On Central Configurations of Twisted Rings

<u>E. Barrabés</u>¹ J.M. Cors ² G. Roberts³

¹Universitat de Girona

²Universitat Politècnica de Catalunya

³College of the Holy Cross

HamSys – Bellaterra, 2014/06/02

Outline

Introduction

CC of two twisted rings

CC of three twisted rings

Planar Central Configuration of κn Bodies

We consider

- κ groups of n bodies: $\mathbf{q}_{ji} \in \mathbb{R}^2, i = 1, \dots, n, j = 1, \dots, \kappa$
- All bodies in the same group have equal mass $m_j, j = 1, ..., \kappa$

•
$$\sum_{j=1} m_j (\mathbf{q}_{j1} + \dots + \mathbf{q}_{jn}) = 0$$

A central configuration is $\mathbf{q} = (\mathbf{q}_{11}, \mathbf{q}_{12}, \dots, \mathbf{q}_{\kappa n}) \in \mathbb{R}^{2\kappa n}$ such that, for some value of w, satisfies the algebraic equation

$$\nabla U(\mathbf{q}) + w^2 M \mathbf{q} = 0$$
$$U(\mathbf{q}) = \sum_{j=1}^{\kappa} \sum_{i=1}^{n} \left(\sum_{l=i+1}^{n} \frac{m_j^2}{||\mathbf{q}_{ji} - \mathbf{q}_{jl}||} + \sum_{l=j+1}^{n} \sum_{m=1}^{n} \frac{m_j m_l}{||\mathbf{q}_{ji} - \mathbf{q}_{lm}||} \right)$$

Planar Central Configuration of κn Bodies

The particles within the same group are located at the vertices of an n-gon.

Nested rings

Twisted rings

Previous Results

• Moeckel and Simó (1995)

Two nested rings for any n: for every ratio m_1/m_2 , there are exactly two planar central configurations, one with the ratio of the sizes of the two polygons less than 1, and the other one greater than 1.

• Zhang and Zhou (2002)

<u>Two rings</u>: they take all the masses different, imposing CC equations, the masses within the same group must be equal. Corollary (MacMillan-Bartky): in the case of two twisted rings of two bodies, the ratio of the sizes of the two polygons $a \in (1/\sqrt{3}, \sqrt{3})$.

• Yu and Zhang (2012)

<u>CC of two rings</u>: if two rings, one rotated with respect the other an angle $\overline{\theta}$, are a CC then $\theta = 0$ (nested) or $\theta = \pi/n$ (twisted)

Previous Results

• Corbera, Delgado, Llibre (2009)

Nested κ *n*-gons: there exist planar central configurations of κ nested rings of *n*-gons

• Llibre, Melo (2009)

Particular cases of twisted rings: existence of central configurations of twisted rings for $\kappa = 3$ and n = 2, 3 and $\kappa = 4$ and n = 2.

• Roberts (1999 PhD), Sekiguchi (2004), Lei and Santoprete (2006) CC of two rings and a central mass: number of central configurations and bifurcations varying the value of the central mass

1

Equations (1)

- Size of the *n*-gon: a_j , $j = 1, \ldots, \kappa$
- Argument of the first particle in a group: $\overline{\omega}_j, j = 1, \dots, \kappa$
- First group: $m_1 = 1$, $a_1 = 1$ and $\varpi_1 = 0$

$$\mathbf{q}_{j1} = a_j e^{i\varpi_j}, \ \mathbf{q}_{jk} = \mathbf{q}_{j1} e^{i2\pi(k-1)/n}, \quad k = 2, \dots, n, \ j = 1, \dots, \kappa.$$

Equations (2)

Using the symmetry of the problem, the CC equation reduces to

$$(\mathrm{Eq}_j): \quad \frac{\partial U}{\partial \mathbf{q}_{j1}} + w^2 m_j \mathbf{q}_{j1} = 0 \quad \longrightarrow \quad \left\{ \begin{array}{cc} \Re(\mathrm{Eq}_j) = 0\\ \Im(\mathrm{Eq}_j) = 0 \end{array} \right.$$

for all $j = 1, \ldots, \kappa$.

 $\Im(\mathrm{Eq}_j) = 0$ if and only if:

$$\sum_{\substack{l=1\\l\neq j}}^{\kappa} m_l a_l \sum_{k=1}^{n} \frac{\sin(\varpi_l - \varpi_j + 2\pi k/n)}{(a_l^2 + a_j^2 - 2a_l a_j \cos(\varpi_l - \varpi_j + 2\pi k/n))^{3/2}} = 0$$

Equations (2)

Using the symmetry of the problem, the CC equation reduces to

$$(\mathrm{Eq}_j): \quad \frac{\partial U}{\partial \mathbf{q}_{j1}} + w^2 m_j \mathbf{q}_{j1} = 0 \quad \longrightarrow \quad \left\{ \begin{array}{cc} \Re(\mathrm{Eq}_j) = 0\\ \Im(\mathrm{Eq}_j) = 0 \end{array} \right.$$

for all $j = 1, \ldots, \kappa$.

 $\Im(\mathrm{Eq}_j) = 0$ if and only if:

$$\sum_{\substack{l=1\\l\neq j}}^{\kappa} m_l a_l \underbrace{\sum_{k=1}^{n} \frac{\sin(\varpi_l - \varpi_j + 2\pi k/n)}{(a_l^2 + a_j^2 - 2a_l a_j \cos(\varpi_l - \varpi_j + 2\pi k/n))^{3/2}}_{\text{if } \varpi_k = 0, \pi/n, \,\forall k} = 0$$

Equations (3)

Fixed $\{\varpi_j\}_{j=1,\dots,\kappa}$ with $\varpi_j \in \{0, \pi/n\}$,

$$(C_{j1} - S_n a_j)m_1 + \sum_{\substack{l=2\\l \neq j}}^{\kappa} (C_{jl} - a_j C_{1l})m_l + \left(\frac{S_n}{a_j^2} - a_j C_{1j}\right)m_j = 0,$$

$$j = 2, \dots, \kappa$$

 $\kappa - 1$ equations with $2\kappa - 2$ unknowns: $m_2, \ldots, m_{\kappa}, a_2, \ldots, a_{\kappa}$

$$S_n = \frac{1}{4} \sum_{k=1}^{n-1} \frac{1}{\sin(k\pi/n)},$$

$$C_{jl} = C_{jl}(a_j, a_l) = \sum_{k=1}^n \frac{a_j - a_l \cos(\varpi_j - \varpi_l + 2k\pi/n)}{(a_j^2 + a_l^2 - 2a_j a_l \cos(\varpi_j - \varpi_l + 2k\pi/n))^{3/2}}.$$

Barrabés, Cors and Roberts (HamSys 2014)

Twisted CC

Outline

Introduction

CC of two twisted rings

CC of three twisted rings

CC of three twisted rings

Two twisted rings

The unknowns are $m = m_2$ and $a = a_2$

$$(C_{21}(a) - S_n a) + \left(\frac{S_n}{a^2} - aC_{12}(a)\right)m = 0$$

where

$$C_{21}(a) = -\phi'(a), \qquad C_{12}(a) = \phi(a) + a\phi'(a)$$

and

$$\phi(a) = \sum_{k=1}^{\kappa} \frac{1}{(1+a^2 - 2a\cos\frac{(2k-1)\pi}{n})^{1/2}}$$

Barrabés, Cors and Roberts (HamSys 2014)

Twisted CC

11 / 27

CC of three twisted rings

Two twisted rings

Inverse problem

$$m = H(a) = \frac{a^2(S_n a - C_{21}(a))}{S_n - a^3 C_{12}(a)}, \quad a > 0.$$

H(1) = 1. If the two n-gons have the same size, all the masses are equal.
H(1/a) = 1/H(a).

If (m, a) corresponds to a CC $\longrightarrow (1/m, 1/a)$ is also a CC

• The CC is convex if

$$\cos\left(\frac{\pi}{n}\right) \le a \le \frac{1}{\cos\left(\frac{\pi}{n}\right)}$$

Barrabés, Cors and Roberts (HamSys 2014)

Twisted CC

Results for n = 2

For each value of the mass ratio m, there exist only one central configuration of two twisted 2-gons of the 4-body problem (rhomboidal central configuration)

- Admissible sizes $a \in (1/\sqrt{3}, \sqrt{3})$
- $a = 1/\sqrt{3} \rightarrow m = \infty$
- $a = \sqrt{3} \rightarrow m = 0$
- All the CC are convex

CC of three twisted rings

Results for n = 3

<u>Theorem</u> For n = 3, the set of admissible values of a such that there exist a CC is $(0, z_1) \cup (1/z_2, z_2) \cup (1/z_1, \infty),$ where $z_1 < 1 < z_2$ are the only two positive zeros of m = H(a) = 0, and $z_1z_2 < 1$

CC of three twisted rings

Results for n = 3

<u>Theorem</u> For n = 3, the set of admissible values of a such that there exist a CC is $(0, z_1) \cup (1/z_2, z_2) \cup (1/z_1, \infty),$ where $z_1 < 1 < z_2$ are the only two positive zeros of m = H(a) = 0, and $z_1z_2 < 1$

CC of three twisted rings

Results for n = 3

Theorem For n = 3, the set of admissible values of a such that there exist a CC is $(0, z_1) \cup (1/z_2, z_2) \cup (1/z_1, \infty),$ where $z_1 < 1 < z_2$ are the only two positive zeros of m = H(a) = 0, and $z_1z_2 < 1$

Results for n = 3

<u>Theorem</u>

Given a value of the mass ratio $m \ge 1$, the number of different CC are

• three for any $m \in (1, m^*) \cup (m^{**}, \infty)$

m

- one for any $m \in (m^*, m^{**})$
- two for $m = 1, m^*, m^{**}$.

m

Convex CC for the 6-body problem

• Moeckel: numerical exploration of CC for the N-body problem with equal masses (N = 4, ..., 8). In particular, for N = 6 there exist two convex CC:

• For any $m \in [1, 1.000768)$ there exist two convex CC of the 6-body problem

Introduction

CC of two twisted rings

CC of three twisted rings

Results for $n \ge 4$

Proposition There exist at least two positive solutions, z_1 and z_2 , of m = H(a) = 0 with $z_1 < 1 < z_2$ and and $z_1 z_2 > 1$.

Conjecture

For $n \ge 4$ the equation H(a) = 0 has only two solutions z_1, z_2 in $(0, \infty)$.

Results for $n \ge 4$

<u>Theorem</u>

Suppose that the Conjecture is true. Then, for $n \ge 4$, the set of admissible values of a such that there exist a CC of two twisted n-gons is

$(0, 1/z_2) \cup (z_1, 1/z_1) \cup (z_2, \infty)$

where $z_1 < 1 < z_2$ are the only two positive zeros of m = H(a) = 0, and $z_1 z_2 > 1$

Notice that $m \in (0, \infty)$ for a in any of the three admissible intervals

Results for $n \ge 4$

<u>Theorem</u>

Suppose that the Conjecture is true. Then, for $n \ge 4$, the set of admissible values of a such that there exist a CC of two twisted n-gons is

$(0, 1/z_2) \cup (z_1, 1/z_1) \cup (z_2, \infty)$

where $z_1 < 1 < z_2$ are the only two positive zeros of m = H(a) = 0, and $z_1 z_2 > 1$

Notice that $m \in (0, \infty)$ for a in any of the three admissible intervals

Theorem

For n > 4 any CC of two twisted *n*-gons with $a \in (z_1, 1/z_1)$ is convex

Convex CC for n = 4

- not all the configurations $a \in (z_1, 1/z_1)$ are convex.
- convex configurations correspond to $m \in (0.062278912, 16.05679941)$
- $\bullet\,$ there are not convex CC of twisted rings for certain values of $m\,$

Results for $n \ge 4$

Theorem

Suppose that the Conjecture is true. Then, for two nested rings with $n \ge 4$ bodies in each ring, and for any positive value of the mass ratio m there exists at least three different central configurations.

Outline

Introduction

CC of two twisted rings

CC of three twisted rings

Three twisted rings

Fixed values for ϖ_2 and ϖ_3 , the unknowns are m_2, m_3 and a_2, a_3 .

$$\begin{array}{l} (S_n-a_2^3C_{12}(a_2))\ m_2+a_2^2(C_{23}(a_2,a_3)-a_2C_{13}(a_3))\ m_3=a_2^2(S_na_2-C_{21}(a_2)),\\ a_3^2(C_{32}(a_2,a_3)-a_3C_{12}(a_2))\ m_2+(S_n-a_3^3C_{13}(a_3))\ m_3=a_3^2(S_na_3-C_{31}(a_3)). \end{array}$$

- Nested: $\varpi_2 = \varpi_3 = 0$
- Twisted: one of the rings is rotated with respect the other two. It is enough to restrict the study to

$$\varpi_2 = \pi/n, \varpi_3 = 0,$$
 and $0 < a_2, 0 < a_3 < 1$

Introduction

CC of two twisted rings

CC of three twisted rings

Results for n = 2

Theorem

Consider three rings of two bodies in each ring, all of them with equal masses. Then, if they are in a twisted central configuration, then $a_3 < a_2 < 1$, that is, the twisted ring is in the middle of the other two.

CC of three twisted rings

Numerical results

Region of admissible values of (a_2, a_3) for n = 2

CC of three twisted rings

Numerical results

Region of admissible values of (a_2, a_3) for n = 3

CC of three twisted rings

Numerical results

Region of admissible values of (a_2, a_3) for n = 4

Numerical results for $a_2 = a_3$

Conjecture If $a_2 = a_3$ then $m_2 > m_3$

Barrabés, Cors and Roberts (HamSys 2014)

Numerical results for $a_2 = a_3$

Conjecture If $a_2 = a_3$ then $m_2 > m_3$

Thank you for your attention