Normally Stable Hamiltonian Systems

Ken Meyer, Jesús Palacián, Patricia Yanguas

University of Cincinnati, Universidad Pública de Navarra

Consider a Hamiltonian system with an equilibrium at the origin

$$
\mathcal{H}(z)=\mathbb{H}(z)+\mathcal{K}(z), \quad z \in \mathbb{R}^{2 n}
$$

were the quadratic system is

$$
\mathbb{H}(z)=\frac{1}{2} z^{T} S z,
$$

and the linear Hamiltonian system is

$$
\dot{z}=A z, \quad A=J S
$$

and $\mathcal{K}(z)$ is the higher order terms.

Assume \mathcal{H} is smooth and \mathbb{H} is positive definite then:
The origin is stable. (Dirichlet, 1846)
There are n periodic solutions on each small level set $\mathcal{H}=\epsilon>0$. (Weinstein, 1973)

Assume \mathcal{H} is smooth and \mathbb{H} satisfies the MWC, (Moser-Weinstein Condition).

There are n periodic solutions near the origin on the level sets $\mathcal{H}= \pm \epsilon$. (Moser, 1976)

What is the MWC? How can we use it?

Linear Hamiltonian Systems:

$$
\text { Ln : } \quad 2 \mathbb{H}(z)=z^{T} S z, \quad \dot{z}=A z, \quad A=J S
$$

System $\mathbf{L n}$ is stable if all solutions are bounded for all $t \in \mathbb{R}$.
System Ln satisfies the PIDC if all eigenvalues of A are pure imaginary and A is diagonalizable.

Theorem: System Ln is stable iff it satisfies PIDC.

System Ln is parametrically stable if it and all sufficiently small linear Hamiltonian perturbations of it are stable.

Define $\eta(\lambda)=\operatorname{kernel}(A-\lambda I)$
Let A have distinct eigenvalues $\pm \beta_{1} i, \ldots, \pm \beta_{s} i, 1 \leq s \leq n$. $\mathbb{W}_{j}=\eta\left(+\beta_{j} i\right) \oplus \eta\left(-\beta_{j} i\right)$ is the complexification of a real space \mathbb{V}_{j}. Let \mathbb{H}_{j} be the restriction of \mathbb{H} to \mathbb{V}_{j}.

System Ln satisfies the Krein-Gel'fand-Lidskii condition, KGLC, if A is nonsingular, A is stable, and the Hamiltonian \mathbb{H}_{j} is positive or negative definite for each $j=1, \ldots$ s.

Theorem: System Ln is parametrically stable iff KGLC holds.

Group the eigenvalues of A as follows:

$$
\begin{aligned}
& \pm i k_{11} \omega_{1}, \pm i k_{12} \omega_{1}, \ldots, \pm i k_{1 s_{1}} \omega_{1} \\
& \ldots \\
& \pm i k_{r 1} \omega_{r}, \pm i k_{r 2} \omega_{r}, \ldots, \pm i k_{r s_{r}} \omega_{r}
\end{aligned}
$$

$\omega_{1}, \ldots, \omega_{r}$ are rationally independent and $k_{11} \ldots k_{r s_{r}} \in \mathbb{Z} \backslash\{0\}$.
$\mathbb{W}_{j}=\left[\eta\left(i k_{j 1} \omega_{j}\right) \oplus \eta\left(-i k_{j 1} \omega_{j}\right)\right] \oplus \cdots \oplus\left[\eta\left(i k_{j_{j}} \omega_{j}\right) \oplus \eta\left(-i k_{j_{j}} \omega_{j}\right)\right]$.
\mathbb{W}_{j} is the complexification of a real \mathbb{V}_{j}.

$$
\mathbb{R}^{2 n}=\mathbb{V}_{1} \oplus \mathbb{V}_{2} \oplus \cdots \oplus \mathbb{V}_{r}
$$

Let \mathbb{H}_{j} be the restriction of \mathbb{H} to \mathbb{V}_{j}.
System Ln satisfies the Moser-Weinstein condition, MWC, if each \mathbb{H}_{j} is either positive or negative definite.
\mathbb{H} satisfies PIDC iff there are symplectic coordinates such that

$$
\mathbb{H}=\frac{\omega_{1}}{2}\left(x_{1}^{2}+y_{1}^{2}\right)+\cdots+\frac{\omega_{n}}{2}\left(x_{n}^{2}+y_{n}^{2}\right)=\omega_{1} I_{1}+\cdots+\omega_{n} I_{n}
$$

eigenvalues of $A: \pm \omega_{1} i, \ldots, \pm \omega_{n} i$ and
$I_{j}=\frac{1}{2}\left(x_{j}^{2}+y_{j}^{2}\right), \phi_{j}=\tan ^{-1} y_{j} / x_{j}$ are action-angle variables.

Examples:

$\mathbb{H}=I_{1}+I_{2}$ satisfies KGLC and MWC - positive definite.
$\mathbb{H}=I_{1}-I_{2}$ does not satisfies KGLC or MWC.
$\mathbb{H}=I_{1}-2 I_{2}$ satisfies KGLC but not MWC.
$\mathbb{H}=I_{1}+2 I_{2}-\sqrt{2}\left(I_{3}+3 I_{4}\right)$ satisfies KGLC and MWC.

A formal system \mathcal{H}_{n} is in normal form if

$$
\mathcal{H}_{n}(z)=\mathbb{H}(z)+\overline{\mathcal{H}}(z)
$$

with $\overline{\mathcal{H}}\left(e^{A t} z\right) \equiv \overline{\mathcal{H}}(z)$ or $\{\mathbb{H}, \overline{\mathcal{H}}\}=0$.
\mathcal{H}_{n} is normally stable if for every $\overline{\mathcal{H}}$ there exists a formal integral

$$
\mathcal{L}_{n}(z)=\mathbb{L}(z)+\mathcal{L}_{*}(z)
$$

where \mathbb{L} is a positive definite quadratic form in z.
Theorem: \mathcal{H}_{n} is normally stable iff \mathbb{H} satisfies MWC.

Consider a real analytic Hamiltonian

$$
\mathcal{H}_{a}(w)=\mathbb{H}(w)+\mathcal{H}^{*}(w)
$$

such that the origin is an equilibrium point.
\mathcal{H}_{a} is formally stable if there exists a formal positive definite integral $\mathcal{L}_{f}(w)$, i.e., $\left\{\mathcal{H}_{a}, \mathcal{L}_{f}\right\}=0$.

Remark: This implies some asymptotic estimates - see Seigel, Moser, Bruno et al.

Corollary: If \mathbb{H} satisfies MWC then the analytic Hamiltonian system \mathcal{H}_{a} is formally stable.

Proof:

MWC implies

$$
\mathbb{H}=\omega_{1}\left(k_{11} l_{11}+\cdots+k_{1 s_{1}} l_{1 s_{1}}\right)+\cdots+\omega_{r}\left(k_{r 1} I_{r 1}+\cdots+k_{r s_{r}} I_{r s_{r}}\right)
$$

were all the $k s$ are positive. Define the positive definite
$\mathbb{L}=\left|\omega_{1}\right|\left(k_{11} I_{11}+\cdots+k_{1 s_{1}} I_{1 s_{1}}\right)+\cdots+\left|\omega_{r}\right|\left(k_{r 1} I_{r 1}+\cdots+k_{r s_{r}} I_{r s_{r}}\right)$.
The rational independence of the ω s imply Lemma : Let

$$
\mathbb{T}=c l_{11}^{\alpha_{11} / 2} \cdots l_{r \sigma}^{\alpha_{r \sigma} / 2} \cos \left(\sum_{j=1}^{r}\left[\beta_{j 1} \phi_{j 1}+\cdots+\beta_{j \sigma} \phi_{j \sigma}\right]\right)
$$

be a typical term in the Poisson series for $\overline{\mathcal{H}}$ then

$$
k_{j 1} \beta_{j 1}+k_{j 2} \beta_{j 2}+\cdots+k_{j \sigma} \beta_{j \sigma}=0
$$

Using the lemma a direct computation yields

$$
\{\mathbb{L}, \mathbb{T}\}=0
$$

QED

Three Degrees of Freedom: $\mathbb{H}=\omega_{1} I_{1}+\omega_{2} I_{2}+\omega_{3} l_{3}$
Case: (i) ω_{i} 's all have the same sign: $\omega_{i}>0$
Case (ii) two of one sign and one of other sign:
$\omega_{1}<0, \omega_{2}>0, \omega_{3}>0$
In case (ii) MWC holds iff ω_{2} / ω_{1} and ω_{3} / ω_{1} are irrational.
Application: L_{4} in the spatial restricted three body problem.
$\omega_{2} / \omega_{1}=r \in \mathbb{Q}, r \in(0,1)$ and $\omega_{3} / \omega_{1}=1 / s \in \mathbb{Q}, s \in(1 / \sqrt{2}, 1)$
Excluded Values:

$$
\mu_{r}=\frac{1}{2}-\frac{\sqrt{27 r^{4}+38 r^{2}+27}}{6 \sqrt{3}\left(r^{2}+1\right)}, \quad \mu_{s}=\frac{1}{2}-\frac{\sqrt{48 s^{4}-48 s^{2}+81}}{18} .
$$

