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OUTLINE

Lagrangian singularities, caustics.

Wavefront sets and singularities.

Counting singularities. Indices.

Minimum distance lines.

Minimization and holonomic constraints, a simpler picture

Reduction, and minimization

dynamics and rotation of Lagrange planes
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An example

Consider the problem of minimizing (Euclidean) distance from an
elliptical boundary to a point interior to the ellipse.
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Figure: Minimum distance. caustic of the family of rays
Daniel Offin, Graeme Baker (Department of Mathematics and Statistics Queen’s University)Remarks on Lagrangian singularities, caustics, minimum distance lines

CRM, Barcelona, SpainJune 2014 CRM 3
/ 25



We use Euclidean geodesic segments to measure this distance
function. The distance function is not smooth. Ridge line (of the
graph of distance function) along the line segment joining the focii.

The family of such geodesic segments develops caustic singularities
along certain curves (caustics).

The straight lines, normal to the ellipse, parameterized proportional
to arclength, form a (1D) Lagrangian family y(x , θ). . The caustic
curve comes from the condtion ∂y

∂θ = 0.

In addition to the distance function, we consider the time function
(contstant speed).

The set of points which are equidistant (isochrones) from the
boundary ( called wavefront sets) are level sets of (local) solutions to
the Hamilton-Jacobi equation ‖∇S‖2 = 1. (H(q, ∂S∂q ) = h).

Daniel Offin, Graeme Baker (Department of Mathematics and Statistics Queen’s University)Remarks on Lagrangian singularities, caustics, minimum distance lines
CRM, Barcelona, SpainJune 2014 CRM 4

/ 25



-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure: x2

a2 + y2

b2 = 1. (ax)
2
3 + (by)

2
3 =

(
a2 − b2

) 2
3 .

Daniel Offin, Graeme Baker (Department of Mathematics and Statistics Queen’s University)Remarks on Lagrangian singularities, caustics, minimum distance lines
CRM, Barcelona, SpainJune 2014 CRM 5

/ 25



Lagrangian singularities, Maslov index

Hamiltonian dynamics

ż = XH(z) = J∇H(z), J =

[
0 I
−I 0

]
H : T ∗X → R,

∂2H

∂p2
> 0.

Hamiltonian flow φt : T ∗X → T ∗X ,
periodicity φT z = z

Maslov class of Lagrangian submanifolds

An n-dimensional subspace λ of a 2n-dimensional symplectic space R2n is
Lagrangian if

ω|λ = 0, where ω =
∑

dqi ∧ dpi

An n-dimensional submanifold i : L → T ∗X is Lagrangian if i∗ω = 0.
Lagrangian singularities of the projection

π : T ∗X → X , π|L : L → X .
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the linearization of the projection restricted to L, dzπ|L is not surjective at
z ∈ L.

det |ξ1, . . . , ξn| = 0, ξi = dπζi , 〈ζ1, . . . , ζn〉 = TzL.

The Maslov cycle is the locus Γ ⊂ L of such singular points.
If {z(t)} ⊂ L is closed curve, we count the number (algebraic) of
intersections with the singular cycle Γ in [0,T ]

[Tz(t)L; Γ] =
∑

0<t≤T
±codim

(
dπTz(t)L

)
=

∑
0<t≤T

±dim
(
Tz(t)L ∩ V

)
V|z = ker dπ|z
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jacobi metric for fixed energy

H(q, p) = 1
2 K (p, p) + V (q), K is dual metric for Riemannian ‖ · ‖2

R .

Hamilton Jacobi eq 1
2 K
(
∂S
∂q

)
+ V (q) = h, or

1
2 K
(
∂S
∂q

)
2(h − V (q))

=
1

2

This is HJ equation for ”new Hamiltonian” H̃(q, p) =
1
2
K(p,p)

2(h−V (q)

The corresponding Lagrangian gives action of Jacobi metric
L(q, q′) = (h − V (q))‖q′‖2

R . Cogeodesic equations (Euclidean case)

q′ =
p

2(h − V (q))
, p′ =

−L2DV (q)

2(h − V (q))
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caustics and wavefront sets

Giiven convex hamiltonian H(q,p), we construct the Jacobi metric
action measuring minimum distance to the boundary

γ →
∫ 1

0
(h − V (γ))‖γ′‖2

Rds
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Figure: Epicycloid and caustic.
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Wavefront sets in jacobi metric

s =

∫ g(s,z)

0
2 (h − V (πφtz)) dt,

Mi (s) = πφg(s,z)(z), z = (x , 0) ∈ Mi ⊂ ∂V h
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Figure: Contour plot potential.
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minimum distance lines

Wavefront sets key to understanding minimization and
stability/instability.

Normal bundle of wavefront sets
M(s) =

{
(p, q) ∈ H−1(h) | p(TqM(s)) = 0.

}
index πz =

∑
0<s≤1

codim
(
dπTz(s)L

)
+ index ω(TM0(1),TM1(0))

Theorem: minimium distance lines for H = 1
2 K + V are always

unstable and generically hyperbolic.

Not true without restrictions, for example closed minimizing geodesics
are not always unstable.
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hip hop symmetries

Figure: Qualitative diagram of the hip-hop configuration for eight masses.

Chenciner-Venturelli, Terracini- Venturelli (2001, 2007) existence

A4T (q̂) = inf
q∈ΛZ2N

A4T (q), (1)

ΛZ2N
=
{

q ∈ H1(R/4TZ, C) | q(t + 2T ) = −q(t)
}
.

Lewis, O. Buono (2013) show that this family of orbits are minimum
distance lines on reduced energy surface.
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minimizing solutions

Given four masses, m1 = m2, m3 = m4,
∑

i=1,4 miqi = 0.

M = {q = (q1, . . . , q4)‖q3 − q1 = q2 − q4, q4 − q1 = q2 − q3}
TM is invariant under the flow of Newtonian four body problem.
Study homographic rhombus solutions (diagonals perpendicular)

M′ = {q ∈M|q3 − q1 ⊥ q4 − q2}
N-body Newtonian systems, collisions have finite action, so collision
orbits must be considered when minimizing the action.
In this setting, we impose holonomic constraints which force a
rhomboid configuration.
On the constraint set minimization for parameterized curves of period
T, the action can be shown to be minimizing along the entire family
of rhombus homographic solutions.

M′ = {q ∈M|q3 − q1 ⊥ q4 − q2} , L̃ = L|TM′

inf
γ∈Λ

∫ T

0
L̃(γ, γ̇)dt = C (mi )T

1
3

Λ =

{
q ∈ H1([0,T ],M′)

∣∣∣ q = (q1,−q1, σq1,−σq1), q1 : [0,T ]→ C,
q1(0) = q1(T ), degq1 6= 0

}
where σ = ce−iπ/2, c > 0.
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reduction e > 0

As mentioned, the dynamics on the 3D.F. constraint TM′ are
determined by restriction L̃ = L|TM′ . For the following, we set
eccentricity e > 0.

To study stability, we restrict to angular momentum level set, and
remove the angle from rotation symmetry (symplectic reduction).

This brings us to a 2D.F. subsystem on T ∗(M′/S1) = J−1(Θ)/S1

where Θ = 2(m1α
2 + m3β

2)µ.

Important to recognize at this juncture, that the minimizing property
of the rhombus homographic solution may disappear upon reduction.
We do not use the reduced variational principle to study the reduced
solutions.
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Lagrange planes

On the reduced constrained system, along the reduced rhomboid
solutions γ(t) = φt(x , p), we study the linearized equations, especially
the movement of Lagrangian isoenergetic subspaces.

These are 2D planes of tangent variations in the reduced phase space,
maximally isotropic with respect to the symplectic form.

These planes contain the (reduced) flow direction XH together with
one additional isoenergetic direction of variations.

(ξ(t), η(t)) ∈ Tγ(t)T ∗M′/S1, (ξ(t), η(t)) = d(x ,p)φt(ξ0, η0).

We are interested in the time evolution of these planes as measured
by their rotation around the vertical distribution
V = ker dπ, π : T ∗(M′)→M′.
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focal points

Figure: Focal points of λ0 occur at t = ti , dφtλ0

⋂
V 6= 0.
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Jacobi fields

In order to study the stability properties of the orbit, we must consider the
space J of Jacobi fields along γ(t) which are given by

(ξ(t), η(t)) ∈ Tγ(t)T ∗M′/S1, (ξ(t), η(t)) = d(x ,p)φt(ξ0, η0).

The mapping P acts on J by advancing the initial conditions of a Jacobi
field through the period T ,

P(ξ(0), η(0)) = (ξ(T ), η(T )). (2)

The periodic orbit γ(t) is non-degenerate if ker(P − Id) = XH(x , p).
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isoenergetic Jacobi fields

Let the energy level be denoted Σ = H−1(h).

Proposition

Assume that the rhombus orbit γ(t) is non-degenerate. The Jacobi fields
along γ(t) are a four dimensional linear symplectic space, which may be
decomposed as J = λ1 ⊕ λ2, where λ1 is a symplectic subspace which
contains the flow direction XH , and λ2 is a complimentary symplectic
subspace of transverse Jacobi fields which are everywhere parallel to the
energy surface Σ. λ1 and λ2 are both invariant under the Poincaré map.
Moreover, J contains a three dimensional subspace W, consisting of
Jacobi fields which satisfy the periodic boundary conditions ξ(0) = ξ(T ).
W restricted to the energy surface is two dimensional Lagrange plane Λ
containing the flow direction XH .
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comments on Proposition 1

W satisfies the inclusion relation (P − Id)W ⊆ V . Therefore
dim W ≤ 3 with equality when (P − Id)|W is onto V.

Choose the time t = 0 to coincide with perihelion along the elliptical
orbits, then dπXH(γ(0)) = 0 XH(γ(0)) ∈ V .
It follows that P is of the form

P =

 1 1
0 1

0

0 P̂

 ,

where P̂ = d φ̂T is the Poincaré map restricted to T Σ/XH , and has
no +1 eigenvalues.

V /XH is one dimensional. (P̂ − Id) is invertible, therefore
W/XH = (P̂ − Id)−1V /XH = [λ] 6= 0. Hence W = span{XH , ν, λ}
and Λ =W|TΣ = span{XH , λ}.

Daniel Offin, Graeme Baker (Department of Mathematics and Statistics Queen’s University)Remarks on Lagrangian singularities, caustics, minimum distance lines
CRM, Barcelona, SpainJune 2014 CRM 19

/ 25



more reduction

We are going to study the invariant Lagrangian curve described in
Proposition 1: Λ =W|TΣ = span{XH , λ}.

λt =
{

(ξ(t), η(t))
∣∣ ξ(0) = ξ(T ), dH(ξ(t), η(t)) = 0

}
.

Final reduction to consider, removing the flow direction XH(γ(t)) from the
tangent spaces Tγ(t)H−1(h).
Consider the corresponding sub-bundle (T Σ/XH), along the orbit γ(t).

Lemma

The quotient space T Σ/XH(γ((t)) is symplectic, with symplectic form
given by ω̂([u], [v ]) = ω(u, v). The linearized Hamiltonian flow dφt
projects to a Hamiltonian flow on the sub-bundle (T Σ/XH), defined by
φ̂t [v ] = [dφtv ].
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Second variation and ω(λ0,Pλ0)

The minimizing rhombus curve denoted q̂(t). The variational problem
is called non-degenerate if ker(δ2A(q̂)) = dπXH .

The second variation along q̂(t) evaluated in the direction of the field
λt :

δ2A(q̂) · ξ = 〈η(t), ξ(t)〉|T0

= 〈η(T ), ξ(T )〉 − 〈η(0), ξ(0)〉

= 〈η(T )− η(0), ξ(0)〉 > 0,

where the last equality follows since the Jacobi fields (ξ(t), η(t)) in
W satisfy the periodic boundary conditions ξ(T ) = ξ(0).

We have shown that ω(λ0,Pλ0) > 0, due to minimization in the
nonreduced setting.
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no focal point condition for λt

Proposition

Assume that the variational problem is non-degenerate, then the curve λt
is focal point free on the interval [0,T ].

Figure:
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hyperbolicty of the reduced rhombus orbit on Σ

Proposition

The Lagrange planes Pnλ0 have no focal points in the interval [0,T ].

Proposition

The Lagrange plane λ0 of isoenergetic variations transverse to the flow is
focal point free on the interval 0 ≤ t <∞.

Theorem

The reduced rhombus orbit is hyperbolic in the reduced energy manifold
when it is not degenerate.

Daniel Offin, Graeme Baker (Department of Mathematics and Statistics Queen’s University)Remarks on Lagrangian singularities, caustics, minimum distance lines
CRM, Barcelona, SpainJune 2014 CRM 23

/ 25



Instability of the orbits in the parallegram 4 body problem

We have shown above, that when we minimize in the holonomically
constrained system (rhomboid loops), the resulting orbits γ(t) are
unstable. The resulting invariant Lagrangian submanifolds contain
asymptotic orbits.

These same orbits γ(t) are also orbits of the unconstrained
parallelogram four body problem.

The relation of the constrained dynamics to the unconstrained
dynamics is one of projection (at least locally), where the
unconstrained dynamics are projected along coordinate directions
normal to the constraint set.

It follows that the local stable and unstable manifolds in the
constraint set are the projections of asymptotic orbits in the
unconstrained system.
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Thank you !
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