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Mechanical Systems

(P,Ω) = a finite dimensional symplectic manifold

H : P → R determines the dynamics:

dΩz (XH(z), v) = dH(z) · v for all v ∈ TzP

Alternatively, one can use the Poisson bracket

{F ,H} := Ω (XF ,XH) for all F ,H ∈ C∞(P)

and then XH is determined by Ḟ = {F ,H} for all F ,H ∈ C∞(P).

Interested in (T ∗Q,Ωcan) ≡ (T ∗Q, {·, ·}can)

q̇ =
∂H
∂p

, ṗ = −∂H
∂q
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(P,Ωcan) Dynamics near Equilibria. Poincaré-Birkhoff
normalization

Let z0 be an equilibrium (DH(z0) = 0). Wlog z0 = 0.

We apply iteratively changes of coordinates H → Ĥ such that
Ĥ, the k -jet of Ĥ, becomes

jk Ĥ = Ĥ(2) + Ĥ(3) + . . .+ Ĥ(k)

so that
{H(2), Ĥ(i)} = 0 ∀ i = 2,3, . . . k

For the term “H(i)” of degree i we look for a homogeneous polynomial
F of degree i so that

H(i) + {H2,F} = 0 (as much as possible)

Having F , we apply a time-1 flow X 1
F change of coordinates and

obtain the new H.
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Symmetries

G = a (compact) Lie group acting freely and properly on Q
Denote g and g∗ its Lie algebra and co-algebra, respectively.

The momentum map is J : P → g∗ such that for any ω ∈ g the
Hamiltonian vector field of Jω where Jω(z) := 〈J(z) , ω〉 satisfies

XJω(z) = ωP(z) =
d
dt

∣∣∣
t=0

exp(tω) · (z)

(i.e., XJω points along group orbits)

E.g. N−body problems in R3 : G = SO(3) , g ' R3 , g∗ ' R3

Jω(q,p) =
∑
〈pi , ω × qi〉 and J(q × p) =

∑
qi × pi

Theorem (Noether) If H : P → R is G-invariant, then J is
conserved along the motion.
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Special solutions

Definition: a relative equilibrium is a solution of the dynamics
that is also a group orbit; that is, there exist ω ∈ g and z0 ∈ T ∗Q
such that

z(t) = exp(tω)z0

is a solution.

E.g. For N-body problems,

(q(t),p(t)) = R(t) · (q0,p0) where R(t) = exp(tω)

for some fixed angular velocity ω ∈ R3 ' so(3)∗.
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Co-tangent Bundle Reduction (with G = SO(3))

(T ∗Q,Ωcan,SO(3)). The momentum map is J : T ∗Q → so(3)∗.

N-body systems: J(q,p) =
∑

qi × pi .

H invariant ⇒ for each momentum µ ∈ so(3)∗

J−1(µ) := {(q,p) | J(q,p) = µ} are invariant submanifolds.

Fix µ0 = J(q × p) ∈ so(3)∗ (e.g. a rotation about Oz).

J(q × p) = µ0 = Rzµ0 = J(Rzq,Rzp) ∀Rz = Rot. about Oz

=⇒ J−1(µ0) quotients by the subgroup of vertical rotations

SO(3)µ0 := {R ∈ SO(3) |Rµ0 = µ0} isotropy group of µ0
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Let µ0 ∈ so(3)∗ and SO(3)µ0 its isotropy group. Then J−1(µ0)
quotients by SO(3)µ0 and, provided the action is free, the
reduced space

(T ∗Q)µ0 := J−1(µ0)/SO(3)µ0

is a smooth manifold.

Theorem (Meyer; Marsden-Weinstein)

There is a unique symplectic structure Ωµ0 on (T ∗Q)µ0 such
that for every G-invariant Hamiltonian H , dynamical solutions of
(T ∗Q, Ωcan,H,G) project into dynamical solutions of
((T ∗Q)µ0 , Ωµ0 ,h) where h ◦ π = H.
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In general, we want to know: dynamics in the reduced space,
its reconstruction to the un-reduced space, understand the
mechanism of symmetry-breaking perturbations, etc.

Good starting point⇒ relative equilibria = equilibria in the
reduced space.

For non-symmetric systems, dynamics near equilibria are
studied using Poincaré-Birkhoff normalization.

For symmetric “(q,p) ∈ T ∗Q” co-tangent bundle systems, we
have (local) Darboux coordinates, both for the unreduced and
the symplectically reduced spaces, but how does one “sit”
inside the other?
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(T ∗Q, Ωcan,SO(3),H) −→ the reduced space((T ∗Q)µ0 , Ωµ0).

[1] (T ∗Q)µ0 = J−1(µ0)/ (SO(3))µ0
−→ T ∗

(
Q/ (SO(3))µ0

)
where one uses a shift map (q,p)→ (q,p)−Aµ0(q) .

Then Ωµ0 = ωcan − βµ0 . Non-canonical, unless µ = 0.

[2] (T ∗Q)µ0 = J−1(µ0)/ (SO(3))µ0
' T ∗ (Q/SO(3))×Oµ0

where Q/SO(3) := the shape space and

Oµ0 := {Rµ0 |R ∈ SO(3)} = a 2-sphere of radius |µ0|

(T ∗ (Q/G) ,Ωcan) and (Oµ0 ,Ωcan)
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Adopt [2], since it comes with a canonical symplectic form.

(T ∗Q)µ0 = J−1(µ0)/ (SO(3))µ0
' T ∗ (Q/SO(3))×Oµ0

where
Q/SO(3) := the shape space

Oµ0 := {Rµ0 |R ∈ SO(3)} = a 2-sphere of radius |µ0|

Easiest case: Q = SO(3). In plain words, the rigid body.

(T ∗SO(3))µ0
= J−1(µ0)/ (SO(3))µ0

' Oµ0
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The free rigid body with a fixed point.

(T ∗SO(3))µ0
= J−1(µ0)/ (SO(3))µ0

' Oµ0

1) Reduced dynamics: we have canonical coordinates on the
2-sphere Oµ0 (obviously, one needs two charts).

2) If we are interested in the dynamics in the full phase space,
we can use Serret-Andoyer-Deprit coordinates.

However, if we want to study the dynamics of systems with
more general Lie symmetries (e.g., SO(4)), we need a
systematic approach.
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Free rigid body with a fixed point

(T ∗SO(3))µ0
= J−1(µ0)/ (SO(3))µ0

' Oµ0

T ∗SO(3)→ SO(3)× so(3)∗ ' SO(3)× R3

(A,P) → (A,A−1P) = (A, µ)

body coordinates

Let I1, I2, I3 be the principal moments of inertia of the body.

H(A, µ) = H(µ) =
1
2

(
µ2

1
I1

+
µ2

2
I2

+
µ2

3
I3

)

Spatial angular momentum is conserved =⇒ d
dt

(Aµ) = 0⇐⇒

µ̇ = µ× (I−1µ) Euler’s equations and |µ| = const . =: µ0
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Symplectically reduced spaces: 2-spheres = symplectic leafs of the
Poisson reduced space (SO(3)× so(3)∗) /SO(3) = so(3)∗.

Oµ0 = {Rµ0 |R ∈ SO(3)} = sphere of radius |µ0|

H(A, µ) = H(µ) =
1
2

(
µ2

1
I1

+
µ2

2
I2

+
µ2

3
I3

)
= h = const .
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Given µ0 fixed, how the dynamics changes when µ0 is
increased to a µ0 + δ? (δ 6‖ µ0; say δ small).

In the reduced space, we just move to the sphere Oµ0+δ of
radius |µ0 + δ|. And the energy increases:

Hµ0+ν =
1
2

(
(µ10 + δ1)2

I1
+

(µ20 + δ2)2

I2
+

(µ30 + δ3)2

I3

)
= const .

Coordinates for the perturbed rigid-body:

(a) |µ0 + δ| = the radius of the sphere of the new momentum
level→ (modified) Serret-Deprit-Andoyer coordinates

(b) perhaps a Slice Theorem would provide a new
parametrization.
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Slice Theorems→ a symmetry-adapted framework

Theorem (Symplectic Slice Theorem - free action)

Consider P be a symplectic manifold, z0 ∈ P a RE with momentum
µ0, and let N a normal space transverse to G · z0 and z0, i.e.

Tz0P
loc.
= Tz0 (G z0)⊕N

There is a choice of N and coordinates such that near G z0 we have
N = N0 ⊕N1 ' g∗µ0

⊕ (kerDJ(µ0) ∩N ) s. t. z0 ' (e,0,0),

z
loc.' (g, ν,w) , g ∈ G , ν ∈ g∗µ0

, w ∈ N1 .

ġ = g Dνh(ν,w) Ȧ = A Dνh(ν,w) (attitude dynamics)

ν̇ = ad∗Dνh(ν,w)ν ν̇ = ν × Dνh(ν,w) (where ν ‖ µ0)

ẇ = JN1Dw h(ν,w) ẇ = JDw h(ν,w) (dynamics on Oµ0 )
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In this framework there is quite a body of work - long
bibliography - . Some relevant papers (free case):

M. Roberts and de M.E.R. Sousa Dias: Bifurcations from relative
equilibria of Hamiltonian systems, Nonlinearity, 10, 1997

J.P. Ortega and T. Ratiu: Stability of Hamiltonian relative equilibria,
Nonlinearity, 12, 1999

C. Wulff, A. Schebesch: Numerical continuation of Hamiltonian
relative periodic orbits, J. Nonl. Science 18, 2008.

C. Wulff and F. Schilder: Numerical bifurcation of Hamiltonian relative
periodic orbits, SIAM J. Appl. Dyn. Syst., 8, 2009.
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For co-tangent bundles, the slice framework is great at the
theoretical level, but there are no constructive slice theorems
(even for free actions) except for

- abelian groups -

- for compact groups at zero momentum→ T. Schmah: A
cotangent bundle slice theorem Diff. Geom. Appl. 25, 2007

- for SO(3)→ T. Schmah & C.S.: Normal forms for Lie symmetric
cotangent bundle systems with free and proper actions, to appear in
Fields Institute Communications series, Vol. “Geometry, Mechanics
and Dynamics: the Legacy of Jerry Marsden”

17 / 35
Normal forms at relative equilibria

N



T ∗SO(3)→ SO(3)× so(3)∗

(A,P) → (A, µ)

so(3)∗ = (so(3)∗)µ0
× so(3)⊥µ0

' (so(3)∗)µ0
× Tµ0Oµ0

µ ↔ (ν , (ηx , ηy )
)

Look for a SO(3)-equivariant symplectic diffeomorphism(
SO(3)× so(3)∗µ0

× Tµ0Oµ0 ,ΩY
)
−→ (SO(3)× so(3)∗,Ωcan) ,

such that (Id,0,0) −→ (Id, µ0),
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Theorem (A symplectic tube for SO(3), Schmah 2007/2013)

The following is an SO(3)-equivariant symplectic local
diffeomorphism with respect to the symplectic form

ΩY (R, ν, η) ((ξ1, ν̇1, η1) , (ξ2, ν̇2, η2))

:= 〈µ0 + ν, [ξ1, ξ2]〉+ 〈ν̇2, ξ1〉 − 〈ν̇1, ξ2〉 − 〈µ0, [η1, η2]〉

in a neighbourhood of (Id,0,0):

φ : SO(3)× so(3)∗µ0
× so(3)⊥µ0

−→ SO(3)× so(3)∗ ,

(R, ν, η) −→
(

RF (ν, η)−1,F (ν, η) (µ0 + ν)
)

= (A, µ)

where

F (ν, η) = exp
(
θ
η̂

‖η‖

)
, sin

(
θ

2

)
=
‖η‖
2

√
‖µ0‖
‖µ0 + ν‖

.
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(R, ν, η) ∈ SO(3)× so(3)∗µ0
× Tµ0Oµ0 symplectic form

ΩY (R, ν, η) =



0 (µ0 + ν) 0 0 0 0
−(µ0 + ν) 0 0 0 0 0

0 0 0 1 0 0
0 0 −1 0 0 0

0 0 0 0 0 −µ0
0 0 0 0 µ0 0


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Equations of motion



ξx
ξy

ξz
ν̇

η̇x
η̇y


=



0 1
µ0+ν 0 0 0 0

− 1
µ0+ν 0 0 0 0 0

0 0 0 1 0 0
0 0 −1 0 0 0

0 0 0 0 0 − 1
µ0

0 0 0 0 1
µ0

0





(
R−1∂RH

)
x(

R−1∂RH
)

y(
R−1∂RH

)
z

∂νH

∂ηx H
∂ηy H


where ξ = R−1Ṙ ∈ so(3).
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SO(3) symmetric systems defined on T ∗SO(3)

Let H : T ∗SO(3)→ R be SO(3)-invariant.

h : so(3)∗µ0
× Tµ0Oµ0 ' so(3)∗ → R , h = h(ν, η) = h(µ)

ξz = ∂νh
∣∣
(ν=ν0 , η(t))

ν̇ = 0 =⇒ ν = const . = ν0 =⇒ h = h(η ; ν0)

η̇ = − 1
µ0

J ∂ηh

On Oµ0 is just a one degree of freedom system.
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(a) 3-d view (b) top view

h(ηx , ηy ; ν0) =
1
2
µ0(µ0 + ν0)

(
1− µ0

4(µ0 + ν0)

)(
η2

x + η2
y

)(η2
y

I1
+
η2

x
I2

)

+
(µ0 + ν0)2

2I3

(
η2

x + η2
y

)
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Coupled systems (e.g. N-body problems)

Applying a slice theorem =⇒ S
loc.' Q/SO(3) shape space (or

internal space)

SO(3)× S
loc.' Q

SO(3)× S
loc.' Q ⇒ . . . ⇒ T ∗SO(3)× T ∗S

loc.' T ∗Q

”Body” coordinates

(A, µ, (s, σ)) ∈ SO(3)× so∗(3)× T ∗S ' T ∗SO(3)× T ∗S

Symplectic slice coordinates: (A, µ, (s, σ))→ (R, ν, η, (s, σ))
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(R, ν, η, (s, σ)) ∈
(
SO(3)× so(3)∗µ0

× Tµ0Oµ0

)
ΩY
×T ∗S Ωcan

loc.' T ∗QΩcan

Ṙ = R

 0 −(µ0 + ν) 0
(µ0 + ν) 0 0

0 0 0

(R−1∂H
∂R

)
+

 0
0
∂H
∂ν



ν̇ = −
(

R−1∂H
∂R

)
z
, η̇ = − 1

µ0
J ∂ηH ,

 ṡ

σ̇

 = J

 ∂H
∂s

∂H
∂σ


If H(R, ν, η, s, σ) ≡ h(ν, η, s, σ) =⇒

ν(t) = ν0 and h = h (η, (s, σ); ν0) .
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Simple mechanical systems

H(q,p) =
1
2

pt K−1(q) p + V (q) , (q,p) ∈ T ∗Q

(A, µ, s, σ) ∈ SO(3)× so(3)∗ × T ∗S
loc.' T ∗Q

H invariant⇒ K(q) ≡ K(s) and V (q) ≡ V (s)

K(s) =

[
I(s) C(s)

CT (s) m(s)

]
Define A := I−1C and M := m − CT I−1C.

h(µ, s, σ) =
1
2

[µ , s]

[
I−1 + AM−1At −AM−1

−M−1At At

] [
µ
s

]
+ V (s)
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The rigid body in the full phase space

Option (a): the Serret-Andoyer-Deprit canonical coordinates

Option (b): the parametrization given by the Slice Theorem

Option (a): there is a singularity at µ = µ3. Not a problem, it is
removable.

G. Benettin & F. Fasso: Long Term Stability of Proper Rotations of the
Perturbed Euler Rigid Body, Commun. Math Phys. 250, 2004

M.L. Lidov & A.I.Neishtadt: The method of canonical transformations
in problems of the rotation of celestial bodies and Cassini Laws,
Determination of the motion of a spacecraft (in Russian), P.E.
Eliasberg, Ed., Moscow: Nauka, 1975

But a calculation shows that the Serret-Andoyer-Deprit ≡ the
slice coordinates :(
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Coming back to:

Many general bifurcation and persistence results are done in
the framework of the symplectic slice theorem, but we don’t
have constructive methods for finding these coordinates.

“General”→ most of the dynamical results are for free and proper
actions.

Can we say anything constructive in this more general case?
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Compact G which acts freely and properly on a T ∗Q

We want a constructive method to find a G-equivariant
symplectic diffeomorphism

φ :
(

G × g∗µ0
× g⊥µ0

,ΩY

)
−→ (G × g∗,Ωcan) ,

such that (e,0,0)→ (e, µ0)

Lucky to find the tube φ in general. SO(3) is quite special and
no wonder the calculations lead to the regularized
Serret-Andoyer-Deprit coordinates.
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The key relation for finding the “tube” φ

φ :
(

G × g∗µ0
× g⊥µ0

,ΩY

)
−→ (G × g∗,Ωcan) ,

such that (e,0,0)→ (e, µ0)

φ∗Ωcan = ΩY ⇒ . . .⇒ φ(g, ν, η) =
(

gF (ν, η)−1, Ad∗F (ν,η)(µ0 + ν)
)

for some F : g∗µ0
× g⊥µ0

→ G . Moreover, F must be of the form

F (ν, η) = exp
(

h(ν, η)
η

‖η‖

)
for some h : g∗µ0

× g⊥µ0
→ R.

30 / 35
Normal forms at relative equilibria

N



Note: if we know F , then we know the “tube” φ

F (ν, η) = exp
(

h(ν, η)
η

‖η‖

)
, ν ∈ g∗µ0

'M(R?) , η ∈ g⊥µ0
'M(R?)

must satisfy〈
µ0 + ν,

[
F (ν, η)−1 (DF (ν, η) · (ν̇1, ζ1)) ,F (ν, η)−1 (DF (ν, η) · (ν̇2, ζ2))

]〉
+
〈
ν̇2,F (ν, η)−1 (DF (ν, η) · (ν̇1, ζ1))

〉
−
〈
ν̇1,F (ν, η)−1 (DF (ν, η) · (ν̇2, ζ2))

〉
= 〈µ0, [ζ1, ζ2]〉 .

One may compute: DF (ν, η)
∣∣∣
(0,0)

. Then take the derivative of

the above and compute D2F (ν, η)
∣∣∣
(0,0)

, and so forth...
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Note: if we know F , then we know the “tube” φ

Unlikely to find F globally, but one can calculate the its
derivatives at (0,0) .

φ :
(

G × g∗µ0
× g⊥µ0

,ΩY

)
−→ (G × g∗,Ωcan) ,

(e,0,0)→ φ(e,0,0) = (e, µ0)

φ(g, ν, η) =
(

gF (ν, η)−1,Ad∗F (ν,η)(µ0 + ν)
)

...and so we know the derivatives of φ at the base point (i.e., at
the relative equilibrium).
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The Poincaré-Birkhoff normal forms

is a method based on canonical changes of coordinates which
are applied to term of a truncated Taylor expansion at the
equilibrium of the Hamiltonian.

At each step H → Ĥ the k -jet of Ĥ at the equilibrium becomes

jk Ĥ = Ĥ(2) + Ĥ(3) + . . .+ Ĥ(k)

so that {H(2), Ĥ(i)} = 0 ∀ i = 2,3, . . . k .

Htube(R, ν, η) = (H ◦ φ) (A, µ)

Knowing the derivatives at (e,0,0) of the tube φ (and these can
be computed for any group !) is sufficient for calculating the
normal form near a relative equilibrium.
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Conclusions

We “re-discovered the wheel” when about spatial rotations. Oh,
well...However,

- for SO(3)-symmetric systems we understand how nice and
useful the Serret-Andoyer-Deprit coordinates are. In particular,
they allow the studying of perturbations of the spatial N-body
problem in coordinates which are

a) canonical in the full phase-space, and

b) “split” the reduced dynamics into rigid-body-like and internal
(vibrational) parts at a chosen (non-isotropic) point;

- for the case of free and proper symmetries (the group does
not have to be compact) we do provide an iterative
methodology to compute a normal form of the Hamiltonian near
a relative equilibrium.
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