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Consider a Hamiltonian system with an equilibrium at the origin

H(z) = H(z) +K(z), z ∈ R2n

were the quadratic system is

H(z) =
1

2
zTSz ,

and the linear Hamiltonian system is

ż = Az , A = JS

and K(z) is the higher order terms.



Assume H is smooth and H is positive definite then:

The origin is stable. (Dirichlet, 1846)

There are n periodic solutions on each small level set H = ε > 0.
(Weinstein, 1973)



Assume H is smooth and H satisfies the MWC,
(Moser-Weinstein Condition).

There are n periodic solutions near the origin on
the level sets H = ±ε. (Moser, 1976)

What is the MWC? How can we use it?



Linear Hamiltonian Systems:

Ln : 2H(z) = zTSz , ż = Az , A = JS

System Ln is stable if all solutions are bounded for all t ∈ R.

System Ln satisfies the PIDC if all eigenvalues of A are pure
imaginary and A is diagonalizable.

Theorem: System Ln is stable iff it satisfies PIDC.



System Ln is parametrically stable if it and all sufficiently small
linear Hamiltonian perturbations of it are stable.

Define η(λ) = kernel (A− λI )
Let A have distinct eigenvalues ±β1i , . . . ,±βs i , 1 ≤ s ≤ n.
Wj = η(+βj i)⊕ η(−βj i) is the complexification of a real space Vj .
Let Hj be the restriction of H to Vj .

System Ln satisfies the Krein–Gel’fand-Lidskii condition, KGLC, if
A is nonsingular, A is stable, and the Hamiltonian Hj is positive or
negative definite for each j = 1, . . . s.

Theorem: System Ln is parametrically stable iff KGLC holds.



Group the eigenvalues of A as follows:

±ik11ω1,±ik12ω1, . . . ,±ik1s1ω1

. . .
±ikr1ωr ,±ikr2ωr , . . . ,±ikrsrωr

ω1, . . . , ωr are rationally independent and k11 . . . krsr ∈ Z\{0}.

Wj = [η(ikj1ωj)⊕ η(−ikj1ωj)]⊕ · · · ⊕ [η(ikjsjωj)⊕ η(−ikjsjωj)].
Wj is the complexification of a real Vj .

R2n = V1 ⊕ V2 ⊕ · · · ⊕ Vr

Let Hj be the restriction of H to Vj .

System Ln satisfies the Moser-Weinstein condition, MWC, if each
Hj is either positive or negative definite.



H satisfies PIDC iff there are symplectic coordinates such that

H =
ω1

2
(x21 + y21 ) + · · ·+ ωn

2
(x2n + y2n ) = ω1I1 + · · ·+ ωnIn

eigenvalues of A: ±ω1i , . . . ,±ωni and
Ij = 1

2(x2j + y2j ), φj = tan−1 yj/xj are action-angle variables.

Examples:

H = I1 + I2 satisfies KGLC and MWC — positive definite.
H = I1 − I2 does not satisfies KGLC or MWC.
H = I1 − 2I2 satisfies KGLC but not MWC.
H = I1 + 2I2 −

√
2(I3 + 3I4) satisfies KGLC and MWC.



A formal system Hn is in normal form if

Hn(z) = H(z) + H̄(z)

with H̄(eAtz) ≡ H̄(z) or {H, H̄} = 0.

Hn is normally stable if for every H̄ there exists a formal integral

Ln(z) = L(z) + L∗(z)

where L is a positive definite quadratic form in z .

Theorem: Hn is normally stable iff H satisfies MWC.



Consider a real analytic Hamiltonian

Ha(w) = H(w) +H∗(w)

such that the origin is an equilibrium point.

Ha is formally stable if there exists a formal positive definite
integral Lf (w), i.e., {Ha,Lf } = 0.

Remark: This implies some asymptotic estimates – see Seigel,
Moser, Bruno et al.

Corollary: If H satisfies MWC then the analytic Hamiltonian
system Ha is formally stable.



Proof:

MWC implies

H = ω1(k11I11 + · · ·+ k1s1 I1s1) + · · ·+ ωr (kr1Ir1 + · · ·+ krsr Irsr )

were all the ks are positive. Define the positive definite

L = |ω1|(k11I11 + · · ·+ k1s1 I1s1) + · · ·+ |ωr |(kr1Ir1 + · · ·+ krsr Irsr ).

The rational independence of the ωs imply
Lemma : Let

T = cI
α11/2
11 · · · Iαrσ/2

rσ cos(Σr
j=1[βj1φj1 + · · ·+ βjσφjσ])

be a typical term in the Poisson series for H̄ then

kj1βj1 + kj2βj2 + · · ·+ kjσβjσ = 0.



Using the lemma a direct computation yields

{L,T} = 0.

QED



Three Degrees of Freedom: H = ω1I1 + ω2I2 + ω3I3

Case: (i) ωi ’s all have the same sign: ωi > 0
Case (ii) two of one sign and one of other sign:
ω1 < 0, ω2 > 0, ω3 > 0

In case (ii) MWC holds iff ω2/ω1 and ω3/ω1 are irrational.

Application: L4 in the spatial restricted three body problem.

ω2/ω1 = r ∈ Q, r ∈ (0, 1) and ω3/ω1 = 1/s ∈ Q, s ∈ (1/
√

2, 1)

Excluded Values:

µr =
1

2
−
√

27r4 + 38r2 + 27

6
√

3(r2 + 1)
, µs =

1

2
−
√

48s4 − 48s2 + 81

18
.


