each step $H \rightarrow \hat{H}$ the *k*-jet of \hat{H} at the equilibrium becomes

$$j^k \hat{H} = \hat{H}^{(2)} + \hat{H}^{(3)} + \ldots + \hat{H}^{(k)}$$

so that $\{H^{(2)}, \hat{H}^{(i)}\} = 0 \quad \forall i = 2, 3, \dots k$.

$$H_{\text{tube}}(\boldsymbol{R}, \nu, \eta) = (\boldsymbol{H} \circ \phi) (\boldsymbol{A}, \mu)$$

Knowing the derivatives at (e, 0, 0) of the tube ϕ (and these can be computed for any group !) is sufficient for calculating the normal form near a relative equilibrium.

Conclusions

We "re-discovered the wheel" when about spatial rotations. Oh, well...However,

- for *SO*(3)-symmetric systems we understand how nice and useful the Serret-Andoyer-Deprit coordinates are. In particular, they allow the studying of perturbations of the spatial *N*-body problem in coordinates which are

a) canonical in the full phase-space, and

b) "split" the reduced dynamics into rigid-body-like and internal (vibrational) parts at a chosen (non-isotropic) point;

Conclusions

We "re-discovered the wheel" when about spatial rotations. Oh, well...However,

- for *SO*(3)-symmetric systems we understand how nice and useful the Serret-Andoyer-Deprit coordinates are. In particular, they allow the studying of perturbations of the spatial *N*-body problem in coordinates which are

a) canonical in the full phase-space, and

b) "split" the reduced dynamics into rigid-body-like and internal (vibrational) parts at a chosen (non-isotropic) point;

- for the case of free and proper symmetries (the group does not have to be compact) we do provide an iterative methodology to compute a normal form of the Hamiltonian near a relative equilibrium. Thank you for your attention!

This work was supported by NSERC. My presence here is partially due to a Wilfrid Laurier University Travel Grant.

Normal forms at relative equilibria