Normal forms at relative equilibria

Cristina Stoica

Wilfrid Laurier University, Waterloo, Canada
with Tanya Schmah, Rotman Research Institute, Baycrest, Toronto
HamSys 2014, June, 2014

Mechanical Systems

$(P, \Omega)=$ a finite dimensional symplectic manifold
$H: P \rightarrow \mathbb{R}$ determines the dynamics:

$$
d \Omega_{z}\left(X_{H}(z), v\right)=d H(z) \cdot v \quad \text { for all } v \in T_{z} P
$$

Alternatively, one can use the Poisson bracket

$$
\{F, H\}:=\Omega\left(X_{F}, X_{H}\right) \quad \text { for all } F, H \in \mathcal{C}^{\infty}(P)
$$

and then X_{H} is determined by $\dot{F}=\{F, H\}$ for all $F, H \in \mathcal{C}^{\infty}(P)$.
Interested in $\left(T^{*} Q, \Omega_{\text {can }}\right) \equiv\left(T^{*} Q,\{\cdot, \cdot\}_{c a n}\right)$

$$
\dot{q}=\frac{\partial H}{\partial p}, \quad \dot{p}=-\frac{\partial H}{\partial q}
$$

($P, \Omega_{\text {can }}$) Dynamics near Equilibria. Poincaré-Birkhoff normalization

Let z_{0} be an equilibrium $\left(D H\left(z_{0}\right)=0\right)$. Wlog $z_{0}=0$.
We apply iteratively changes of coordinates $H \rightarrow \hat{H}$ such that \hat{H}, the k-jet of \hat{H}, becomes

$$
j^{k} \hat{H}=\hat{H}^{(2)}+\hat{H}^{(3)}+\ldots+\hat{H}^{(k)}
$$

so that

$$
\left\{H^{(2)}, \hat{H}^{(i)}\right\}=0 \quad \forall i=2,3, \ldots k
$$

For the term " $H^{(i) \text { " }}$ of degree i we look for a homogeneous polynomial F of degree i so that

$$
H^{(i)}+\left\{H_{2}, F\right\}=0 \quad \text { (as much as possible) }
$$

Having F, we apply a time-1 flow X_{F}^{1} change of coordinates and obtain the new H.

Symmetries

$G=a$ (compact) Lie group acting freely and properly on Q Denote \mathfrak{g} and \mathfrak{g}^{*} its Lie algebra and co-algebra, respectively.

The momentum map is $J: P \rightarrow \mathfrak{g}^{*}$ such that for any $\omega \in \mathfrak{g}$ the Hamiltonian vector field of J_{ω} where $J_{\omega}(z):=\langle J(z), \omega\rangle$ satisfies

$$
X_{J_{\omega}}(z)=\omega_{P}(z)=\left.\frac{d}{d t}\right|_{t=0} \exp (t \omega) \cdot(z)
$$

(i.e., $X_{J_{\omega}}$ points along group orbits)
E.g. N-body problems in $\mathbb{R}^{3}: G=S O(3), \mathfrak{g} \simeq \mathbb{R}^{3}, \quad \mathfrak{g}^{*} \simeq \mathbb{R}^{3}$

$$
J_{\omega}(q, p)=\sum\left\langle p_{i}, \omega \times q_{i}\right\rangle \quad \text { and } \quad J(q \times p)=\sum q_{i} \times p_{i}
$$

Theorem (Noether) If $H: P \rightarrow \mathbb{R}$ is G-invariant, then J is conserved along the motion.

Special solutions

Definition: a relative equilibrium is a solution of the dynamics that is also a group orbit; that is, there exist $\omega \in \mathfrak{g}$ and $z_{0} \in T^{*} Q$ such that

$$
z(t)=\exp (t \omega) z_{0}
$$

is a solution.
E.g. For N-body problems,

$$
(q(t), p(t))=R(t) \cdot\left(q_{0}, p_{0}\right) \quad \text { where } \quad R(t)=\exp (t \omega)
$$

for some fixed angular velocity $\omega \in \mathbb{R}^{3} \simeq \operatorname{so}(3)^{*}$.

Co-tangent Bundle Reduction (with $G=S O(3)$)

$\left(T^{*} Q, \Omega_{\text {can }}, S O(3)\right)$. The momentum map is $J: T^{*} Q \rightarrow S O(3)^{*}$.
N-body systems: $\quad J(q, p)=\sum q_{i} \times p_{i}$.
H invariant \Rightarrow for each momentum $\mu \in \operatorname{so}(3)^{*}$

$$
J^{-1}(\mu):=\{(q, p) \mid J(q, p)=\mu\} \text { are invariant submanifolds. }
$$

Fix $\mu_{0}=J(q \times p) \in s o(3)^{*}$ (e.g. a rotation about $O z$).

$$
J(q \times p)=\mu_{0}=R_{z} \mu_{0}=J\left(R_{z} q, R_{z} p\right) \quad \forall R_{z}=\text { Rot. about } O z
$$

$\Longrightarrow J^{-1}\left(\mu_{0}\right)$ quotients by the subgroup of vertical rotations
$S O(3)_{\mu_{0}}:=\left\{R \in S O(3) \mid R \mu_{0}=\mu_{0}\right\} \quad$ isotropy group of μ_{0}

Let $\mu_{0} \in \operatorname{So}(3)^{*}$ and $S O(3)_{\mu_{0}}$ its isotropy group. Then $J^{-1}\left(\mu_{0}\right)$ quotients by $S O(3)_{\mu_{0}}$ and, provided the action is free, the reduced space

$$
\left(T^{*} Q\right)_{\mu_{0}}:=J^{-1}\left(\mu_{0}\right) / S O(3)_{\mu_{0}}
$$

is a smooth manifold.

Theorem (Meyer; Marsden-Weinstein)

There is a unique symplectic structure $\Omega_{\mu_{0}}$ on $\left(T^{*} Q\right)_{\mu_{0}}$ such that for every G-invariant Hamiltonian H, dynamical solutions of ($T^{*} Q, \Omega_{c a n}, H, G$) project into dynamical solutions of $\left(\left(T^{*} Q\right)_{\mu_{0}}, \Omega_{\mu_{0}}, h\right)$ where $h \circ \pi=H$.

In general, we want to know: dynamics in the reduced space, its reconstruction to the un-reduced space, understand the mechanism of symmetry-breaking perturbations, etc.

Good starting point \Rightarrow relative equilibria $=$ equilibria in the reduced space.

For non-symmetric systems, dynamics near equilibria are studied using Poincaré-Birkhoff normalization.

For symmetric " $(q, p) \in T^{*} Q$ " co-tangent bundle systems, we have (local) Darboux coordinates, both for the unreduced and the symplectically reduced spaces, but how does one "sit" inside the other?
$\left(T^{*} Q, \Omega_{c a n}, S O(3), H\right) \longrightarrow$ the reduced space $\left(\left(T^{*} Q\right)_{\mu_{0}}, \Omega_{\mu_{0}}\right)$.
[1] $\quad\left(T^{*} Q\right)_{\mu_{0}}=J^{-1}\left(\mu_{0}\right) /(S O(3))_{\mu_{0}} \longrightarrow T^{*}\left(Q /(S O(3))_{\mu_{0}}\right)$
where one uses a shift map $(q, p) \rightarrow(q, p)-\mathcal{A}_{\mu_{0}}(q)$.
Then $\Omega_{\mu_{0}}=\omega_{\text {can }}-\beta_{\mu_{0}}$. Non-canonical, unless $\mu=0$.
[2] $\left(T^{*} Q\right)_{\mu_{0}}=J^{-1}\left(\mu_{0}\right) /(S O(3))_{\mu_{0}} \simeq T^{*}(Q / S O(3)) \times \mathcal{O}_{\mu_{0}}$
where $Q / S O(3):=$ the shape space and

$$
\mathcal{O}_{\mu_{0}}:=\left\{R \mu_{0} \mid R \in S O(3)\right\}=\text { a 2-sphere of radius }\left|\mu_{0}\right|
$$

$\left(T^{*}(Q / G), \Omega_{c a n}\right)$ and $\left(\mathcal{O}_{\mu_{0}}, \Omega_{c a n}\right)$

Adopt [2], since it comes with a canonical symplectic form.

$$
\left(T^{*} Q\right)_{\mu_{0}}=J^{-1}\left(\mu_{0}\right) /(S O(3))_{\mu_{0}} \simeq T^{*}(Q / S O(3)) \times \mathcal{O}_{\mu_{0}}
$$

where

$$
Q / S O(3):=\text { the shape space }
$$

$$
\mathcal{O}_{\mu_{0}}:=\left\{R \mu_{0} \mid R \in S O(3)\right\}=\text { a 2-sphere of radius }\left|\mu_{0}\right|
$$

Easiest case: $Q=S O(3)$. In plain words, the rigid body.

$$
\left(T^{*} S O(3)\right)_{\mu_{0}}=J^{-1}\left(\mu_{0}\right) /(S O(3))_{\mu_{0}} \simeq \mathcal{O}_{\mu_{0}}
$$

The free rigid body with a fixed point.

$$
\left(T^{*} S O(3)\right)_{\mu_{0}}=J^{-1}\left(\mu_{0}\right) /(S O(3))_{\mu_{0}} \simeq \mathcal{O}_{\mu_{0}}
$$

1) Reduced dynamics: we have canonical coordinates on the 2 -sphere $\mathcal{O}_{\mu_{0}}$ (obviously, one needs two charts).
2) If we are interested in the dynamics in the full phase space, we can use Serret-Andoyer-Deprit coordinates.

However, if we want to study the dynamics of systems with more general Lie symmetries (e.g., SO(4)), we need a systematic approach.

Free rigid body with a fixed point

$$
\left(T^{*} S O(3)\right)_{\mu_{0}}=J^{-1}\left(\mu_{0}\right) /(S O(3))_{\mu_{0}} \simeq \mathcal{O}_{\mu_{0}}
$$

$$
\begin{gathered}
T^{*} S O(3) \rightarrow S O(3) \times S O(3)^{*} \simeq S O(3) \times \mathbb{R}^{3} \\
(A, P) \rightarrow \quad\left(A, A^{-1} P\right)=(A, \mu)
\end{gathered}
$$

body coordinates
Let $\mathbb{I}_{1}, \mathbb{I}_{2}, \mathbb{I}_{3}$ be the principal moments of inertia of the body.

$$
H(A, \mu)=H(\mu)=\frac{1}{2}\left(\frac{\mu_{1}^{2}}{\mathbb{I}_{1}}+\frac{\mu_{2}^{2}}{\mathbb{I}_{2}}+\frac{\mu_{3}^{2}}{\mathbb{I}_{3}}\right)
$$

Spatial angular momentum is conserved $\Longrightarrow \frac{d}{d t}(A \mu)=0$

$$
\dot{\mu}=\mu \times\left(\mathbb{I}^{-1} \mu\right) \quad \text { Euler's equations and }|\mu|=\text { const. }=: \mu_{0}
$$

Symplectically reduced spaces: 2-spheres = symplectic leafs of the Poisson reduced space $\left(S O(3) \times S O(3)^{*}\right) / S O(3)=S O(3)^{*}$.

$$
\begin{gathered}
\mathcal{O}_{\mu_{0}}=\left\{R \mu_{0} \mid R \in S O(3)\right\}=\text { sphere of radius }\left|\mu_{0}\right| \\
H(A, \mu)=H(\mu)=\frac{1}{2}\left(\frac{\mu_{1}^{2}}{\mathbb{I}_{1}}+\frac{\mu_{2}^{2}}{\mathbb{I}_{2}}+\frac{\mu_{3}^{2}}{\mathbb{I}_{3}}\right)=h=\text { const }
\end{gathered}
$$

Given μ_{0} fixed, how the dynamics changes when μ_{0} is increased to a $\mu_{0}+\delta ?\left(\delta \nVdash \mu_{0}\right.$; say δ small).

In the reduced space, we just move to the sphere $\mathcal{O}_{\mu_{0}+\delta}$ of radius $\left|\mu_{0}+\delta\right|$. And the energy increases:
$H_{\mu_{0}+\nu}=\frac{1}{2}\left(\frac{\left(\mu_{10}+\delta_{1}\right)^{2}}{\mathbb{I}_{1}}+\frac{\left(\mu_{20}+\delta_{2}\right)^{2}}{\mathbb{I}_{2}}+\frac{\left(\mu_{30}+\delta_{3}\right)^{2}}{\mathbb{I}_{3}}\right)=$ const.
Coordinates for the perturbed rigid-body:
(a) $\left|\mu_{0}+\delta\right|=$ the radius of the sphere of the new momentum level \rightarrow (modified) Serret-Deprit-Andoyer coordinates
(b) perhaps a Slice Theorem would provide a new parametrization.

Slice Theorems \rightarrow a symmetry-adapted framework

Theorem (Symplectic Slice Theorem - free action)

Consider \mathcal{P} be a symplectic manifold, $z_{0} \in \mathcal{P}$ a RE with momentum μ_{0}, and let \mathcal{N} a normal space transverse to $G \cdot z_{0}$ and z_{0}, i.e.

$$
T_{z_{0}} P \stackrel{\text { loc. }}{=} T_{z_{0}}\left(G z_{0}\right) \oplus \mathcal{N}
$$

There is a choice of \mathcal{N} and coordinates such that near $G z_{0}$ we have $\mathcal{N}=\mathcal{N}_{0} \oplus \mathcal{N}_{1} \simeq \mathfrak{g}_{\mu_{0}}^{*} \oplus\left(\operatorname{kerDJ}\left(\mu_{0}\right) \cap \mathcal{N}\right)$ s. $t . z_{0} \simeq(e, 0,0)$,

$$
z \stackrel{\text { loc. }}{=}(g, \nu, w), \quad g \in G, \nu \in \mathfrak{g}_{\mu_{0}}^{*}, w \in \mathcal{N}_{1} .
$$

$$
\begin{array}{rlrl}
\dot{g} & =g D_{\nu} h(\nu, w) & \dot{A}=A D \nu h(\nu, w)(\text { attitude dynamics }) \\
\dot{\nu}=a d_{D_{\nu}}^{*} h(\nu, w)^{\nu} & & \dot{\nu}=\nu \times D_{\nu} h(\nu, w)\left(\text { where } \nu \| \mu_{0}\right) \\
\dot{w}=\mathbb{J}_{\mathcal{N}_{1}} D_{w} h(\nu, w) & \dot{\dot{w}}=\mathbb{J} D_{w} h(\nu, w)\left(\text { dynamics on } \mathcal{O}_{\mu_{0}}\right)
\end{array}
$$

In this framework there is quite a body of work - long bibliography - . Some relevant papers (free case):
M. Roberts and de M.E.R. Sousa Dias: Bifurcations from relative equilibria of Hamiltonian systems, Nonlinearity, 10, 1997
J.P. Ortega and T. Ratiu: Stability of Hamiltonian relative equilibria, Nonlinearity, 12, 1999
C. Wulff, A. Schebesch: Numerical continuation of Hamiltonian relative periodic orbits, J. Nonl. Science 18, 2008.
C. Wulff and F. Schilder: Numerical bifurcation of Hamiltonian relative periodic orbits, SIAM J. Appl. Dyn. Syst., 8, 2009.

For co-tangent bundles, the slice framework is great at the theoretical level, but there are no constructive slice theorems (even for free actions) except for

- abelian groups -
- for compact groups at zero momentum $\rightarrow \mathrm{T}$. Schmah: A cotangent bundle slice theorem Diff. Geom. Appl. 25, 2007
- for SO(3) \rightarrow T. Schmah \& C.S.: Normal forms for Lie symmetric cotangent bundle systems with free and proper actions, to appear in Fields Institute Communications series, Vol. "Geometry, Mechanics and Dynamics: the Legacy of Jerry Marsden"

$$
\begin{gathered}
T^{*} S O(3) \rightarrow S O(3) \times s o(3)^{*} \\
(A, P) \rightarrow \quad(A, \mu) \\
s o(3)^{*}=\left(s o(3)^{*}\right)_{\mu_{0}} \times s o(3)_{\mu_{0}}^{\perp} \simeq\left(s o(3)^{*}\right)_{\mu_{0}} \times T_{\mu_{0}} \mathcal{O}_{\mu_{0}} \\
\mu \leftrightarrow\left(\nu, \quad\left(\eta_{x}, \eta_{y}\right)\right)
\end{gathered}
$$

Look for a $S O(3)$-equivariant symplectic diffeomorphism

$$
\begin{aligned}
\left(S O(3) \times S O(3)_{\mu_{0}}^{*} \times T_{\mu_{0}} \mathcal{O}_{\mu_{0}}, \Omega_{Y}\right) & \longrightarrow\left(S O(3) \times s o(3)^{*}, \Omega_{c a n}\right), \\
\text { such that }(\mathrm{Id}, 0,0) & \longrightarrow\left(\mathrm{Id}, \mu_{0}\right)
\end{aligned}
$$

Theorem (A symplectic tube for SO(3), Schmah 2007/2013)
The following is an SO(3)-equivariant symplectic local diffeomorphism with respect to the symplectic form

$$
\begin{aligned}
\Omega_{Y}(R, \nu, \eta) & \left(\left(\xi_{1}, \dot{\nu}_{1}, \eta_{1}\right),\left(\xi_{2}, \dot{\nu}_{2}, \eta_{2}\right)\right) \\
& :=\left\langle\mu_{0}+\nu,\left[\xi_{1}, \xi_{2}\right]\right\rangle+\left\langle\dot{\nu}_{2}, \xi_{1}\right\rangle-\left\langle\dot{\nu}_{1}, \xi_{2}\right\rangle-\left\langle\mu_{0},\left[\eta_{1}, \eta_{2}\right]\right\rangle
\end{aligned}
$$

in a neighbourhood of (Id, 0, 0):

$$
\begin{aligned}
& \phi: S O(3) \times \operatorname{So}(3)_{\mu_{0}}^{*} \times \operatorname{So}(3)_{\mu_{0}}^{\perp} \longrightarrow S O(3) \times \boldsymbol{S O}(3)^{*} \\
& (R, \nu, \eta) \longrightarrow\left(R F(\nu, \eta)^{-1}, F(\nu, \eta)\left(\mu_{0}+\nu\right)\right)=(A, \mu)
\end{aligned}
$$

where

$$
F(\nu, \eta)=\exp \left(\theta \frac{\hat{\eta}}{\|\eta\|}\right), \quad \sin \left(\frac{\theta}{2}\right)=\frac{\|\eta\|}{2} \sqrt{\frac{\left\|\mu_{0}\right\|}{\left\|\mu_{0}+\nu\right\|}}
$$

$(R, \nu, \eta) \in S O(3) \times \operatorname{So}(3)_{\mu_{0}}^{*} \times T_{\mu_{0}} \mathcal{O}_{\mu_{0}}$ symplectic form

$$
\Omega_{Y}(R, \nu, \eta)=\left[\begin{array}{cccccc}
0 & \left(\mu_{0}+\nu\right) & 0 & 0 & 0 & 0 \\
-\left(\mu_{0}+\nu\right) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\mu_{0} \\
0 & 0 & 0 & 0 & \mu_{0} & 0
\end{array}\right]
$$

Equations of motion
$\left[\begin{array}{c}\xi_{x} \\ \xi_{y} \\ \xi_{z} \\ \dot{\nu} \\ \dot{\eta}_{x} \\ \dot{\eta}_{y}\end{array}\right]=\left[\begin{array}{cccccc}0 & \frac{1}{\mu_{0}+\nu} & 0 & 0 & 0 & 0 \\ -\frac{1}{\mu_{0}+\nu} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{\mu_{0}} \\ 0 & 0 & 0 & 0 & \frac{1}{\mu_{0}} & 0\end{array}\right]\left[\begin{array}{c}\left(R^{-1} \partial_{R} H\right)_{x} \\ \left(R^{-1} \partial_{R} H\right)_{y} \\ \left(R^{-1} \partial_{R} H\right)_{z} \\ \partial_{\nu} H \\ \\ \partial_{\eta_{x} H} H \\ \partial_{\eta_{y}} H\end{array}\right]$
where $\xi=R^{-1} \dot{R} \in \operatorname{so}(3)$.

$S O(3)$ symmetric systems defined on $T^{*} S O(3)$

Let $H: T^{*} S O(3) \rightarrow \mathbb{R}$ be $S O(3)$-invariant.

$$
\begin{aligned}
& h: \operatorname{so}(3)_{\mu_{0}}^{*} \times T_{\mu_{0}} \mathcal{O}_{\mu_{0}} \simeq \operatorname{so}(3)^{*} \rightarrow \mathbb{R}, \quad h=h(\nu, \eta)=h(\mu) \\
& \quad \xi_{z}=\left.\partial_{\nu} h\right|_{\left(\nu=\nu_{0}, \eta(t)\right)} \\
& \quad \dot{\nu}=0 \Longrightarrow \nu=\text { const. }=\nu_{0} \Longrightarrow h=h\left(\eta ; \nu_{0}\right) \\
& \quad \dot{\eta}=-\frac{1}{\mu_{0}} \mathbb{J} \partial_{\eta} h
\end{aligned}
$$

On $\mathcal{O}_{\mu_{0}}$ is just a one degree of freedom system.

(a) 3-d view

(b) top view

$$
\begin{aligned}
h\left(\eta_{x}, \eta_{y} ; \nu_{0}\right) & =\frac{1}{2} \mu_{0}\left(\mu_{0}+\nu_{0}\right)\left(1-\frac{\mu_{0}}{4\left(\mu_{0}+\nu_{0}\right)}\right)\left(\eta_{x}^{2}+\eta_{y}^{2}\right)\left(\frac{\eta_{y}^{2}}{\mathbb{I}_{1}}+\frac{\eta_{x}^{2}}{\mathbb{I}_{2}}\right) \\
& +\frac{\left(\mu_{0}+\nu_{0}\right)^{2}}{2 \mathbb{I}_{3}}\left(\eta_{x}^{2}+\eta_{y}^{2}\right)
\end{aligned}
$$

Coupled systems (e.g. N-body problems)

Applying a slice theorem $\Longrightarrow S \stackrel{\text { loc. }}{\sim} Q / S O(3)$ shape space (or internal space)

$$
S O(3) \times S \stackrel{10 c .}{=} Q
$$

$$
S O(3) \times S \stackrel{10 c .}{\sim} Q \Rightarrow \ldots \Rightarrow T^{*} S O(3) \times T^{*} S \stackrel{l o c .}{\sim} T^{*} Q
$$

"Body" coordinates

$$
(A, \mu,(s, \sigma)) \in S O(3) \times s o^{*}(3) \times T^{*} S \simeq T^{*} S O(3) \times T^{*} S
$$

Symplectic slice coordinates: $(A, \mu,(s, \sigma)) \rightarrow(R, \nu, \eta,(s, \sigma))$

$$
\begin{aligned}
& (R, \nu, \eta,(s, \sigma)) \in\left(S O(3) \times s o(3)_{\mu_{0}}^{*} \times T_{\mu_{0}} \mathcal{O}_{\mu_{0}}\right)_{\Omega_{Y}} \times T^{*} S_{\Omega_{\text {can }}} \stackrel{\text { loc. }}{=} T^{*} Q_{\Omega_{\text {caa }}} \\
& \dot{R}=R\left[\left(\begin{array}{ccc}
0 & -\left(\mu_{0}+\nu\right) & 0 \\
\left(\mu_{0}+\nu\right) & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(R^{-1} \frac{\partial H}{\partial R}\right)+\left(\begin{array}{c}
0 \\
0 \\
\frac{\partial H}{\partial \nu}
\end{array}\right)\right] \\
& \dot{\nu}=-\left(R^{-1} \frac{\partial H}{\partial R}\right)_{z}, \quad \dot{\eta}=-\frac{1}{\mu_{0}} \mathbb{J} \partial_{\eta} H, \quad\binom{\dot{s}}{\dot{\sigma}}=\mathbb{J}\binom{\frac{\partial H}{\partial s}}{\frac{\partial H}{\partial \sigma}}
\end{aligned}
$$

If $H(R, \nu, \eta, s, \sigma) \equiv h(\nu, \eta, s, \sigma) \Longrightarrow$

$$
\nu(t)=\nu_{0} \text { and } h=h\left(\eta,(s, \sigma) ; \nu_{0}\right) .
$$

Simple mechanical systems

$$
\begin{aligned}
& H(q, p)=\frac{1}{2} p^{t} \mathbb{K}^{-1}(q) p+V(q), \quad(q, p) \in T^{*} Q \\
& (A, \mu, s, \sigma) \in S O(3) \times s o(3)^{*} \times T^{*} S \stackrel{\text { loc. }}{\sim} T^{*} Q
\end{aligned}
$$

H invariant $\Rightarrow \mathbb{K}(q) \equiv \mathbb{K}(s)$ and $V(q) \equiv V(s)$

$$
\mathbb{K}(s)=\left[\begin{array}{ll}
\mathbb{I}(s) & \mathbb{C}(s) \\
\mathbb{C}^{T}(s) & m(s)
\end{array}\right]
$$

Define $\mathbb{A}:=\mathbb{I}^{-1} \mathbb{C}$ and $\mathbb{M}:=m-\mathbb{C}^{\top} \mathbb{I}^{-1} \mathbb{C}$.

$$
h(\mu, s, \sigma)=\frac{1}{2}[\mu, s]\left[\begin{array}{cc}
\mathbb{I}^{-1}+\mathbb{A}^{-1} \mathbb{A}^{t} & -\mathbb{A}^{-1} \\
-\mathbb{M}^{-1} \mathbb{A}^{t} & \mathbb{A}^{t}
\end{array}\right]\left[\begin{array}{c}
\mu \\
s
\end{array}\right]+V(s)
$$

The rigid body in the full phase space

Option (a): the Serret-Andoyer-Deprit canonical coordinates
Option (b): the parametrization given by the Slice Theorem
Option (a): there is a singularity at $\mu=\mu_{3}$. Not a problem, it is removable.
G. Benettin \& F. Fasso: Long Term Stability of Proper Rotations of the Perturbed Euler Rigid Body, Commun. Math Phys. 250, 2004
M.L. Lidov \& A.I.Neishtadt: The method of canonical transformations in problems of the rotation of celestial bodies and Cassini Laws, Determination of the motion of a spacecraft (in Russian), P.E. Eliasberg, Ed., Moscow: Nauka, 1975

The rigid body in the full phase space

Option (a): the Serret-Andoyer-Deprit canonical coordinates
Option (b): the parametrization given by the Slice Theorem
Option (a): there is a singularity at $\mu=\mu_{3}$. Not a problem, it is removable.
G. Benettin \& F. Fasso: Long Term Stability of Proper Rotations of the Perturbed Euler Rigid Body, Commun. Math Phys. 250, 2004
M.L. Lidov \& A.I.Neishtadt: The method of canonical transformations in problems of the rotation of celestial bodies and Cassini Laws, Determination of the motion of a spacecraft (in Russian), P.E. Eliasberg, Ed., Moscow: Nauka, 1975

But a calculation shows that the Serret-Andoyer-Deprit \equiv the slice coordinates :(

Coming back to:

Many general bifurcation and persistence results are done in the framework of the symplectic slice theorem, but we don't have constructive methods for finding these coordinates.
"General" \rightarrow most of the dynamical results are for free and proper actions.

Can we say anything constructive in this more general case?

Compact G which acts freely and properly on a $T^{*} Q$

We want a constructive method to find a G-equivariant symplectic diffeomorphism

$$
\begin{aligned}
\phi:\left(G \times \mathfrak{g}_{\mu_{0}}^{*} \times \mathfrak{g}_{\mu_{0}}^{\perp}, \Omega_{Y}\right) & \longrightarrow\left(G \times \mathfrak{g}^{*}, \Omega_{\text {can }}\right), \\
\quad \text { such that }(e, 0,0) & \rightarrow\left(e, \mu_{0}\right)
\end{aligned}
$$

Lucky to find the tube ϕ in general. $S O(3)$ is quite special and no wonder the calculations lead to the regularized Serret-Andoyer-Deprit coordinates.

The key relation for finding the "tube"

$$
\begin{aligned}
\phi:\left(G \times \mathfrak{g}_{\mu_{0}}^{*} \times \mathfrak{g}_{\mu_{0}}^{\perp}, \Omega_{Y}\right) & \longrightarrow\left(G \times \mathfrak{g}^{*}, \Omega_{c a n}\right) \\
\text { such that }(e, 0,0) & \rightarrow\left(e, \mu_{0}\right)
\end{aligned}
$$

$$
\phi^{*} \Omega_{c a n}=\Omega_{Y} \Rightarrow \ldots \Rightarrow \phi(g, \nu, \eta)=\left(g F(\nu, \eta)^{-1}, \operatorname{Ad}_{F(\nu, \eta)}^{*}\left(\mu_{0}+\nu\right)\right)
$$

for some $F: \mathfrak{g}_{\mu_{0}}^{*} \times \mathfrak{g}_{\mu_{0}}^{\perp} \rightarrow G$. Moreover, F must be of the form

$$
F(\nu, \eta)=\exp \left(h(\nu, \eta) \frac{\eta}{\|\eta\|}\right)
$$

for some $h: \mathfrak{g}_{\mu_{0}}^{*} \times \mathfrak{g}_{\mu_{0}}^{\perp} \rightarrow \mathbb{R}$.

Note: if we know F, then we know the "tube" ϕ

$$
F(\nu, \eta)=\exp \left(h(\nu, \eta) \frac{\eta}{\|\eta\|}\right), \nu \in \mathfrak{g}_{\mu_{0}}^{*} \simeq \mathcal{M}\left(\mathbb{R}^{?}\right), \eta \in \mathfrak{g}_{\mu_{0}}^{\perp} \simeq \mathcal{M}\left(\mathbb{R}^{?}\right)
$$

must satisfy

$$
\begin{aligned}
& \left\langle\mu_{0}+\nu,\left[F(\nu, \eta)^{-1}\left(D F(\nu, \eta) \cdot\left(\dot{\nu}_{1}, \zeta_{1}\right)\right), F(\nu, \eta)^{-1}\left(D F(\nu, \eta) \cdot\left(\dot{\nu}_{2}, \zeta_{2}\right)\right)\right]\right. \\
& +\left\langle\dot{\nu}_{2}, F(\nu, \eta)^{-1}\left(D F(\nu, \eta) \cdot\left(\dot{\nu}_{1}, \zeta_{1}\right)\right)\right\rangle \\
& -\left\langle\dot{\nu}_{1}, F(\nu, \eta)^{-1}\left(D F(\nu, \eta) \cdot\left(\dot{\nu}_{2}, \zeta_{2}\right)\right)\right\rangle=\left\langle\mu_{0},\left[\zeta_{1}, \zeta_{2}\right]\right\rangle
\end{aligned}
$$

One may compute: $\left.D F(\nu, \eta)\right|_{(0,0)}$. Then take the derivative of the above and compute $\left.D^{2} F(\nu, \eta)\right|_{(0,0)}$, and so forth...

Note: if we know F, then we know the "tube" ϕ

Unlikely to find F globally, but one can calculate the its derivatives at $(0,0)$.

$$
\begin{array}{r}
\phi:\left(G \times \mathfrak{g}_{\mu_{0}}^{*} \times \mathfrak{g}_{\mu_{0}}^{\perp}, \Omega_{Y}\right) \longrightarrow\left(G \times \mathfrak{g}^{*}, \Omega_{\text {can }}\right) \\
(e, 0,0) \rightarrow \phi(e, 0,0)=\left(e, \mu_{0}\right) \\
\phi(g, \nu, \eta)=\left(g F(\nu, \eta)^{-1}, \operatorname{Ad}_{F(\nu, \eta)}^{*}\left(\mu_{0}+\nu\right)\right)
\end{array}
$$

...and so we know the derivatives of ϕ at the base point (i.e., at the relative equilibrium).

The Poincaré-Birkhoff normal forms

is a method based on canonical changes of coordinates which are applied to term of a truncated Taylor expansion at the equilibrium of the Hamiltonian.
At each step $H \rightarrow \hat{H}$ the k-jet of \hat{H} at the equilibrium becomes

$$
j^{k} \hat{H}=\hat{H}^{(2)}+\hat{H}^{(3)}+\ldots+\hat{H}^{(k)}
$$

so that $\left\{H^{(2)}, \hat{H}^{(i)}\right\}=0 \quad \forall i=2,3, \ldots k$.

$$
H_{\text {tube }}(R, \nu, \eta)=(H \circ \phi)(A, \mu)
$$

Knowing the derivatives at $(e, 0,0)$ of the tube ϕ (and these can be computed for any group !) is sufficient for calculating the normal form near a relative equilibrium.

Conclusions

We "re-discovered the wheel" when about spatial rotations. Oh, well...However,

- for SO(3)-symmetric systems we understand how nice and useful the Serret-Andoyer-Deprit coordinates are. In particular, they allow the studying of perturbations of the spatial N-body problem in coordinates which are
a) canonical in the full phase-space, and
b) "split" the reduced dynamics into rigid-body-like and internal (vibrational) parts at a chosen (non-isotropic) point;

Conclusions

We "re-discovered the wheel" when about spatial rotations. Oh, well...However,

- for $S O(3)$-symmetric systems we understand how nice and useful the Serret-Andoyer-Deprit coordinates are. In particular, they allow the studying of perturbations of the spatial N-body problem in coordinates which are
a) canonical in the full phase-space, and
b) "split" the reduced dynamics into rigid-body-like and internal (vibrational) parts at a chosen (non-isotropic) point;
- for the case of free and proper symmetries (the group does not have to be compact) we do provide an iterative methodology to compute a normal form of the Hamiltonian near a relative equilibrium.

Thank you for your attention!

This work was supported by NSERC. My presence here is partially due to a Wilfrid Laurier University Travel Grant.

