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Newtonian n–body problem

The Planar Newtonian n–body problem consists of studying the
motion of n punctual bodies with positive masses m1, . . . ,mn

interacting according to Newton’s gravitational law. In other
words, the equations of motion are given by

r̈i = −
n

∑

j=1, j 6=i

mj

ri − rj

r3ij
, (1)

for i = 1, 2, . . . , n.

Here, rj ∈ R
2, are the position vectors of the bodies;

rij = |ri − rj | is the Euclidean distance between the bodies i and j .



Remarks

Henceforth consider:

◮ ri lies in the inertial barycentric system, that is,

n
∑

i=1

mi ri = 0;

◮ The configurations r = (r1, . . . , rn) ∈ R
2n are out of the

collision set;

◮ Two configurations r = (r1, . . . , rn) and r ′ = (r ′1, . . . , r
′
n) are

similar if we can pass from one configuration to the other by a
dilation or a rotation of R2. Thus configuration means its
equivalence class.



Central configurations

At a given t0 a central configuration (c .c .) is a configuration, such
that the acceleration vector for each body is a common scalar
multiple of its position vector (referred to the inertial barycentric
system), that is

r̈j = λrj , λ 6= 0,

for all j = 1, . . . , n.

Finding c.c.’s is an algebraic problem, since by equation (1), we
have

λri = −
n

∑

j=1,j 6=i

mj

r3ij
(ri − rj), (2)

for i = 1, 2, . . . , n.



The first examples of Central Configurations

The first three c.c.’s were found in 1767 by Euler in the 3–body
problem, for which three bodies are collinear.

Figura: Euler’s collinear c.c..

L. Euler, De moto rectilineo trium corporum se mutuo attahentium,
Novi Comm. Acad. Sci. Imp. Petrop., 11 (1767), 144–151.



The first examples of Central Configurations

In 1772 Lagrange found two additional c.c.’s in the 3–body
problem, where the three bodies are at the vertices of an
equilateral triangle.

Figura: Lagrange’s equilateral c.c..

J.L. Lagrange, Essai sur le problème de trois corps, Ouvres, vol 6,
Gauthier–Villars, Paris, 1873.



Perpendicular Bisector Theorem
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Figura: Not a central configuration.



Andoyer´s equations

For the planar central configurations instead of working with
equation (2) we shall do with the Andoyer´s equations

fij =
n

∑

k=1,k 6=i ,j

mk (Rik − Rjk) ∆ijk = 0, (3)

for 1 ≤ i < j ≤ n, where

Rij =
1

r3ij
, ∆ijk = (ri − rj) ∧ (ri − rk).

H. Andoyer, Sur l’equilibre relatif de n corps, Bulletin
Astronomique 23 (1906) pp. 50–59.



A simple application of Andoyer´s equation

What are the non–collinear central configurations with 3 bodies?











f12 = m3 (R12 − R23) ∆123 = 0

f13 = m2 (R12 − R32) ∆132 = 0

f23 = m1 (R21 − R31) ∆321 = 0

This equations are verified if, and only if,

R12 = R13 = R23 ⇒ r12 = r13 = r23,

That is, the bodies are at the vertices of an equilateral triangle.



A simple application of Andoyer´s equation

What are the non–collinear central configurations with 3 bodies?











f12 = m3 (R12 − R23) ∆123 = 0

f13 = m2 (R12 − R32) ∆132 = 0

f23 = m1 (R21 − R31) ∆321 = 0

This equations are verified if, and only if,

R12 = R13 = R23 ⇒ r12 = r13 = r23,

That is, the bodies are at the vertices of an equilateral triangle.
Note that this configurations does not depend on the values of the
masses.



Question

Consider n bodies with position vectors r1, r2, . . . , rn and positive
masses m1,m2, . . . ,mn in a planar central configuration. Consider
also 0 < k < n. Is it possible to change the values of the masses

m̄n−k 6= mn−k , m̄n−k+1 6= mn−k+1, . . . , m̄n 6= mn

keeping fixed all the position vectors r1, r2, . . . , rn and the values of
the other masses m1,m2, . . . ,mn−k−1 such that the n bodies are
still in a central configuration?



Theorem case k = 1

Theorem. Consider the planar non–collinear n–body problem with
n ≥ 4. Then the central configurations for which is possible to
change the value of one mass keeping fixed all the positions and
the values of the other n− 1 masses and still have a central
configuration are the central configurations with n bodies such
that n− 1 bodies are in a co–circular central configuration and one
body of arbitrary mass is at the center of the circle.



Proof for the case k = 1

Without loss of generality, suppose that the mass to be change is
mn. The proof of Theorem is divided into two lemmas.

Lemma 1. In order to have a central configuration in which the
mass mn can be changed it is necessary that the other n− 1 bodies
must be in a co–circular configuration with center at rn.



Proof for the case k = 1

The planar Andoyer equations (3) must be satisfied for the n

bodies. Consider the Andoyer equations with i 6= n and j 6= n.
These equations can be written as

fi ,j =
∑

k 6=i ,j ,n

mk (Ri ,k − Rj ,k)∆i ,j ,k +mn (Ri ,n − Rj ,n)∆i ,j ,n = 0,

for all indices i and j , such that 0 < i < j < n. Note that in
equation the part under summation does not depend on the mass
mn. So, the variation of the mass mn implies that the part under
summation and the coefficient of mn must vanish. Thus we have

(Ri ,n − Rj ,n)∆i ,j ,n = 0,

for all indices i and j , such that 0 < i < j < n.



Proof for the case k = 1

r1

r2

rn

rn−1

Figura: The only possible configuration with the continuous variation of
mn.



Proof for the case k = 1

By assumption the configuration is non–collinear, so in last
equation at least one ∆i ,j ,n 6= 0. Without loss of generality,
suppose ∆1,2,n 6= 0. Thus from

(R1,n − R2,n)∆1,2,n = 0

we have
R1,n − R2,n = 0,

which implies that r1n = r2n = d > 0. Therefore r1 and r2 belong
to the circle of radius d and center at rn.



Proof for the case k = 1

We can classify the other indices into two sets

C1 = {j : ∆1,j ,n = 0} , C2 = {j : ∆1,j ,n 6= 0} ,

that is, C1 contains the indices of the bodies whose position
vectors are collinear with r1 and rn, while C2 contains the indices of
the bodies whose position vectors are not collinear with r1 and rn.
For j ∈ C2 and from

(R1,n − Rj ,n)∆1,j ,n = 0

we have
R1,n − Rj ,n = 0.

Thus, rjn = r1n = d > 0, for all j ∈ C2. Then r1, r2 and rj belong
to the circle of radius d and center at rn, for all j ∈ C2.



Proof for the case k = 1

To complete the proof of the lemma we need to show that C1 has
at most one element. Suppose, by contradiction, that there exist
two indices b, c ∈ C1. So ∆1,b,n = 0, which implies that
∆2,b,n 6= 0. From

(R2,n − Rb,n)∆2,b,n = 0,

we have
R2,n − Rb,n = 0,

which implies that rbn = r2n = d > 0. Thus rb belongs to the
circle of radius d and center at rn.



Proof for the case k = 1

As the central configurations are out of the collision set rb must be
diametrically opposite to r1. Now consider the index c ∈ C1. So
∆1,c,n = 0, which implies that ∆2,c,n 6= 0. From

(R2,n − Rc,n)∆2,c,n = 0

we have
R2,n − Rc,n = 0,

which implies that rcn = r2n = d > 0. Here we have a
contradiction, since in this case rc coincides with either r1 or rb.



Proof for the case k = 1

r1

r2

rn

rb

Figura: There is no position for rc out of the collision set.



Proof for the case k = 1

Lemma 2. In order to have a planar central configuration in which
the mass mn can be changed it is necessary that the other n − 1
co–circular bodies must be in a central configuration.

Note that, with 1 ≤ i < j ≤ n− 1

fi ,j =
∑

k 6=i ,j ,n

mk (Ri ,k − Rj ,k)∆i ,j ,k +mn (Ri ,n − Rj ,n)∆i ,j ,n = 0,

the part under summation is exactly the Andoyer’s equation for
central configuration for the n − 1 co–circular bodies.



Theorem case k = 2

Theorem Consider the planar non–collinear n–body problem with
n ≥ 4. There is not a central configuration for which is possible to
change the values of the masses of two bodies keeping fixed all the
positions and the values of the masses of the other n − 2 bodies
and still have a central configuration.



Proof for the case k = 2

Without loss of generality, suppose that the masses to be changed
are mn−1 and mn. Consider the Andoyer equations for
i = 1, 2, . . . , n − 2 and j = n − 1. These equations can be written
as

fi ,n−1 =
∑

k 6=i ,n−1,n

mk (Ri ,k − Rn−1,k)∆i ,n−1,k+

mn (Ri ,n − Rn−1,n)∆i ,n−1,n = 0



Proof for the case k = 2

The change of the mass mn implies that the coefficient of mn must
vanish, that is

(Ri ,n − Rn−1,n)∆i ,n−1,n = 0, (4)

for all 0 < i < n− 1. With the same arguments for the mass mn−1

we have
(Ri ,n−1 − Rn,n−1)∆i ,n,n−1 = 0, (5)

for all 0 < i < n − 1.



Proof for the case k = 2

From equations (4) and (5), the position vectors r1, . . . , rn−2 must
be either collinear with rn−1 and rn or belong to the intersection of
C1 and C2, where C1 is the circumference with center at rn−1 and
radius |rn − rn−1| and C2 is the circumference with center at rn and
radius |rn − rn−1|. Note that C1 ∩ C2 determines two points in the
plane. Since we consider non–collinear central configurations these
two points must be position vectors of two bodies of the
configuration, otherwise by the Perpendicular Bisector Theorem
there is no such a central configuration. Without loss of generality,
suppose that C1 ∩ C2 = {r1, r2}.



Proof for the case k = 2

We have proved the following lemma.
Lemma. Consider the planar non–collinear n–body problem with
n ≥ 4. The following conditions are necessary in order to have a
central configuration for which is possible to change the values of
two masses keeping fixed all the positions and the values of the
other n − 2 masses and still have a central configuration (see
Figure 6):

(a) r1, r2, rn−1 and rn are at the vertices of a rhombus
with |r1 − rn−1| = |r1 − rn| = |r2 − rn−1| = |r2 − rn| =
|rn−1 − rn| 6= 0.

(b) The other n− 4 bodies belong to the straight line
containing rn−1 and rn.



Proof for the case k = 2

rnrn−1

r1

r2

C2C1

Figura: The positions of the bodies with fixed masses must be either
collinear or belong to the intersection of two circumferences with centers
at rn−1 and rn and radius |rn−1 − rn|.



Proof for the case k = 2

In the following lemma shows that the masses of the bodies at the
intersections of C1 and C2 must be equal, that is m1 = m2.

Lemma.Consider the planar n–body problem, n ≥ 4. Suppose that
r1, r2, rn−1 and rn are at the vertices of a rhombus with
|r1 − rn−1| = |r1 − rn| = |r2 − rn−1| = |r2 − rn| = |rn−1 − rn| 6= 0
and the other n− 4 bodies belong to the straight line containing
rn−1 and rn according to Figure. Then in order to have a central
configuration a necessary condition is m1 = m2.



Proof for the case k = 2

Consider the Andoyer equations fi ,n = 0, for i = 3, . . . , n − 2,
which can be written as

fi ,n = m1 (Ri ,1 − Rn,1)∆i ,n,1 +m2 (Ri ,2 − Rn,2)∆i ,n,2 (6)

+
∑

k 6=1,2,i ,n

mk (Ri ,k − Rn,k)∆i ,n,k = 0.

In equation the part under summation is zero, since ∆i ,n,k = 0. On
the other hand, ∆i ,n,1 = −∆i ,n,2 6= 0, Ri ,1 = Ri ,2 and Rn,1 = Rn,2.
Thus equation has the form

fi ,n = (m1 −m2) (Ri ,1 − Rn,1)∆i ,n,1 = 0. (7)

As Ri ,1 − Rn,1 6= 0 equation (7) is satisfied if and only if m1 = m2.
This completes the proof of the lemma.



Proof for the case k = 2

Fix the following nomenclature: the masses to be changed are mn

and mn−1; after the change these masses will be denoted by
Mn = mn − µn and Mn−1 = mn−1 − µn−1.



Proof for the case k = 2

Lemma. Consider the planar n–body problem with n > 4.
Suppose that r1, r2, rn−1 and rn form a rhombus with
|r1 − rn−1| = |r1 − rn| = |r2 − rn−1| = |r2 − rn| = |rn−1 − rn| 6= 0
and the other n− 4 bodies belong to the straight line containing
rn−1 and rn according to Figure. Then in order to have a central
configuration in which is possible to change the values of the
masses mn and mn−1 keeping fixed all the positions and other
n − 2 masses, the following equation must be satisfied

µn−1

µn

= − (R1,n − Ri ,n)∆1,i ,n

(R1,n−1 − Ri ,n−1)∆1,i ,n−1

, (8)

for 2 < i < n − 1. Moreover, the quotient µn−1/µn must be
positive.



Proof for the case k = 2

Consider the Andoyer equations f1,i = 0, with 2 < i < n − 1.
These equations can be written as

f1,i =
∑

k 6=1,i ,n−1,n

mk (R1,k − Ri ,k)∆1,i ,k (9)

+mn−1 (R1,n−1 − Ri ,n−1)∆1,i ,n−1 +mn (R1,n − Ri ,n)∆1,i ,n = 0,

for 2 < i < n − 1. Consider the same equation after the change of
the values of mn−1 and mn

f1,i =
∑

k 6=1,i ,n−1,n

mk (R1,k − Ri ,k)∆1,i ,k (10)

+Mn−1 (R1,n−1 − Ri ,n−1)∆1,i ,n−1 +Mn (R1,n − Ri ,n)∆1,i ,n = 0.



Proof for the case k = 2

Note that the parts under summation in equations (9) and (10) are
equal. Taking the difference of (9) and (10), we have

mn−1 (R1,n−1 − Ri ,n−1)∆1,i ,n−1 +mn (R1,n − Ri ,n)∆1,i ,n

−Mn−1 (R1,n−1 − Ri ,n−1)∆1,i ,n−1 −Mn (R1,n − Ri ,n)∆1,i ,n = 0,

which implies equation (8). We need to prove that the quotient in
equation (8) is positive. Consider equation (8) written in the
following form

µn−1 (R1,n−1 − Ri ,n−1)∆1,i ,n−1+µn (R1,n − Ri ,n)∆1,i ,n = 0. (11)



Proof for the case k = 2

Suppose, by contradiction, that µn−1µn < 0. So, in order to satisfy
(11) the coefficients of µn−1 and µn must have the same sign.
Suppose that there exists a body of index i out of the rhombus and
located to the right of rn. This implies that the terms ∆1,i ,n−1,
∆1,i ,n are negative and the term R1,n−1 − Ri ,n−1 is positive. So,
the term R1,n − Ri ,n must be positive. But this implies that
|r1 − rn| < |ri − rn|. The same assertion holds for all bodies out of
the rhombus and located to the right of rn. All these cases lead a
contradiction with the Perpendicular Bisector Theorem.



Proof for the case k = 2

The same argument can be used for the bodies out of the rhombus
and located to the left of rn−1. Thus all collinear bodies must be
in the interior of the rhombus, but this also leads to a
contradiction with the Perpendicular Bisector Theorem. This part
of the proof implies that all bodies in the configuration must
belong to the interior of the union of the sets bounded by the
circumferences C1 and C2.



Proof for the case k = 2

An important consequence of this lemma is that in a central
configuration in which is possible to change the values of two
masses (mn and mn−1) keeping fixed all the positions and other
n − 2 masses, the position vectors of the collinear bodies must
satisfy

(R1,n − Ri ,n)∆1,i ,n

(R1,n−1 − Ri ,n−1)∆1,i ,n−1

=
(R1,n − Rk,n)∆1,k,n

(R1,n−1 − Rk,n−1)∆1,k,n−1

< 0,

(12)
for all i and k such that 2 < i , k < n − 1.



Proof for the case k = 2

Consider a system of coordinates formed by two axes, one passing
through r1 and r2 and the other passing through the line
containing the collinear bodies. See Figure 7. Without loss of
generality, we assume the coordinates r1 = (0,

√
3), r2 = (0,−

√
3),

rn−1 = (−1, 0), rn = (1, 0) and ri = (ri , 0) (using ri as a scalar
variable) for i = 3, . . . , n − 2. We study the equation

(R1,n − Ri ,n)∆1,i ,n

(R1,n−1 − Ri ,n−1)∆1,i ,n−1

= −a,

with a > 0, or equivalently the equation

(R1,n − Ri ,n)∆1,i ,n + a (R1,n−1 − Ri ,n−1)∆1,i ,n−1 = 0. (13)

Since r1, r2, rn−1 and rn are fixed in our system of coordinates,
equation (13) can be written as a polynomial equation of degree
five in the variable ri .



Proof for the case k = 2

rnrn−1

r1

r2

ri x

y

Figura: System of coordinates formed by two axes, one passing through
r1 and r2 and the other passing through rn−1, rn and the other bodies ri ,
i = 3, . . . , n − 2.



Proof for the case k = 2

By the construction of the coordinates the terms
(R1,n − Ri ,n)∆1,i ,n and (R1,n−1 − Ri ,n−1)∆1,i ,n−1 always have the
pure imaginary roots ı

√
3|r1 − rn|/2 = ı

√
3 and

−ı
√
3|r1 − rn|/2 = −ı

√
3, where ı =

√
−1. Therefore the

polynomial equation (13) has at most three real roots, for every
a > 0. An straightforward computation shows that a as function of
ri is strictly increasing in (−3,−1) ∪ (1, 3) and strictly decreasing
in (−1, 1), which are the intervals of interest in our problem.



Proof for the case k = 2

Note that for each value of a equation (12) is satisfied by an index
i when ri is a root of (13). Since (13) has at most three real roots,
there are at most three possible positions to the collinear bodies.
Moreover, for each positive value of a we have exactly one root in
(−3, 1), one root in (−1, 1) and one root in (1, 3). Thus n must
be less than 8, because in the cases n ≥ 8 collisions are always
required in order to satisfy equation (12), for all indices. We have
proved the following lemma.



Proof for the case k = 2

Lemma. Consider the planar non–collinear n–body problem with
n ≥ 8. There are no central configurations for which is possible to
change the values of two masses keeping fixed all the positions and
the values of the other n− 2 masses and still have a central
configuration.



Proof for the case k = 2

Now we prove that there are no such kind of central configurations
for the remaining cases: n = 4, n = 5, n = 6 and n = 7. We divide
the proof into four lemmas.
Lemma. Consider the planar 4–body problem. Suppose that r1,
r2, r3 and r4 form a rhombus with r13 = r14 = r23 = r24 = r34
according to Figure. Then there are no positive masses for which
this configuration is a central configuration.
The proof is a direct corollary of the Perpendicular Bisector
Theorem.



Proof for the case k = 2

r1

r2

r3 r4

Figura: This configuration can not be a central configuration.



Proof for the case k = 2

Lemma. Consider the planar 5–body problem. Suppose that r1,
r2, r4 and r5 form a rhombus with r14 = r15 = r24 = r25 = r45 and
r3 belongs to the straight line containing r4 and r5 according to
Figure. Then there are no positive masses for which this
configuration is a central configuration.



Proof for the case k = 2

The position vector r3 can not belong to the interior of the
rhombus. This is a direct consequence of the Perpendicular
Bisector Theorem. With r3 out of the convex hull of the rhombus,
consider the Andoyer equation f1,4 = 0. Taking into account the
symmetries it can be written as

f1,4 = m3 (R1,3 − R4,3)∆1,4,3 = 0. (14)

Equation (14) is satisfied if and only if r3 coincides with either r4
or r5, but this is a contradiction.



Proof for the case k = 2

Lemma. Consider the planar 6–body problem. Suppose that r1,
r2, r5 and r6 form a rhombus with r16 = r15 = r26 = r25 = r56, the
position vectors r3 and r4 belong to the straight line containing r5
and r6 according to Figure. Suppose also m1 = m2. Then there are
no positive masses for which this configuration form a central
configuration satisfying: it is possible to change the values of m5

and m6 keeping fixed all the positions and other four masses and
still have a central configuration.



Proof for the case k = 2

For six bodies we have fifteen Andoyer equations (3). By our
assumptions of symmetries the following equations are already
verified

f1,2 = 0, f3,4 = 0, f3,5 = 0, f3,6 = 0,

f4,5 = 0, f4,6 = 0, f5,6 = 0.

The remaining equations are f1,j = 0 and f2,j = 0, with 3 ≤ j ≤ 6.
The assumption m1 = m2 and the symmetries imply that f1,j = 0 if
and only if f2,j = 0. So we just study the equations f1,j = 0.



Proof for the case k = 2

f1,3 = m2 (R1,2 − R3,2)∆1,3,2 +m4 (R1,4 − R3,4)∆1,3,4

+m5 (R1,5 − R3,5)∆1,3,5 +m6 (R1,6 − R3,6)∆1,3,6 = 0,

f1,4 = m2 (R1,2 − R4,2)∆1,4,2 +m3 (R1,3 − R4,3)∆1,4,3

+m5 (R1,5 − R4,5)∆1,4,5 +m6 (R1,6 − R4,6)∆1,4,6 = 0,

f1,5 = m2 (R1,2 − R5,2)∆1,5,2 +m3 (R1,3 − R5,3)∆1,5,3

+m4 (R1,4 − R5,4)∆1,5,4 +m6 (R1,6 − R5,6)∆1,5,6 = 0,

f1,6 = m2 (R1,2 − R6,2)∆1,6,2 +m3 (R1,3 − R6,3)∆1,6,3

+m4 (R1,4 − R6,4)∆1,6,4 +m5 (R1,5 − R6,5)∆1,6,5 = 0.



Proof for the case k = 2

Equivalently the above equations can be written as

H ~M = ~0, (15)

where,

~M = (m2,m3,m4,m5,m6)
t , ~0 = (0, 0, 0, 0, 0)t

and

H =









h11 0 h13 h14 h15
h21 h22 0 h24 h25
h31 h32 h33 0 0
h41 h42 h43 0 0









If H has maximum rank the solutions of (15) are parallel to the
vector ~T = (T1,−T2,T3,−T4,T5), where Tk is the determinant
of the matrix obtained from H deleting the column k .



Proof for the case k = 2

Consider again equation (13) in the context of six bodies

(R1,6 − R3,6)∆1,3,6

(R1,5 − R3,5)∆1,3,5

=
(R1,6 − R4,6)∆1,4,6

(R1,5 − R4,5)∆1,4,5

= −a < 0.

Using this relation in the matrix H we have

H =









h11 0 h13 −ah15 h15
h21 h22 0 −ah25 h25
h31 h32 h33 0 0
−h31 h42 h43 0 0









,

which implies that ~T = (T1,−T2,T3,−T4,T5) = (0, 0, 0, aT5,T5).
But in this case it is necessary that the masses m2, m3 and m4

vanish, assuming that the rank of H is equal to four.



Proof for the case k = 2

Our last case is n = 7. We have the following lemma.
Lemma. Consider the planar 7–body problem. Suppose that r1,
r2, r6 and r7 form a rhombus with r16 = r17 = r26 = r27 = r67, the
position vectors r3, r4 and r5 belong to the straight line containing
r6 and r7 and m1 = m2. Then there are no positive masses for
which this configuration form a central configuration satisfying: it
is possible to change the values of m6 and m7 keeping fixed all the
positions and other five masses and still have a central
configuration.
The proof follows in an analogous way to last Lemma.
This ends the proof of the theorem.



Proof for the case k = 2

Thanks for your Attention!


