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Main result

Main result

Planar elliptic restricted three-body problem (PERTBP)
Two primaries of masses µ, 1− µ move on elliptic orbits of
eccentricities ε around the center of mass
A third, massless particle, moves in the same plane under the gravity of
the primaries
Model for the motion of a comet in the Sun-Jupiter system
µ = 0.0009537, ε = 0.048

Hamiltonian system

Hε(x, t) = H0(x) + εH1(x, t),

where H0(x) is the Hamiltonian of the planar circular restricted
three-body problem (PCRTBP)
Then, there exist ε0 > 0 and ρ > 0, s.t. for each 0 < ε < ε0 there
exists x(t) s.t.

|H0(x(T ))− H0(x(0))| > ρ

for some T > 0
Remark: We use a qualitative approach – no diffusion time estimates
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Main result

Some related works

Oscillatory motions: [Sitnikov,1960], [Alekseev,1968-1969],
[McGehee,1973], [Moser,1973], [Easton,McGehee,1979],
[Llibre,Simó,1980], [Robinson,1984], [Mart́ınez,Pinyol,1994], [Garćıa,
Pérez-Chavela,2000], [Robinson,2008]

Diffusion in the PERTBP (close to parabolic orbits): [Xia,1993],
[Delshams,Kaloshin,de la Rosa,Seara,2014]

Diffusion in the PERTBR (outer region, inner region): [Fejoz,
Guàrdia,Kaloshin,Roldan,2014], [Urschel,Galante,2012]

Diffusion in the PERTBR (micro-diffusion): [Capinski,
Zgliczynski,2011] – near L1 on an interval of energies of order ε1/2

Diffusion in the SCRTBP: [Samà,2004], [Delshams,M.G.,
Roldan,2013]
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Relation with the Arnold diffusion problem

Relation with the Arnold diffusion problem

[Arnold,1964]: Given

Hε(I , φ) = H0(I ) + εH1(I , φ),

with (I , φ) ∈ Bn × Tn, n ≥ 3, then for all sufficiently small ε, and for
‘generic’ perturbations H1, the system has trajectories that travel
‘arbitrarily far’:

‘generic’ — open and dense / residual / cusp residual in some function
space (smooth or analytic)
‘arbitrarily far’ — ∃ε0 > 0, ∃ ρ > 0, ∀ε ∈ (0, ε0), ∃ (I (t), φ(t)) s.t.

‖I (T )− I (0)‖ > ρ

for some T > 0

Practical consequence: small, periodic forcing can accumulate to
large effects (time as an extra variable)

For applications: need to deal with given perturbations rather than
generic ones
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Relation with the Arnold diffusion problem

Relation with the Arnold diffusion problem

Example (a priori unstable system)

Hε(p, q, I , φ, t) = h0(I )︸ ︷︷ ︸+
n∑

i=1

±
(

1

2
p2
i + cos(qi )− 1

)
︸ ︷︷ ︸+ εH1(p, q, I , φ, t)︸ ︷︷ ︸,

rotator penduli perturbation
(p, q, I , φ, t) ∈ Rn × Tn × Rd × Td × T1

Assume: H1 periodic in t + generic non-degeneracy conditions

Then, ∃ε0 > 0, ρ > 0 s.t. ∀ε ∈ (0, ε0), ∃x(t), T > 0 s.t.
‖I (x(T ))− I (x(0))‖ > ρ.

Some refs: [Delshams,de la Llave,Seara,2000,2006]†, [M.G.,de la
Llave,2006]†, [M.G.,Robinson,2007,2009,2012]†, [Delshams,de la
Llave,Seara,2013]†, [M.G.,de la Llave,Seara,2014]

† assume that h0 satisfies a non-degeneracy condition: I 7→ ∂h0/∂I is a

diffeomorphism
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Geometric structures in the PCRTBP

Geometric structures in the PCRTBP

Hamiltonian of the PERTBP

Hε(x, t) = H0(x) + εG (x, t) + O(ε2)

H0(x , y , ẋ , ẏ) = 1
2 (ẋ2 + ẏ2)− ω(x , y)

Hamiltonian of the PCRTBP

Equilibrium points:
L1, L2, L3, L4, L5

Choose range of energy h ∈ [h1, h2],
near Oterma’s energy hOterma ≈ 1.515

L1L2
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Geometric structures in the PCRTBP

Geometric structures in the PCRTBP

For each energy level h there exists
a periodic orbit λh around L1

The periodic orbits λh possess
stable and unstable manifolds
W s(λh),W u(λh) that intersect
transversally

These conditions have been verified
numerically

L1
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Geometric structures in the PCRTBP

Geometric structures in the PCRTBP

Define
Λ0 = {λh | h ∈ [h1, h2]} = {(I , φ) | I ∈ [I (h1), I (h2)], φ ∈ [0, 2π]}
Λ0 = normally hyperbolic invariant manifold (NHIM)

TM = TΛ0 ⊕ E u ⊕ E s

The expansion (contraction) rates of Dφ0 on TΛ0 are dominated by
the expansion (contraction) rates of Dφ0 on E u (E s , resp.)

W u(Λ0) (W s(Λ0), resp.) foliated by W u(x) (W s(x), resp.)

W u(Λ0) tW s(Λ0) along a homoclinic manifold Γ0 (strong
transversality condition)

Two dynamics

inner dynamics: restricted to Λ0

outer dynamics: along homoclinic orbits

Remark: we will use very little information on the inner dynamics
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Geometric structures in the PCRTBP

Scattering map

Scattering map – [Garćıa,2000],
[Delshams,de la Llave,Seara,2008]

encodes information on the outer
dynamics
Ω±0 (x) = x± where
W s,u(x±) ∩ Γ0 = {x}
restrict to a homoclinic channel Γ0 s.t.
Ω± are diffeomorphisms
σ0 = Ω+

0 ◦ (Ω−0 )−1

σ0(x−) = x+ !
d(Φ−T−(x),Φ−T−(x−))→ 0,
d(ΦT+ (x),ΦT+ (x+))→ 0,
as T−,T+ →∞

Properties

σ0 is symplectic
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Geometric structures in the PCRTBP

Scattering map in the PCRTBP

In the PCRTBP:
σ0(I , φ) = (I , φ+ ψ)

Each homoclinic
intersection of the
W u(λh),W s(λh)
determines, by
continuation, a
homoclinic manifold,
and, implicitly, a
scattering map

There are many
homoclinic intersections
⇒ many scattering maps

p1(x
⇤) p2(x

⇤)
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Geometric structures in the PERTBP

Geometric structures in the PERTBP

Hamiltonian in extended phase space: H̃ε(x, t,A) = Hε(x, t) + A

NHIM: Λ0 × T1  Λ̃ε

Scattering map: σ0 × id  σ̃ε
Fix Poincaré section Σt=τ = {(x, t) | t = τ}  Poincaré first return
map Fε

NHIM: Λε  (Fε)|Λε
– inner dynamics

scattering map: σε – outer dynamics
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Geometric structures in the PERTBP

Scattering map in the PERTBP

Perturbative computation

Expansion: σε = σ0 + εJ∇S0 ◦ σ0 + O(ε2)

S0 =convergent integral of G along a homoclinic orbit of the
PCRTBP

Hε = H0 + εG + O(ε2)

Λε NHIM — parametrization kε : Λ0 → Λε

sε = k−1
ε ◦ σε ◦ kε — acting on Λ0

sε = s0 + εJ∇S0 ◦ s0 + O(ε2) where

S0 = lim
T±→±∞

∫ 0

−T−

(G ◦Φ0,t ◦(Ω−0 )−1 ◦σ−1
0 ◦k0−G ◦Φ0,t ◦σ−1

0 ◦k0) dt

+

∫ T+

0
(G ◦ Φ0,t ◦ (Ω+

0 )−1 ◦ k0 − G ◦ Φ0,t ◦ k0) dt
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Geometric structures in the PERTBP

Scattering map in the PERTBP

There exist, in fact,
(at least) four distinct

scattering maps σj ,kε ,
j , k = 1, 2

They correspond to four
homoclinic channels Γj ,k
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Existence of diffusing orbits in the PERTBP

Existence of diffusing orbits in the PERTBP

For h ∈ [h1, h2], ∃τ ∈ [0, 2π] s.t.
∀(I , φ) ∈ Λ0, ∃j1, k1, j2, k2 ∈ {1, 2}
s.t.
∂
∂φS

j1,k1
0 (I , φ) > 0

∂
∂φS

j2,k2
0 (I , φ) < 0

These conditions have been verified
numerically

Then there exists an ε0 > 0 s.t. for
all ε ∈ (0, ε0) there exist
pseudo-orbits of the type
xi+1 = σji ,kiε (xi ) from {I < I (h1)}
to {I > I (h2)} and vice-versa
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Existence of diffusing orbits in the PERTBP

Existence of diffusing orbits in the PERTBP

Use the Shadowing Lemma below to
prove the existence of true orbits
from {I < I (h1)} to {I > I (h2)}
and vice-versa

Refs. [Capinski,M.G.,de la
Llave,2014]

Remark: we do not use KAM tori,
Aubry-Mather sets, etc., as in other
works

L1
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Shadowing Lemma for NHIM’s

Shadowing Lemma for NHIM’s

Shadowing Lemma [M.G.,de la Llave,Seara,2014]

Assume:

σ symplectic

{xi}i=0,...,n is an orbit of the scattering map in Λ, i.e. xi+1 = σ(xi ) for
all i = 0, . . . , n − 1

almost every point in Λ is recurrent for F|Λ

Then, for every δ > 0 there exist an orbit zi+1 = F ki (zi ) in M,
for some ki > 0, s.t. d(zi , xi ) < δ for all i = 0, . . . , n

Idea of the proof: apply Poincaré Recurrence Theorem to F|Λ to
return close to the xi ’s
Similar shadowing lemmas: [M.G.,Robinson,2013],
[Delshams,M.G.,Roldan,2013]
Remark: in the lemmas, one can use several scattering maps rather
than a single one
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Shadowing Lemma for NHIM’s

Happy Birthday!

Disclaimer: this is not the conference group picture
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