
Exchange orbits in the general planar
five-body problem

Symmetric exchange orbits
in the planar N-body problem

Jorge Galán Vioque

Departamento de Matemática Aplicada &
Instituto de Matemáticas de la Universidad de Sevilla (IMUS)

with A. Bengochea and E. Pérez-Chavela (UAM).

HAMSYS 2014, CRM 2-6th June 2014
on the 70th birthday of Prof. Clark Robinson



Two co-orbital satellites of Saturn

I Janus and Epimetheus are satellites of Saturn with
coplanar orbits that are very close to each other.

I mS = 5.69× 1026kg,RS = 60268Km,
mJ = 1.98× 1018Kg,196× 192× 150 and
mE = 5.50× 1017Kg,144× 108× 98 Km .



The orbits

I The motion of both satellites occurs in the same plane.
I Most of the time the satellites do not feel each other (two

body Kepler solution).
I According to Kepler’s laws the inner satellite goes faster

than the outer one and eventually after some full
revolutions will catch it (encounter).

I Only when they are close to each other they feel the
mutual gravitational attraction (encounter).



The orbits
I

r =
a(1− e2)

1− e cos θ
I aJ = 151460,eJ = 0.0068
I aE = 151410,eE = 0.0098



A closer look at the encounter

I The inner body does not overtake the outer one but they
interchange orbits; the inner becomes outer and
vice-versa.

I The defining property of a exchange orbit orbit is this no
overtaking condition.

I In a rotating frame the orbits resemble a horseshoe.



Exchange orbits in a rotating frame; scheme



Exchange orbits in a rotating and fixed frame;
calculated



Exchange orbits in a fixed frame; calculated



Exchange orbits in the shape sphere (help welcome!)
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Objectives

I Classification of the exchange orbits family of solutions
I Stability and bifurcations
I Connections with other families
I Generalizations to more than 3 bodies (2k + 1)

Tools

I Computation of an initial solution by reduction, shooting
methods or Lyapunov Center Theorem.

I Numerical continuation of solutions.
I Computation of Floquet multipliers.
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Continuation of solutions in conservative systems

ẍ1 = −m2
x1 − x2

|x1 − x2|3
−m3

x1 − x3

|x1 − x3|3
,

ẍ2 = −m1
x2 − x1

|x1 − x2|3
−m3

x2 − x3

|x2 − x3|3
,

ẍ3 = −m2
x3 − x2

|x3 − x2|3
−m1

x3 − x1

|x1 − x3|3
,

7 (4 in R2) first integrals H, P and J, permutations (if
m2 = m3 )

(q1,q2,q3,p1,p2,p3) 7→ (q1,q3,q2,p1,p3,p2).

Orbital symmetry (scaling)

(q1,q2,q3,p1,p2,p3) 7→ (λ−2q1, λ
−2q2, λ

−2q3, λp1, λp2, λp3)



Geometrical picture: Cylinder Theorem



Geometrical picture: Reduction



Theory: BVP Formulation

u′ = T (J∇H(u(t)) + α∇H(u(t))), u(1) = u(0). (1)

with u, α and T as unknowns. Finding a T -periodic orbit of
u′ = J∇H(u) is equivalent to finding a solution of (1) if α = 0.
We have to include a phase condition to fix the time origin.

(u(0)− u0(0))∗u′0(0) = 0. (2)



Continuation theorem with 1 conserved quantity

Theorem
Let u0(t) be a periodic solution with period 0 < T0 < +∞
whose monodromy matrix has 1 as an eigenvalue with
geometric multiplicty one or algebraic multipicity two.
Then, there existis a unique branch of solutions of (??) and
(??) in a neighbourhood of (u,T , α) = (u0,T0,0). Moreover,
along the branch α = 0.

I The proof is a direct application of IFT and the fact that
H(u(t)) is constant along the periodic orbit.



Generalization to several conserved quantities

I LetWp = {∇F (p) : F first integral of ẋ = f (x)},
dim(Wp) = k , ϕt(x,α) the flow and orbϕ(p) the orbit.

I ẋ = f (x) → ẋ = f (x) + α1∇F1(x) + . . .+ αk∇Fk (x),

Proposition
Let p ∈ Rn s. t. orbϕ(p) be T−periodic. It holds that
Im(DϕT (p)− I) + Rf (p) ⊆ W⊥p .



General results

Definition (Normal periodic orbit)
Let p ∈ Rn such that the orbit orbϕ(p) is periodic with period
T > 0 and p is not an equilibrium of ż = f (z). We say that
orbϕ(p) is a normal periodic orbit of e ż = f (z) if

Im(DϕT (p)− I) + Rf (p) =W⊥p .

Theorem (Continuation with k conserved quantities)
Let p ∈ Rn be a point that generates a normal periodic orbit of
ẋ = f (x) with period T > 0. Then there exists a neighborhood
of T > 0 such that the set of points that generate periodic orbits
whose period is in that neighborhood of T is locally a
submanifold at p.



Numerical Implementation

I We make use of the a boundary value based general
technique to continue solutions in conservative systems.
[Physica D 181 1 (2003) and Celest. Mech. D. A. 97 17
(2007)]

I We choose two relevant parameters µ2 = m2/m1 and
µ3 = m3/m1

I The initial solution is taken from Bengochea et al
Astrophys. Space Sci. 333 399 (2011)
[µ2 = µ3 = 3.4× 10−4]

I The orbit includes around 100 revolutions around the
planet.

I We can continue the full periodic orbit or just an arc
[periodic and relative periodic orbits] and exploit the
reversibility properties.



Initial Orbit



Stability of the exchange orbit µ2 6= µ3

0 0.5 1 1.5 2 2.5 3 3.5
x 10 4

1.999900

1.999925

1.999950

1.999975

2.000000

µ3

L 2 n
or

m



Floquet Multipliers
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Case µ2 = µ3
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2k+1 exchange orbit solution [hot dog?]

No overtaking condition



5 body exchange orbit
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5 body exchange orbit (existence theorem)

The theorem also provides a numerical method to compute the
initial conditions.



5 body exchange orbits



5 body exchange orbit connected to Euler-like solution



Conclusions

I The numerical continuation of periodic orbits in the three
(and 2k+1) body is a challenging but feasible problem.

I The reduction procedure has been used to construct the
initial exchange orbit solution and prove its existence.

I However, for the continuation we have made used of the
reversibility properties or continued the full planar 3 body
problem.

I The branching of exchange orbits form the Euler solutions
could be proved by continuation on the eccentricity.

I A systematic classification of the exchange orbits families
is still pending.

I The 2k+1 body exchange orbit and Saari’s conjecture.


