Arnold Diffusion in the
 Elliptic Restricted Three-Body Problem

HamSys 2014, Barcelona, June 2-6, 2014
Honoring Professor Clark Robinson's 70th birthday

Marian Gidea
Yeshiva University

Collaborators: Maciej Capinski, Rafael de la Llave, Tere Seara

Main result

- Planar elliptic restricted three-body problem (PERTBP)
- Two primaries of masses $\mu, 1-\mu$ move on elliptic orbits of eccentricities ε around the center of mass
- A third, massless particle, moves in the same plane under the gravity of the primaries
- Model for the motion of a comet in the Sun-Jupiter system

$$
\mu=0.0009537, \varepsilon=0.048
$$

- Hamiltonian system

$$
H_{\varepsilon}(\mathbf{x}, t)=H_{0}(\mathbf{x})+\varepsilon H_{1}(\mathbf{x}, t)
$$

where $H_{0}(\mathbf{x})$ is the Hamiltonian of the planar circular restricted three-body problem (PCRTBP)

- Then, there exist $\varepsilon_{0}>0$ and $\rho>0$, s.t. for each $0<\varepsilon<\varepsilon_{0}$ there exists $\mathbf{x}(t)$ s.t.

$$
\left|H_{0}(\mathbf{x}(T))-H_{0}(\mathbf{x}(0))\right|>\rho
$$

for some $T>0$

- Remark: We use a qualitative approach - no diffusion time estimates

Some related works

- Oscillatory motions: [Sitnikov,1960], [Alekseev,1968-1969], [McGehee,1973], [Moser,1973], [Easton,McGehee,1979], [Llibre,Simó,1980], [Robinson,1984], [Martínez,Pinyol,1994], [García, Pérez-Chavela,2000], [Robinson,2008]
- Diffusion in the PERTBP (close to parabolic orbits): [Xia,1993], [Delshams,Kaloshin, de la Rosa,Seara,2014]
- Diffusion in the PERTBR (outer region, inner region): [Fejoz, Guàrdia,Kaloshin,Roldan,2014], [Urschel, Galante,2012]
- Diffusion in the PERTBR (micro-diffusion): [Capinski, Zgliczynski,2011] - near L_{1} on an interval of energies of order $\varepsilon^{1 / 2}$
- Diffusion in the SCRTBP: [Samà, 2004], [Delshams,M.G., Roldan,2013]

Relation with the Arnold diffusion problem

-

$$
H_{\varepsilon}(I, \phi)=H_{0}(I)+\varepsilon H_{1}(I, \phi),
$$

with $(I, \phi) \in B^{n} \times \mathbb{T}^{n}, n \geq 3$, then for all sufficiently small ε, and for 'generic' perturbations H_{1}, the system has trajectories that travel 'arbitrarily far':

- 'generic' - open and dense / residual / cusp residual in some function space (smooth or analytic)
- 'arbitrarily far' - $\exists \varepsilon_{0}>0, \exists \rho>0, \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \exists(I(t), \phi(t))$ s.t.

$$
\|I(T)-I(0)\|>\rho
$$

for some $T>0$

- Practical consequence: small, periodic forcing can accumulate to large effects (time as an extra variable)
- For applications: need to deal with given perturbations rather than generic ones

Relation with the Arnold diffusion problem

- Example (a priori unstable system)

$$
\begin{aligned}
& H_{\varepsilon}(p, q, I, \phi, t)=\underbrace{h_{0}(I)}_{\text {rotator }}+\underbrace{\sum_{i=1}^{n} \pm\left(\frac{1}{2} p_{i}^{2}+\cos \left(q_{i}\right)-1\right)}_{\text {penduli }}+\underbrace{\varepsilon H_{1}(p, q, I, \phi, t)}_{\text {perturbation }} \\
& (p, q, I, \phi, t) \in \mathbb{R}^{n} \times \mathbb{T}^{n} \times \mathbb{R}^{d} \times \mathbb{T}^{d} \times \mathbb{T}^{1}
\end{aligned}
$$

- Assume: H_{1} periodic in $t+$ generic non-degeneracy conditions
- Then, $\exists \varepsilon_{0}>0, \rho>0$ s.t. $\forall \varepsilon \in\left(0, \varepsilon_{0}\right), \exists \mathbf{x}(t), T>0$ s.t. $\|I(\mathbf{x}(T))-I(\mathbf{x}(0))\|>\rho$.
- Some refs: [Delshams, de la Llave,Seara,2000,2006] ${ }^{\dagger}$, [M.G.,de la Llave,2006] ${ }^{\dagger}$, [M.G.,Robinson,2007,2009,2012] ${ }^{\dagger}$, [Delshams, de la Llave,Seara, 2013] ${ }^{\dagger}$, [M.G.,de la Llave,Seara,2014]
\dagger assume that h_{0} satisfies a non-degeneracy condition: $I \mapsto \partial h_{0} / \partial I$ is a diffeomorphism

Geometric structures in the PCRTBP

- Hamiltonian of the PERTBP

$$
H_{\varepsilon}(\mathbf{x}, t)=H_{0}(\mathbf{x})+\varepsilon G(\mathbf{x}, t)+O\left(\varepsilon^{2}\right)
$$

- $H_{0}(x, y, \dot{x}, \dot{y})=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)-\omega(x, y)$ Hamiltonian of the PCRTBP
- Equilibrium points:
$L_{1}, L_{2}, L_{3}, L_{4}, L_{5}$
- Choose range of energy $h \in\left[h_{1}, h_{2}\right]$, near Oterma's energy $h_{\text {Oterma }} \approx 1.515$

Geometric structures in the PCRTBP

- Hamiltonian of the PERTBP

$$
H_{\varepsilon}(\mathbf{x}, t)=H_{0}(\mathbf{x})+\varepsilon G(\mathbf{x}, t)+O\left(\varepsilon^{2}\right)
$$

- $H_{0}(x, y, \dot{x}, \dot{y})=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)-\omega(x, y)$ Hamiltonian of the PCRTBP
- Equilibrium points:
$L_{1}, L_{2}, L_{3}, L_{4}, L_{5}$
- Choose range of energy $h \in\left[h_{1}, h_{2}\right]$,
 near Oterma's energy $h_{\text {Oterma }} \approx 1.515$

Geometric structures in the PCRTBP

- For each energy level h there exists a periodic orbit λ_{h} around L_{1}
- The periodic orbits λ_{h} possess stable and unstable manifolds $W^{s}\left(\lambda_{h}\right), W^{u}\left(\lambda_{h}\right)$ that intersect transversally
- These conditions have been verified numerically

Geometric structures in the PCRTBP

- For each energy level h there exists a periodic orbit λ_{h} around L_{1}
- The periodic orbits λ_{h} possess stable and unstable manifolds $W^{s}\left(\lambda_{h}\right), W^{u}\left(\lambda_{h}\right)$ that intersect transversally

- These conditions have been verified numerically

Geometric structures in the PCRTBP

- For each energy level h there exists a periodic orbit λ_{h} around L_{1}
- The periodic orbits λ_{h} possess stable and unstable manifolds $W^{s}\left(\lambda_{h}\right), W^{u}\left(\lambda_{h}\right)$ that intersect transversally
- These conditions have been verified numerically

Geometric structures in the PCRTBP

- Define

$$
\Lambda_{0}=\left\{\lambda_{h} \mid h \in\left[h_{1}, h_{2}\right]\right\}=\left\{(I, \phi) \mid I \in\left[I\left(h_{1}\right), I\left(h_{2}\right)\right], \phi \in[0,2 \pi]\right\}
$$

- $\Lambda_{0}=$ normally hyperbolic invariant manifold (NHIM)
- $T M=T \Lambda_{0} \oplus E^{u} \oplus E^{s}$
- The expansion (contraction) rates of $D \phi_{0}$ on $T \Lambda_{0}$ are dominated by the expansion (contraction) rates of $D \phi_{0}$ on E^{u} (E^{s}, resp.)
- $W^{u}\left(\Lambda_{0}\right)\left(W^{s}\left(\Lambda_{0}\right)\right.$, resp. $)$ foliated by $W^{u}(x)\left(W^{s}(x)\right.$, resp. $)$
- $W^{u}\left(\Lambda_{0}\right) \pitchfork W^{s}\left(\Lambda_{0}\right)$ along a homoclinic manifold Γ_{0} (strong transversality condition)
- Two dynamics
- inner dynamics: restricted to Λ_{0}
- outer dynamics: along homoclinic orbits
- Remark: we will use very little information on the inner dynamics

Scattering map

- Scattering map - [García,2000], [Delshams,de la Llave,Seara,2008]
- encodes information on the outer dynamics
- $\Omega_{0}^{ \pm}(x)=x^{ \pm}$where $W^{s, u}\left(x^{ \pm}\right) \cap \Gamma_{0}=\{x\}$
- restrict to a homoclinic channel Γ_{0} s.t. $\Omega^{ \pm}$are diffeomorphisms
- $\sigma_{0}=\Omega_{0}^{+} \circ\left(\Omega_{0}^{-}\right)^{-1}$
- $\sigma_{0}\left(x^{-}\right)=x^{+}$+n
$d\left(\Phi^{-T_{-}}(x), \Phi^{-T_{-}}\left(x^{-}\right)\right) \rightarrow 0$,
$d\left(\Phi^{T_{+}}(x), \Phi^{T_{+}}\left(x^{+}\right)\right) \rightarrow 0$, as $T_{-}, T_{+} \rightarrow \infty$

- Properties
- σ_{0} is symplectic

Scattering map in the PCRTBP

- In the PCRTBP:
$\sigma_{0}(I, \phi)=(I, \phi+\psi)$
- Each homoclinic intersection of the $W^{u}\left(\lambda_{h}\right), W^{s}\left(\lambda_{h}\right)$ determines, by continuation, a homoclinic manifold, and, implicitly, a
scattering map
- There are many homoclinic intersections
\Rightarrow many scattering maps

Geometric structures in the PERTBP

- Hamiltonian in extended phase space: $\tilde{H}_{\varepsilon}(\mathbf{x}, t, A)=H_{\varepsilon}(\mathbf{x}, t)+A$
- NHIM: $\Lambda_{0} \times \mathbb{T}^{1} \rightsquigarrow \tilde{\Lambda}_{\varepsilon}$
- Scattering map: $\sigma_{0} \times \mathrm{id} \rightsquigarrow \tilde{\sigma}_{\varepsilon}$
- Fix Poincaré section $\Sigma_{t=\tau}=\{(\mathbf{x}, t) \mid t=\tau\} \rightsquigarrow$ Poincaré first return map F_{ε}
- NHIM: $\Lambda_{\varepsilon} \rightsquigarrow\left(F_{\varepsilon}\right)_{\mid \Lambda_{\varepsilon}}$ - inner dynamics
- scattering map: σ_{ε} - outer dynamics

Scattering map in the PERTBP

Perturbative computation

- Expansion: $\sigma_{\varepsilon}=\sigma_{0}+\varepsilon J \nabla S_{0} \circ \sigma_{0}+O\left(\varepsilon^{2}\right)$
- $S_{0}=$ convergent integral of G along a homoclinic orbit of the PCRTBP
- $H_{\varepsilon}=H_{0}+\varepsilon G+O\left(\varepsilon^{2}\right)$
- Λ_{ε} NHIM - parametrization $k_{\varepsilon}: \Lambda_{0} \rightarrow \Lambda_{\varepsilon}$
- $s_{\varepsilon}=k_{\varepsilon}^{-1} \circ \sigma_{\varepsilon} \circ k_{\varepsilon}$ - acting on Λ_{0}
- $s_{\varepsilon}=s_{0}+\varepsilon J \nabla S_{0} \circ s_{0}+O\left(\varepsilon^{2}\right)$ where

$$
\begin{aligned}
S_{0}= & \lim _{T_{ \pm} \rightarrow \pm \infty} \int_{-T_{-}}^{0}\left(G \circ \Phi_{0, t} \circ\left(\Omega_{0}^{-}\right)^{-1} \circ \sigma_{0}^{-1} \circ k_{0}-G \circ \Phi_{0, t} \circ \sigma_{0}^{-1} \circ k_{0}\right) d t \\
& +\int_{0}^{T_{+}}\left(G \circ \Phi_{0, t} \circ\left(\Omega_{0}^{+}\right)^{-1} \circ k_{0}-G \circ \Phi_{0, t} \circ k_{0}\right) d t
\end{aligned}
$$

Scattering map in the PERTBP

- There exist, in fact, (at least) four distinct scattering maps $\sigma_{\varepsilon}^{j, k}$, $j, k=1,2$
- They correspond to four homoclinic channels $\Gamma^{j, k}$

Existence of diffusing orbits in the PERTBP

- For $h \in\left[h_{1}, h_{2}\right], \exists \tau \in[0,2 \pi]$ s.t. $\forall(I, \phi) \in \Lambda_{0}, \exists j_{1}, k_{1}, j_{2}, k_{2} \in\{1,2\}$
s.t.
$\frac{\partial}{\partial \phi} S_{0}^{j_{1}, k_{1}}(I, \phi)>0$
$\frac{\partial}{\partial \phi} S_{0}^{j_{2}, k_{2}}(I, \phi)<0$
- These conditions have been verified numerically
- Then there exists an $\varepsilon_{0}>0$ s.t. for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$ there exist pseudo-orbits of the type $x_{i+1}=\sigma_{\varepsilon}^{j_{i}, k_{i}}\left(x_{i}\right)$ from $\left\{I<I\left(h_{1}\right)\right\}$ to $\left\{I>I\left(h_{2}\right)\right\}$ and vice-versa

Existence of diffusing orbits in the PERTBP

- For $h \in\left[h_{1}, h_{2}\right], \exists \tau \in[0,2 \pi]$ s.t. $\forall(I, \phi) \in \Lambda_{0}, \exists j_{1}, k_{1}, j_{2}, k_{2} \in\{1,2\}$
s.t.

$$
\begin{aligned}
& \frac{\partial}{\partial \phi} S_{0}^{j_{1}, k_{1}}(I, \phi)>0 \\
& \frac{\partial}{\partial \phi} S_{0}^{j_{2}, k_{2}}(I, \phi)<0
\end{aligned}
$$

- These conditions have been verified numerically
- Then there exists an $\varepsilon_{0}>0$ s.t. for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$ there exist pseudo-orbits of the type $x_{i+1}=\sigma_{\varepsilon}^{j_{i}, k_{i}}\left(x_{i}\right)$ from $\left\{I<I\left(h_{1}\right)\right\}$ to $\left\{I>I\left(h_{2}\right)\right\}$ and vice-versa

Existence of diffusing orbits in the PERTBP

- For $h \in\left[h_{1}, h_{2}\right], \exists \tau \in[0,2 \pi]$ s.t. $\forall(I, \phi) \in \Lambda_{0}, \exists j_{1}, k_{1}, j_{2}, k_{2} \in\{1,2\}$ s.t.
$\frac{\partial}{\partial \phi} S_{0}^{j_{1}, k_{1}}(I, \phi)>0$
$\frac{\partial}{\partial \phi} S_{0}^{j_{2}, k_{2}}(I, \phi)<0$
- These conditions have been verified numerically
- Then there exists an $\varepsilon_{0}>0$ s.t. for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$ there exist pseudo-orbits of the type $x_{i+1}=\sigma_{\varepsilon}^{j_{i}, k_{i}}\left(x_{i}\right)$ from $\left\{I<I\left(h_{1}\right)\right\}$ to $\left\{I>I\left(h_{2}\right)\right\}$ and vice-versa

Existence of diffusing orbits in the PERTBP

- Use the Shadowing Lemma below to prove the existence of true orbits from $\left\{I<I\left(h_{1}\right)\right\}$ to $\left\{I>I\left(h_{2}\right)\right\}$ and vice-versa
- Refs. [Capinski,M.G.,de la Llave,2014]
- Remark: we do not use KAM tori, Aubry-Mather sets, etc., as in other
 works

Shadowing Lemma for NHIM's

Shadowing Lemma [M.G.,de la Llave,Seara,2014]
Assume:

- σ symplectic
- $\left\{x_{i}\right\}_{i=0, \ldots, n}$ is an orbit of the scattering map in Λ, i.e. $x_{i+1}=\sigma\left(x_{i}\right)$ for all $i=0, \ldots, n-1$
- almost every point in Λ is recurrent for $F_{\mid \Lambda}$

Then, for every $\delta>0$ there exist an orbit $z_{i+1}=F^{k_{i}}\left(z_{i}\right)$ in M, for some $k_{i}>0$, s.t. $d\left(z_{i}, x_{i}\right)<\delta$ for all $i=0, \ldots, n$

- Idea of the proof: apply Poincaré Recurrence Theorem to $F_{\mid \Lambda}$ to return close to the x_{i} 's
- Similar shadowing lemmas: [M.G.,Robinson,2013], [Delshams,M.G.,Roldan,2013]
- Remark: in the lemmas, one can use several scattering maps rather than a single one

Happy Birthday!

Disclaimer: this is not the conference group picture

