Exchange orbits in the general planar five-body problem Symmetric exchange orbits in the planar N -body problem

Jorge Galán Vioque

Departamento de Matemática Aplicada \&
Instituto de Matemáticas de la Universidad de Sevilla (IMUS)
with A. Bengochea and E. Pérez-Chavela (UAM).

HAMSYS 2014, CRM 2-6th June 2014 on the 70th birthday of Prof. Clark Robinson

Two co-orbital satellites of Saturn

- Janus and Epimetheus are satellites of Saturn with coplanar orbits that are very close to each other.
- $m_{S}=5.69 \times 10^{26} \mathrm{~kg}, R_{S}=60268 \mathrm{Km}$,
$m_{J}=1.98 \times 10^{18} \mathrm{Kg}, 196 \times 192 \times 150$ and $m_{E}=5.50 \times 10^{17} \mathrm{Kg}, 144 \times 108 \times 98 \mathrm{Km}$.

The orbits

- The motion of both satellites occurs in the same plane.
- Most of the time the satellites do not feel each other (two body Kepler solution).
- According to Kepler's laws the inner satellite goes faster than the outer one and eventually after some full revolutions will catch it (encounter).
- Only when they are close to each other they feel the mutual gravitational attraction (encounter).

The orbits

$$
r=\frac{a\left(1-e^{2}\right)}{1-e \cos \theta}
$$

- $a_{J}=151460, e_{J}=0.0068$
- $a_{E}=151410, e_{E}=0.0098$

A closer look at the encounter

- The inner body does not overtake the outer one but they interchange orbits; the inner becomes outer and vice-versa.
- The defining property of a exchange orbit orbit is this no overtaking condition.
- In a rotating frame the orbits resemble a horseshoe.

Exchange orbits in a rotating frame; scheme

Exchange orbits in a rotating and fixed frame; calculated

Exchange orbits in a fixed frame; calculated

Exchange orbits in the shape sphere (help welcome!)

û

Objectives

- Classification of the exchange orbits family of solutions
- Stability and bifurcations
- Connections with other families
- Generalizations to more than 3 bodies $(2 k+1)$

Objectives

- Classification of the exchange orbits family of solutions
- Stability and bifurcations
- Connections with other families
- Generalizations to more than 3 bodies $(2 k+1)$

Tools

- Computation of an initial solution by reduction, shooting methods or Lyapunov Center Theorem.
- Numerical continuation of solutions.
- Computation of Floquet multipliers.

Continuation of solutions in conservative systems

$$
\begin{aligned}
\ddot{\mathbf{x}}_{1} & =-m_{2} \frac{\mathbf{x}_{1}-\mathbf{x}_{2}}{\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|^{3}}-m_{3} \frac{\mathbf{x}_{1}-\mathbf{x}_{3}}{\left|\mathbf{x}_{1}-\mathbf{x}_{3}\right|^{3}}, \\
\ddot{\mathbf{x}}_{2} & =-m_{1} \frac{\mathbf{x}_{2}-\mathbf{x}_{1}}{\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|^{3}}-m_{3} \frac{\mathbf{x}_{2}-\mathbf{x}_{3}}{\left|\mathbf{x}_{2}-\mathbf{x}_{3}\right|^{3}}, \\
\ddot{\mathbf{x}}_{3} & =-m_{2} \frac{\mathbf{x}_{3}-\mathbf{x}_{2}}{\left|\mathbf{x}_{3}-\mathbf{x}_{2}\right|^{3}}-m_{1} \frac{\mathbf{x}_{3}-\mathbf{x}_{1}}{\left|\mathbf{x}_{1}-\mathbf{x}_{3}\right|^{3}},
\end{aligned}
$$

$7\left(4\right.$ in $\left.\mathbb{R}^{2}\right)$ first integrals H, \mathbf{P} and \mathbf{J}, \quad permutations

$$
\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right) \mapsto\left(\mathbf{q}_{1}, \mathbf{q}_{3}, \mathbf{q}_{2}, \mathbf{p}_{1}, \mathbf{p}_{3}, \mathbf{p}_{2}\right)
$$

Orbital symmetry (scaling)

$$
\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right) \mapsto\left(\lambda^{-2} \mathbf{q}_{1}, \lambda^{-2} \mathbf{q}_{2}, \lambda^{-2} \mathbf{q}_{3}, \lambda \mathbf{p}_{1}, \lambda \mathbf{p}_{2}, \lambda \mathbf{p}_{3}\right)
$$

Geometrical picture: Cylinder Theorem

Geometrical picture: Reduction

Theory: BVP Formulation

$$
\begin{equation*}
u^{\prime}=T(J \nabla H(u(t))+\alpha \nabla H(u(t))), \quad u(1)=u(0) \tag{1}
\end{equation*}
$$

with u, α and T as unknowns. Finding a T-periodic orbit of $u^{\prime}=J \nabla H(u)$ is equivalent to finding a solution of (1) if $\alpha=0$.
We have to include a phase condition to fix the time origin.

$$
\begin{equation*}
\left(u(0)-u_{0}(0)\right)^{*} u_{0}^{\prime}(0)=0 \tag{2}
\end{equation*}
$$

Continuation theorem with 1 conserved quantity

Theorem

Let $u_{0}(t)$ be a periodic solution with period $0<T_{0}<+\infty$ whose monodromy matrix has 1 as an eigenvalue with geometric multiplicty one or algebraic multipicity two.
Then, there existis a unique branch of solutions of (??) and (??) in a neighbourhood of $(u, T, \alpha)=\left(u_{0}, T_{0}, 0\right)$. Moreover, along the branch $\alpha=0$.

- The proof is a direct application of IFT and the fact that $H(u(t))$ is constant along the periodic orbit.

Generalization to several conserved quantities

- Let $\mathcal{W}_{\mathbf{p}}=\{\nabla F(\mathbf{p}): F$ first integral of $\dot{x}=f(x)\}$, $\operatorname{dim}\left(\mathcal{W}_{\mathbf{p}}\right)=k, \varphi_{t}(\mathbf{x}, \boldsymbol{\alpha})$ the flow and $\operatorname{orb}_{\varphi}(\mathbf{p})$ the orbit.
- $\dot{x}=f(x) \rightarrow \dot{x}=f(x)+\alpha_{1} \nabla F_{1}(x)+\ldots+\alpha_{k} \nabla F_{k}(x)$,

Proposition
Let $\mathbf{p} \in \mathbb{R}^{n}$ s. t. $\operatorname{orb}_{\varphi}(\mathbf{p})$ be T-periodic. It holds that $\operatorname{Im}\left(D \varphi_{T}(\mathbf{p})-I\right)+\mathbb{R} f(\mathbf{p}) \subseteq \mathcal{W}_{\mathbf{p}}^{\perp}$.

General results

Definition (Normal periodic orbit)

Let $\mathbf{p} \in \mathbb{R}^{n}$ such that the $\operatorname{orbit}^{\operatorname{orb}}(\mathbf{p})$ is periodic with period $T>0$ and \mathbf{p} is not an equilibrium of $\dot{\mathbf{z}}=f(\mathbf{z})$. We say that $\operatorname{orb}_{\varphi}(\mathbf{p})$ is a normal periodic orbit of e $\dot{\mathbf{z}}=f(\mathbf{z})$ if

$$
\operatorname{Im}\left(D \varphi_{T}(\mathbf{p})-I\right)+\mathbb{R} f(\mathbf{p})=\mathcal{W}_{\mathbf{p}}^{\perp}
$$

Theorem (Continuation with k conserved quantities)
Let $\mathbf{p} \in \mathbb{R}^{n}$ be a point that generates a normal periodic orbit of $\dot{\mathbf{x}}=f(\mathbf{x})$ with period $T>0$. Then there exists a neighborhood of $T>0$ such that the set of points that generate periodic orbits whose period is in that neighborhood of T is locally a submanifold at \mathbf{p}.

Numerical Implementation

- We make use of the a boundary value based general technique to continue solutions in conservative systems. [Physica D 1811 (2003) and Celest. Mech. D. A. 9717 (2007)]
- We choose two relevant parameters $\mu_{2}=m_{2} / m_{1}$ and $\mu_{3}=m_{3} / m_{1}$
- The initial solution is taken from Bengochea et al Astrophys. Space Sci. 333399 (2011) $\left[\mu_{2}=\mu_{3}=3.4 \times 10^{-4}\right.$]
- The orbit includes around 100 revolutions around the planet.
- We can continue the full periodic orbit or just an arc [periodic and relative periodic orbits] and exploit the reversibility properties.

Initial Orbit

ux

Stability of the exchange orbit $\mu_{2} \neq \mu_{3}$

Floquet Multipliers

Case $\mu_{2}=\mu_{3}$

$2 k+1$ exchange orbit solution [hot dog?]

No overtaking condition

5 body exchange orbit

(a)

(b)

(c)

(d)

u

5 body exchange orbit (existence theorem)

Theorem 2 Consider a solution $\mathbf{u}(t)$ of the $4 k+1$-body problem with $4 k$ equal masses. Suppose that \mathbf{u} is invariant under Υ_{π} and passes trough $R I$ at $t=0$ and $R O$ at $t=T_{0}$. Let θ be the angle measured from $\mathbf{r}_{2}(0)$ to $\mathbf{r}_{2}\left(T_{0}\right)+\mathbf{r}_{3}\left(T_{0}\right)$ in the counterclockwise sense. The orbit is periodic if and only if

$$
\theta=\frac{p}{q} \pi, \text { for some } p, q \in \mathbb{N}
$$

The period T of the orbit, supposing p and q are relative primes, is

$$
T=\left\{\begin{array}{l}
q T_{\theta}, \text { if } q=8 i-4 \text { for some } i \in \mathbb{N} \\
2 q T_{\theta}, \text { if } q=8 i \text { for some } i \in \mathbb{N} \\
4 q T_{\theta}, \text { if } q=4 i-2 \text { for some } i \in \mathbb{N} \\
8 q T_{\theta}, \text { if is odd. }
\end{array}\right.
$$

The theorem also provides a numerical method to compute the initial conditions.

5 body exchange orbits

u

5 body exchange orbit connected to Euler-like solution

Conclusions

- The numerical continuation of periodic orbits in the three (and $2 \mathrm{k}+1$) body is a challenging but feasible problem.
- The reduction procedure has been used to construct the initial exchange orbit solution and prove its existence.
- However, for the continuation we have made used of the reversibility properties or continued the full planar 3 body problem.
- The branching of exchange orbits form the Euler solutions could be proved by continuation on the eccentricity.
- A systematic classification of the exchange orbits families is still pending.
- The $2 k+1$ body exchange orbit and Saari's conjecture.

