Exchange orbits in the general planar five-body problem Symmetric exchange orbits in the planar N-body problem

Jorge Galán Vioque

Departamento de Matemática Aplicada & Instituto de Matemáticas de la Universidad de Sevilla (IMUS)

with A. Bengochea and E. Pérez-Chavela (UAM).

HAMSYS 2014, CRM 2-6th June 2014 on the 70th birthday of Prof. Clark Robinson

Two co-orbital satellites of Saturn

Janus and Epimetheus are satellites of Saturn with coplanar orbits that are very close to each other.

►
$$m_S = 5.69 \times 10^{26} kg$$
, $R_S = 60268 Km$,
 $m_J = 1.98 \times 10^{18} Kg$, $196 \times 192 \times 150$ and
 $m_T = 5.50 \times 10^{17} Kg$, $144 \times 108 \times 98 Km$

The orbits

- The motion of both satellites occurs in the same plane.
- Most of the time the satellites do not feel each other (two body Kepler solution).
- According to Kepler's laws the inner satellite goes faster than the outer one and eventually after some full revolutions will catch it (encounter).
- Only when they are close to each other they feel the mutual gravitational attraction (encounter).

The orbits

$$r=\frac{a(1-e^2)}{1-e\cos\theta}$$

A closer look at the encounter

- The inner body does not overtake the outer one but they interchange orbits; the inner becomes outer and vice-versa.
- The defining property of a exchange orbit orbit is this no overtaking condition.
- In a rotating frame the orbits resemble a horseshoe.

Exchange orbits in a rotating frame; scheme

Exchange orbits in a rotating and fixed frame; calculated

Exchange orbits in a fixed frame; calculated

Exchange orbits in the shape sphere (help welcome!)

Objectives

- Classification of the exchange orbits family of solutions
- Stability and bifurcations
- Connections with other families
- Generalizations to more than 3 bodies (2k + 1)

Objectives

- Classification of the exchange orbits family of solutions
- Stability and bifurcations
- Connections with other families
- ► Generalizations to more than 3 bodies (2k + 1)

Tools

- Computation of an initial solution by reduction, shooting methods or Lyapunov Center Theorem.
- Numerical continuation of solutions.
- Computation of Floquet multipliers.

Continuation of solutions in conservative systems

$$\begin{aligned} \ddot{\mathbf{x}}_{1} &= -m_{2} \frac{\mathbf{x}_{1} - \mathbf{x}_{2}}{|\mathbf{x}_{1} - \mathbf{x}_{2}|^{3}} - m_{3} \frac{\mathbf{x}_{1} - \mathbf{x}_{3}}{|\mathbf{x}_{1} - \mathbf{x}_{3}|^{3}} ,\\ \ddot{\mathbf{x}}_{2} &= -m_{1} \frac{\mathbf{x}_{2} - \mathbf{x}_{1}}{|\mathbf{x}_{1} - \mathbf{x}_{2}|^{3}} - m_{3} \frac{\mathbf{x}_{2} - \mathbf{x}_{3}}{|\mathbf{x}_{2} - \mathbf{x}_{3}|^{3}} ,\\ \ddot{\mathbf{x}}_{3} &= -m_{2} \frac{\mathbf{x}_{3} - \mathbf{x}_{2}}{|\mathbf{x}_{3} - \mathbf{x}_{2}|^{3}} - m_{1} \frac{\mathbf{x}_{3} - \mathbf{x}_{1}}{|\mathbf{x}_{1} - \mathbf{x}_{3}|^{3}} ,\end{aligned}$$

7 (4 in \mathbb{R}^2) first integrals H, **P** and **J**, permutations (if $m_2 = m_3$)

 $(\mathsf{q}_1, \mathsf{q}_2, \mathsf{q}_3, \mathsf{p}_1, \mathsf{p}_2, \mathsf{p}_3) \mapsto (\mathsf{q}_1, \mathsf{q}_3, \mathsf{q}_2, \mathsf{p}_1, \mathsf{p}_3, \mathsf{p}_2).$

Orbital symmetry (scaling)

 $(\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) \mapsto (\lambda^{-2} \mathbf{q}_1, \lambda^{-2} \mathbf{q}_2, \lambda^{-2} \mathbf{q}_3, \lambda \mathbf{p}_1, \lambda \mathbf{p}_2, \lambda \mathbf{p}_3)$

Geometrical picture: Cylinder Theorem

Geometrical picture: Reduction

Theory: BVP Formulation

$$u' = T(J\nabla H(u(t)) + \alpha \nabla H(u(t))), \qquad u(1) = u(0).$$
(1)

with u, α and T as unknowns. Finding a T-periodic orbit of $u' = J \nabla H(u)$ is equivalent to finding a solution of (1) if $\alpha = 0$. We have to include a phase condition to fix the time origin.

$$(u(0) - u_0(0))^* u_0'(0) = 0.$$
 (2)

Continuation theorem with 1 conserved quantity

Theorem

Let $u_0(t)$ be a periodic solution with period $0 < T_0 < +\infty$ whose monodromy matrix has 1 as an eigenvalue with **geometric multiplicty one** or **algebraic multiplicity two**. Then, there exists a unique branch of solutions of (??) and (??) in a neighbourhood of $(u, T, \alpha) = (u_0, T_0, 0)$. Moreover, along the branch $\alpha = 0$.

The proof is a direct application of IFT and the fact that H(u(t)) is constant along the periodic orbit.

Generalization to several conserved quantities

► Let
$$\mathcal{W}_{\mathbf{p}} = \{\nabla F(\mathbf{p}) : F \text{ first integral of } \dot{x} = f(x)\},\$$

dim $(\mathcal{W}_{\mathbf{p}}) = k, \varphi_t(\mathbf{x}, \alpha)$ the flow and $\operatorname{orb}_{\varphi}(\mathbf{p})$ the orbit.

$$\dot{\mathbf{x}} = f(\mathbf{x}) \quad \rightarrow \quad \dot{\mathbf{x}} = f(\mathbf{x}) + \alpha_1 \nabla F_1(\mathbf{x}) + \ldots + \alpha_k \nabla F_k(\mathbf{x}),$$

Proposition

Let $\mathbf{p} \in \mathbb{R}^n$ s. t. $\operatorname{orb}_{\varphi}(\mathbf{p})$ be T-periodic. It holds that $\operatorname{Im}(D\varphi_T(\mathbf{p}) - I) + \mathbb{R}f(\mathbf{p}) \subseteq W_{\mathbf{p}}^{\perp}$.

General results

Definition (Normal periodic orbit)

Let $\mathbf{p} \in \mathbb{R}^n$ such that the orbit $\operatorname{orb}_{\varphi}(\mathbf{p})$ is periodic with period T > 0 and \mathbf{p} is not an equilibrium of $\dot{\mathbf{z}} = f(\mathbf{z})$. We say that $\operatorname{orb}_{\varphi}(\mathbf{p})$ is a normal periodic orbit of e $\dot{\mathbf{z}} = f(\mathbf{z})$ if

$$\operatorname{Im}(D arphi_{\mathcal{T}}(\mathbf{p}) - l) + \mathbb{R}f(\mathbf{p}) = \mathcal{W}_{\mathbf{p}}^{\perp}.$$

Theorem (Continuation with *k* conserved quantities) Let $\mathbf{p} \in \mathbb{R}^n$ be a point that generates a normal periodic orbit of $\dot{\mathbf{x}} = f(\mathbf{x})$ with period T > 0. Then there exists a neighborhood of T > 0 such that the set of points that generate periodic orbits whose period is in that neighborhood of T is locally a submanifold at \mathbf{p} .

Numerical Implementation

- We make use of the a boundary value based general technique to continue solutions in conservative systems. [Physica D 181 1 (2003) and Celest. Mech. D. A. 97 17 (2007)]
- We choose two relevant parameters $\mu_2 = m_2/m_1$ and $\mu_3 = m_3/m_1$
- The initial solution is taken from Bengochea et al Astrophys. Space Sci. **333** 399 (2011)
 [μ₂ = μ₃ = 3.4 × 10⁻⁴]
- The orbit includes around 100 revolutions around the planet.
- We can continue the full periodic orbit or just an arc [periodic and relative periodic orbits] and exploit the reversibility properties.

Initial Orbit

Stability of the exchange orbit $\mu_2 \neq \mu_3$

Floquet Multipliers

Case $\mu_2 = \mu_3$

2k+1 exchange orbit solution [hot dog?]

No overtaking condition

5 body exchange orbit

5 body exchange orbit (existence theorem)

Theorem 2 Consider a solution $\mathbf{u}(t)$ of the 4k + 1-body problem with 4k equal masses. Suppose that \mathbf{u} is invariant under Υ_{π} and passes trough RI at t = 0 and RO at $t = T_0$. Let θ be the angle measured from $\mathbf{r}_2(0)$ to $\mathbf{r}_2(T_0) + \mathbf{r}_3(T_0)$ in the counterclockwise sense. The orbit is periodic if and only if

$$\theta = \frac{p}{q}\pi$$
, for some $p, q \in \mathbb{N}$.

The period T of the orbit, supposing p and q are relative primes, is

$$T = \begin{cases} qT_{\theta}, \ \text{if} \ q = 8i - 4 \ \text{for some} \ i \in \mathbb{N}, \\ 2qT_{\theta}, \ \text{if} \ q = 8i \ \text{for some} \ i \in \mathbb{N}, \\ 4qT_{\theta}, \ \text{if} \ q = 4i - 2 \ \text{for some} \ i \in \mathbb{N}, \\ 8qT_{\theta}, \ \text{if} \ \text{source} \ i \in \mathbb{N}, \end{cases}$$

The theorem also provides a numerical method to compute the initial conditions.

5 body exchange orbits

5 body exchange orbit connected to Euler-like solution

Conclusions

- The numerical continuation of periodic orbits in the three (and 2k+1) body is a challenging but feasible problem.
- The reduction procedure has been used to construct the initial exchange orbit solution and prove its existence.
- However, for the continuation we have made used of the reversibility properties or continued the full planar 3 body problem.
- The branching of exchange orbits form the Euler solutions could be proved by continuation on the eccentricity.
- A systematic classification of the exchange orbits families is still pending.
- ► The 2k+1 body exchange orbit and Saari's conjecture.

