On Central Configurations of Twisted Rings

E. Barrabés ${ }^{1}$ J.M. Cors ${ }^{2}$ G. Roberts ${ }^{3}$
${ }^{1}$ Universitat de Girona
${ }^{2}$ Universitat Politècnica de Catalunya
${ }^{3}$ College of the Holy Cross

HamSys - Bellaterra, 2014/06/02

Outline

Introduction

CC of two twisted rings

CC of three twisted rings

Planar Central Configuration of κn Bodies

We consider

- κ groups of n bodies: $\mathbf{q}_{j i} \in \mathbb{R}^{2}, i=1, \ldots, n, j=1, \ldots, \kappa$
- All bodies in the same group have equal mass $m_{j}, j=1, \ldots, \kappa$
- $\sum_{j=1}^{\kappa} m_{j}\left(\mathbf{q}_{j 1}+\cdots+\mathbf{q}_{j n}\right)=0$

A central configuration is $\mathbf{q}=\left(\mathbf{q}_{11}, \mathbf{q}_{12}, \ldots, \mathbf{q}_{\kappa n}\right) \in \mathbb{R}^{2 \kappa n}$ such that, for some value of w, satisfies the algebraic equation

$$
\nabla U(\mathbf{q})+w^{2} M \mathbf{q}=0
$$

$$
U(\mathbf{q})=\sum_{j=1}^{\kappa} \sum_{i=1}^{n}\left(\sum_{l=i+1}^{n} \frac{m_{j}^{2}}{\left\|\mathbf{q}_{j i}-\mathbf{q}_{j l}\right\|}+\sum_{l=j+1}^{n} \sum_{m=1}^{n} \frac{m_{j} m_{l}}{\left\|\mathbf{q}_{j i}-\mathbf{q}_{l m}\right\|}\right)
$$

Planar Central Configuration of κn Bodies

The particles within the same group are located at the vertices of an n-gon.

Vertices align

Twisted rings

Rotation of π / n

Previous Results

- Moeckel and Simó (1995)

Two nested rings for any n : for every ratio m_{1} / m_{2}, there are exactly two planar central configurations, one with the ratio of the sizes of the two polygons less than 1 , and the other one greater than 1.

- Zhang and Zhou (2002)

Two rings: they take all the masses different, imposing CC equations, the masses within the same group must be equal.
Corollary (MacMillan-Bartky): in the case of two twisted rings of two bodies, the ratio of the sizes of the two polygons $a \in(1 / \sqrt{3}, \sqrt{3})$.

- Yu and Zhang (2012)

CC of two rings: if two rings, one rotated with respect the other an angle θ, are a CC then $\theta=0$ (nested) or $\theta=\pi / n$ (twisted)

Previous Results

- Corbera, Delgado, Llibre (2009)

Nested κn-gons: there exist planar central configurations of κ nested rings of n-gons

- Llibre, Melo (2009)

Particular cases of twisted rings: existence of central configurations of twisted rings for $\kappa=3$ and $n=2,3$ and $\kappa=4$ and $n=2$.

- Roberts (1999 PhD), Sekiguchi (2004), Lei and Santoprete (2006) CC of two rings and a central mass: number of central configurations and bifurcations varying the value of the central mass

Equations (1)

- Size of the n-gon: $a_{j}, j=1, \ldots, \kappa$
- Argument of the first particle in a group: $\varpi_{j}, j=1, \ldots, \kappa$
- First group: $m_{1}=1, a_{1}=1$ and $\varpi_{1}=0$

$$
\mathbf{q}_{j 1}=a_{j} e^{i \varpi_{j}}, \mathbf{q}_{j k}=\mathbf{q}_{j 1} e^{i 2 \pi(k-1) / n}, \quad k=2, \ldots, n, j=1, \ldots, \kappa
$$

Equations (2)

Using the symmetry of the problem, the CC equation reduces to

$$
\left(\mathrm{Eq}_{j}\right): \quad \frac{\partial U}{\partial \mathbf{q}_{j 1}}+w^{2} m_{j} \mathbf{q}_{j 1}=0 \quad \longrightarrow \quad\left\{\begin{array}{l}
\Re\left(\mathrm{Eq}_{j}\right)=0 \\
\Im\left(\mathrm{Eq}_{j}\right)=0
\end{array}\right.
$$

for all $j=1, \ldots, \kappa$.
$\Im\left(\mathrm{Eq}_{j}\right)=0$ if and only if:

$$
\sum_{\substack{l=1 \\ l \neq j}}^{\kappa} m_{l} a_{l} \sum_{k=1}^{n} \frac{\sin \left(\varpi_{l}-\varpi_{j}+2 \pi k / n\right)}{\left(a_{l}^{2}+a_{j}^{2}-2 a_{l} a_{j} \cos \left(\varpi_{l}-\varpi_{j}+2 \pi k / n\right)\right)^{3 / 2}}=0
$$

Equations (2)

Using the symmetry of the problem, the CC equation reduces to

$$
\left(\mathrm{Eq}_{j}\right): \quad \frac{\partial U}{\partial \mathbf{q}_{j 1}}+w^{2} m_{j} \mathbf{q}_{j 1}=0 \quad \longrightarrow \quad\left\{\begin{array}{l}
\Re\left(\mathrm{Eq}_{j}\right)=0 \\
\Im\left(\mathrm{Eq}_{j}\right)=0
\end{array}\right.
$$

for all $j=1, \ldots, \kappa$.
$\Im\left(\mathrm{Eq}_{j}\right)=0$ if and only if:

$$
\sum_{\substack{l=1 \\ l \neq j}}^{\kappa} m_{l} a_{l} \underbrace{\sum_{k=1}^{n} \frac{\sin \left(\varpi_{l}-\varpi_{j}+2 \pi k / n\right)}{\left(a_{l}^{2}+a_{j}^{2}-2 a_{l} a_{j} \cos \left(\varpi_{l}-\varpi_{j}+2 \pi k / n\right)\right)^{3 / 2}}}_{\substack{\| 1 \\ 0 \\ \text { if } \varpi_{k}=0, \pi / n, \forall k}}=0
$$

Equations (3)

Fixed $\left\{\varpi_{j}\right\}_{j=1, \ldots, \kappa}$ with $\varpi_{j} \in\{0, \pi / n\}$,

$$
\begin{gathered}
\left(C_{j 1}-S_{n} a_{j}\right) m_{1}+\sum_{\substack{l=2 \\
l \neq j}}^{\kappa}\left(C_{j l}-a_{j} C_{1 l}\right) m_{l}+\left(\frac{S_{n}}{a_{j}^{2}}-a_{j} C_{1 j}\right) m_{j}=0, \\
j=2, \ldots, \kappa
\end{gathered}
$$

$\kappa-1$ equations with $2 \kappa-2$ unknowns: $m_{2}, \ldots, m_{\kappa}, a_{2}, \ldots, a_{\kappa}$

$$
\begin{gathered}
S_{n}=\frac{1}{4} \sum_{k=1}^{n-1} \frac{1}{\sin (k \pi / n)}, \\
C_{j l}=C_{j l}\left(a_{j}, a_{l}\right)=\sum_{k=1}^{n} \frac{a_{j}-a_{l} \cos \left(\varpi_{j}-\varpi_{l}+2 k \pi / n\right)}{\left(a_{j}^{2}+a_{l}^{2}-2 a_{j} a_{l} \cos \left(\varpi_{j}-\varpi_{l}+2 k \pi / n\right)\right)^{3 / 2}} .
\end{gathered}
$$

Outline

Introduction

CC of two twisted rings

CC of three twisted rings

Two twisted rings

The unknowns are $m=m_{2}$ and $a=a_{2}$

$$
\left(C_{21}(a)-S_{n} a\right)+\left(\frac{S_{n}}{a^{2}}-a C_{12}(a)\right) m=0
$$

where

$$
C_{21}(a)=-\phi^{\prime}(a), \quad C_{12}(a)=\phi(a)+a \phi^{\prime}(a)
$$

and

$$
\phi(a)=\sum_{k=1}^{\kappa} \frac{1}{\left(1+a^{2}-2 a \cos \frac{(2 k-1) \pi}{n}\right)^{1 / 2}}
$$

Two twisted rings

Inverse problem

$$
m=H(a)=\frac{a^{2}\left(S_{n} a-C_{21}(a)\right)}{S_{n}-a^{3} C_{12}(a)}, \quad a>0
$$

(1) $H(1)=1$. If the two n-gons have the same size, all the masses are equal.
(2) $H(1 / a)=1 / H(a)$.

If (m, a) corresponds to a $\mathrm{CC} \longrightarrow(1 / m, 1 / a)$ is also a CC
(3) The CC is convex if

$$
\cos \left(\frac{\pi}{n}\right) \leq a \leq \frac{1}{\cos \left(\frac{\pi}{n}\right)}
$$

Results for $n=2$

For each value of the mass ratio m, there exist only one central configuration of two twisted 2 -gons of the 4 -body problem (rhomboidal central configuration)

- Admissible sizes $a \in(1 / \sqrt{3}, \sqrt{3})$
- $a=1 / \sqrt{3} \rightarrow m=\infty$
- $a=\sqrt{3} \rightarrow m=0$
- All the CC are convex

Results for $n=3$

Theorem

For $n=3$, the set of admissible values of a such that there exist a CC is

$$
\left(0, z_{1}\right) \cup\left(1 / z_{2}, z_{2}\right) \cup\left(1 / z_{1}, \infty\right),
$$

where $z_{1}<1<z_{2}$ are the only two positive zeros of $m=H(a)=0$, and $z_{1} z_{2}<1$

Results for $n=3$

Theorem

For $n=3$, the set of admissible values of a such that there exist a CC is

$$
\left(0, z_{1}\right) \cup\left(1 / z_{2}, z_{2}\right) \cup\left(1 / z_{1}, \infty\right),
$$

where $z_{1}<1<z_{2}$ are the only two positive zeros of $m=H(a)=0$, and $z_{1} z_{2}<1$

Results for $n=3$

Theorem

For $n=3$, the set of admissible values of a such that there exist a CC is

$$
\left(0, z_{1}\right) \cup\left(1 / z_{2}, z_{2}\right) \cup\left(1 / z_{1}, \infty\right),
$$

where $z_{1}<1<z_{2}$ are the only two positive zeros of $m=H(a)=0$, and $z_{1} z_{2}<1$

Results for $n=3$

Theorem

Given a value of the mass ratio $m \geq 1$, the number of different CC are

- three for any $m \in\left(1, m^{*}\right) \cup\left(m^{* *}, \infty\right)$
- one for any $m \in\left(m^{*}, m^{* *}\right)$
- two for $m=1, m^{*}, m^{* *}$.

$$
m^{*} \simeq 1.000768, \quad m^{* *} \simeq 35.700177
$$

Convex CC for the 6-body problem

- Moeckel: numerical exploration of CC for the N-body problem with equal masses $(N=4, \ldots, 8)$. In particular, for $N=6$ there exist two convex CC:

- For any $m \in[1,1.000768)$ there exist two convex CC of the 6 -body problem

Results for $n \geq 4$

Proposition

$\overline{\text { There exist }}$ at least two positive solutions, z_{1} and z_{2}, of $m=H(a)=0$ with $z_{1}<1<z_{2}$ and and $z_{1} z_{2}>1$.

Conjecture
For $n \geq 4$ the equation $H(a)=0$ has only two solutions z_{1}, z_{2} in $(0, \infty)$.

Results for $n \geq 4$

Theorem

Suppose that the Conjecture is true. Then, for $n \geq 4$, the set of admissible values of a such that there exist a CC of two twisted n-gons is

$$
\left(0,1 / z_{2}\right) \cup\left(z_{1}, 1 / z_{1}\right) \cup\left(z_{2}, \infty\right)
$$

where $z_{1}<1<z_{2}$ are the only two positive zeros of $m=H(a)=0$, and $z_{1} z_{2}>1$

Notice that $m \in(0, \infty)$ for a in any of the three admissible intervals

Results for $n \geq 4$

Theorem

Suppose that the Conjecture is true. Then, for $n \geq 4$, the set of admissible values of a such that there exist a CC of two twisted n-gons is

$$
\left(0,1 / z_{2}\right) \cup\left(z_{1}, 1 / z_{1}\right) \cup\left(z_{2}, \infty\right)
$$

where $z_{1}<1<z_{2}$ are the only two positive zeros of $m=H(a)=0$, and $z_{1} z_{2}>1$

Notice that $m \in(0, \infty)$ for a in any of the three admissible intervals

Theorem

For $n>4$ any CC of two twisted n-gons with $a \in\left(z_{1}, 1 / z_{1}\right)$ is convex

Convex CC for $n=4$

$(0.69738051,0.707106781)$

(0.707106781, 1.414213563) convex

(1.414213563, 1.433937407)

- not all the configurations $a \in\left(z_{1}, 1 / z_{1}\right)$ are convex.
- convex configurations correspond to $m \in(0.062278912,16.05679941)$
- there are not convex CC of twisted rings for certain values of m

Results for $n \geq 4$

Theorem

Suppose that the Conjecture is true. Then, for two nested rings with $n \geq 4$ bodies in each ring, and for any positive value of the mass ratio m there exists at least three different central configurations.

Outline

Introduction

CC of two twisted rings

CC of three twisted rings

Three twisted rings

Fixed values for ϖ_{2} and ϖ_{3}, the unknowns are m_{2}, m_{3} and a_{2}, a_{3}.

$$
\begin{aligned}
& \left(S_{n}-a_{2}^{3} C_{12}\left(a_{2}\right)\right) m_{2}+a_{2}^{2}\left(C_{23}\left(a_{2}, a_{3}\right)-a_{2} C_{13}\left(a_{3}\right)\right) m_{3}=a_{2}^{2}\left(S_{n} a_{2}-C_{21}\left(a_{2}\right)\right), \\
& a_{3}^{2}\left(C_{32}\left(a_{2}, a_{3}\right)-a_{3} C_{12}\left(a_{2}\right)\right) m_{2}+\left(S_{n}-a_{3}^{3} C_{13}\left(a_{3}\right)\right) m_{3}=a_{3}^{2}\left(S_{n} a_{3}-C_{31}\left(a_{3}\right)\right) .
\end{aligned}
$$

- Nested: $\varpi_{2}=\varpi_{3}=0$
- Twisted: one of the rings is rotated with respect the other two. It is enough to restrict the study to

$$
\varpi_{2}=\pi / n, \varpi_{3}=0, \quad \text { and } \quad 0<a_{2}, 0<a_{3}<1
$$

Results for $n=2$

Theorem

Consider three rings of two bodies in each ring, all of them with equal masses. Then, if they are in a twisted central configuration, then $a_{3}<a_{2}<1$, that is, the twisted ring is in the middle of the other two.

Numerical results

Region of admissible values of $\left(a_{2}, a_{3}\right)$ for $n=2$

Numerical results

Region of admissible values of $\left(a_{2}, a_{3}\right)$ for $n=3$

Numerical results

Region of admissible values of $\left(a_{2}, a_{3}\right)$ for $n=4$

Numerical results for $a_{2}=a_{3}$

Conjecture If $a_{2}=a_{3}$ then $m_{2}>m_{3}$

$n=2$

Numerical results for $a_{2}=a_{3}$

Conjecture If $a_{2}=a_{3}$ then $m_{2}>m_{3}$

Thank you for your attention

