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Two co-orbital satellites of Saturn

» Janus and Epimetheus are satellites of Saturn with
coplanar orbits that are very close to each other.

» mg = 5.69 x 10%6kg, Rs = 60268Km,
my=1.98 x 10'®Kg, 196 x 192 x 150 and
me =5.50 x 10" Kg, 144 x 108 x 98 Km .




The orbits

» The motion of both satellites occurs in the same plane.
» Most of the time the satellites do not feel each other (two
body Kepler solution).

» According to Kepler’s laws the inner satellite goes faster
than the outer one and eventually after some full
revolutions will catch it (encounter).

» Only when they are close to each other they feel the
mutual gravitational attraction (encounter).



The orbits
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A closer look at the encounter
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» The inner body does not overtake the outer one but they
interchange orbits; the inner becomes outer and
vice-versa.

» The defining property of a exchange orbit orbit is this no
overtaking condition. LT

» In a rotating frame the orbits resemble a horseshoe. Us=



Exchange orbits in a rotating frame; scheme
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Exchange orbits in a rotating and fixed frame;
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Exchange orbits in a fixed frame; calculated
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Exchange orbits in the shape sphere (help welcome!)
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Objectives
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Classification of the exchange orbits family of solutions
Stability and bifurcations

Connections with other families

Generalizations to more than 3 bodies (2k + 1)
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Objectives

» Classification of the exchange orbits family of solutions
» Stability and bifurcations

» Connections with other families

» Generalizations to more than 3 bodies (2k + 1)

Tools

» Computation of an initial solution by reduction, shooting
methods or Lyapunov Center Theorem.

» Numerical continuation of solutions.
» Computation of Floquet multipliers.



Continuation of solutions in conservative systems
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7 (4 in R?) first integrals | H, P and J, ‘permutations \(if
my = mg)

(q1 42,93, P1, P2, p3) = (Ch 43,92, P1, P3, p2)
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Geometrical picture: Cylinder Theorem
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Geometrical picture: Reduction
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Theory: BVP Formulation

u' = T(JVH(u(t)) + aVH(u(t))), u(1) = u(0). (1)

with u,« and T as unknowns. Finding a T-periodic orbit of
v = JVH(u) is equivalent to finding a solution of (1) if « = 0.
We have to include a phase condition to fix the time origin.

(u(0) — to(0))"tp(0) = 0. )



Continuation theorem with 1 conserved quantity

Theorem

Let up(t) be a periodic solution with period 0 < Ty < +o0
whose monodromy matrix has 1 as an eigenvalue with
geometric multiplicty one or algebraic multipicity two.
Then, there existis a unique branch of solutions of (??) and
(??) in a neighbourhood of (u, T, ) = (up, Ty, 0). Moreover,
along the branch o = 0.

» The proof is a direct application of IFT and the fact that
H(u(t)) is constant along the periodic orbit.



Generalization to several conserved quantities

» Let Wp = {VF(p) : Ffirstintegral of x = f(x)},
dim(p) = K, vi(X, a) the flow and orb,(p) the orbit.
» x=1f(x) - x=FfX)+a1VF(x)+ ...+ axVFx(x),

Proposition
Letp € R" s. t. orb,(p) be T—periodic. It holds that
Im(D¥7(p) — /) + Rf(p) € Wy



General results

Definition (Normal periodic orbit)

Let p € R” such that the orbit orb,(p) is periodic with period
T > 0 and p is not an equilibrium of z = f(z). We say that
orb,,(p) is @ normal periodic orbit of e z = f(z) if

Im(D¥7(p) — 1) + Rf(p) = Wy

Theorem (Continuation with k conserved quantities)

Letp € R" be a point that generates a normal periodic orbit of
x = f(x) with period T > 0. Then there exists a neighborhood
of T > 0 such that the set of points that generate periodic orbits
whose period is in that neighborhood of T is locally a
submanifold at p.



Numerical Implementation

» We make use of the a boundary value based general
technique to continue solutions in conservative systems.
[Physica D 181 1 (2003) and Celest. Mech. D. A. 97 17
(2007)]

» We choose two relevant parameters po, = m»/my and
p3 = mg/m

» The initial solution is taken from Bengochea et al
Astrophys. Space Sci. 333 399 (2011)

[ = pg = 3.4 x 1074

» The orbit includes around 100 revolutions around the
planet.

» We can continue the full periodic orbit or just an arc
[periodic and relative periodic orbits] and exploit the
reversibility properties.



Initial Orbit
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Stability of the exchange orbit o # 3
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Floquet Multipliers
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Case ji2 = p3
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2k+1 exchange orbit solution [hot dog?]
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No overtaking condition




5 body exchange orbit
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5 body exchange orbit (existence theorem)

Theorem 2 Consider a solution u(t) of the 4k 4 1-body problem with 4k equal
masses. Suppose that u is invariant under 1. and passes trough RI at £ =0 and
RO at t = To. Let 8 be the angle measured from r2(0) to r2(To) + r3(To) in the
counterclockwise sense. The orbit is periodic if and only if

0= %m for some p,qg € N,
The period T of the orbit, supposing p and g are relative primes, is
qly, if g=8 —4 for some i € N,
2qTy, if g =8i for some i € N,

dqly, if g=4i—2 for some i €N,
8gTy, if is odd

The theorem also provides a numerical method to compute the
initial conditions.



5 body exchange orbits
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5 body exchange orbit connected to Euler-like solution
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Conclusions

» The numerical continuation of periodic orbits in the three
(and 2k+1) body is a challenging but feasible problem.

» The reduction procedure has been used to construct the
initial exchange orbit solution and prove its existence.

» However, for the continuation we have made used of the
reversibility properties or continued the full planar 3 body
problem.

» The branching of exchange orbits form the Euler solutions
could be proved by continuation on the eccentricity.

» A systematic classification of the exchange orbits families
is still pending.

» The 2k+1 body exchange orbit and Saari’s conjecture.



