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A priori unstable Hamiltonian systems

Instability for a priori unstable Hamiltonian systems

We consider a periodic in time perturbation of n pendula and a
d -dimensional rotor described by the non-autonomous Hamiltonian,

H(p, q, I , ϕ, t, ε) = P(p, q) + h(I ) + εQ(p, q, I , ϕ, t, ε),

P(p, q) =

n∑

j=1

Pj(pj , qj ), Pj (pj , qj) = ±
(
1

2
p2j + Vj(qj)

)
,

(1)

where I ∈ I ⊂ R
d , ϕ ∈ T

d , I an open set, p, q ∈ R
n, t ∈ T

1, and
Pj(pj , qj ) is a pendulum for the saddle variables pj , qj .

For ε = 0, the d -dimensional action I remains constant.

Main result: If Q is a trigonometric polynomial in the variables (ϕ, t),
under general, verifiable, non-degeneracy assumptions, there are orbits of
the system in which the I variables can perform largely arbitrary excursions
in a set I∗ ⊂ I of size of order 1 (that is, independent of ε as ε → 0).
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The Hamiltonian, assumptions and results

Elementary and regularity assumptions

We will assume:

H1 The functions h,Vj ,Q are C r , r ≥ r0 sufficiently large.

H2 The potentials Vj have non-degenerate local maxima, say at
qj = 0, each of which gives rise to homoclinic orbit (p∗j (t), q

∗
j (t)) of

the pendulum Pj :

d

dt
q∗j (t) = p∗j (t);

d

dt
p∗j (t) = −V ′

j (q
∗
j (t));

lim
t→±∞

(p∗j (t), q
∗
j (t)) = (0, 0).

(2)

H3 The mapping I → ω(I ) := ∂
∂I
h(I ) is a local diffeomorphism from

some domain I∗ ⊂ I to its image.
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The Hamiltonian, assumptions and results

Simplifying assumption

We will furthermore assume the simplifying hypothesis:

H4 The function Q in (1) is a trigonometric polynomial on (ϕ, t):

Q(p, q, I , ϕ, t, ε) =
∑

(k,l)∈NQ

Qk,l (p, q, I , ε) exp(2π i(k · ϕ+ lt)) (3)

with NQ ⊂ Z
d × Z a finite set, and Qk,l 6≡ 0 in I × U , if (k , l) ∈ NQ .

Remark

For the case d = 1, n = 1, H4 appeared in [D-Llave-S06], and was
eliminated in [D-Huguet09], [Gidea-Llave06], under generic assumptions.
Similar improvements are clearly possible in this higher dimensional case.
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The Hamiltonian, assumptions and results

Non-degeneracy assumptions

H5 Consider the set of integer indexes N [≤2] = N1 ∪ N2 ⊂ Z
d+1

where N1 is the support of the Fourier series of the perturbation
Q(I , ϕ, p, q, t; 0), N2 = (N1 +N1) ∪ N̄ , where N̄ is the support of
the Fourier series of ∂Q

∂ε
(I , ϕ, p, q, t; 0).

Then we assume that, for any (k , l) 6= (0, 0) ∈ N [≤2], the set

{I ∈ I∗,Dh(I )k + l = 0, k⊤D2h(I )k = 0} (4)

is empty or a manifold of codimension two in I∗.
Note: If h̃(I0, I ) := I0 + h(I ) is a quasi convex function, assumption
H5 is true for any perturbation Q.

H6 Assume that the perturbation Q satisfies some non-degeneracy
conditions, stated later, in the connected domain I∗ × T

d+1, related
to the existence of whiskered tori for the averaged Hamiltonian.
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The Hamiltonian, assumptions and results

Melnikov potential

L(τ, I , ϕ, s) = −
∫ ∞

−∞

[
Q(p∗(τ + σ), q∗(τ + σ)I , ϕ + σω(I ), s + σ, 0)

− Q(0, 0, I , ϕ + σω(I ), s + σ, 0)
]
dσ

(5)

where τ = (τ1, . . . , τn), p
∗(τ + σ) = (p∗1(τ1 + σ), . . . , p∗n(τn + σ)),

q∗(τ + σ) = (q∗1(τ1 + σ), . . . , q∗n(τn + σ)).

H7 Assume that, for any value of I ∈ I∗, there exists a non-empty
set JI ⊂ T

d+1, with the property that when (I , ϕ, s) ∈ H−, where

H− =
⋃

I∈I∗

{I} × JI ⊂ I∗ × T
d+1, (6)

the system of equations
∂

∂τ
L(τ, I , ϕ, s) = 0 admits a non degenerate

solution τ = τ∗(I , ϕ, s) with τ∗ a smooth function.
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The Hamiltonian, assumptions and results

Poincaré reduced function

H8 Define the auxiliary functions (related to the so-called scattering
map):

L(I , ϕ, s) = L(τ∗(I , ϕ, s), I , ϕ, s), L∗(I , θ) = L(I , θ, 0) (7)

Assume that the reduced Poincaré function L∗(I , ϕ − ω(I )s) satisfies
some non-degeneracy conditions, stated later, on in the domain H−.

Remark

Assumption H8 is simplified by the very simple condition:

H8’: ∀I ∈ I∗, the reduced Poincaré function L∗(I , θ) defined in (7)
has non-degenerate critical points.
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Statement of the main result

Main Result

Theorem

Let H be a Hamiltonian of the form (1) satisfying the elementary
assumptions H1, H2, the regularity assumption H3, the simplifying
assumption H4 and the non-degeneracy assumptions H5, H6, H7, H8.
Then, for every δ > 0, there exists ε0 > 0, such that for every 0 < |ε| < ε0,
given I± ∈ I∗, there exists an orbit x̃(t) of (1) and T > 0, such that:

|I (x̃(0)) − I−| ≤ Cδ

|I (x̃(T )) − I+| ≤ Cδ.
(8)

Remark

Actually, we can show that given a largely arbitrary path γ(s) ⊂ I∗, we
can find orbits x̃(t) such that I (x̃(t)) is δ-close to γ(Ψ(t)) for some
reparameterization Ψ.
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Statement of the main result

One can forget about δ and prescribe arbitrary paths on a set
J ∗ ⊂ I∗. This set J ∗ is described precisely in the course of the
proof, and is determined by the non-degeneracy assumptions H5-H8.
The main idea is that J ∗ is obtained from the open set I∗ described
in H5 (where the intersection of stable and unstable manifolds of a
normally hyperbolic invariant manifold is transversal), just eliminating
some sets of codimension 2, like double resonances,

All the conditions H5-H8 are generic: C 2 open and hold except in
sets of infinite codimension. The only non-generic hypothesis is the
assumption H4, maintained here to simplify the exposition.

The new point: The dimension of the actions d ≥ 2. [Treschev12]
establishes diffusion far from strong resonances for the case n = 1,
d ≥ 2, using the method of the (Shil’nikov) separatrix map.

For d ≥ 2, codimension 2 objects do not separate the space of actions
and can be contoured (compare with [Gelfreich-Simó-Vieiro]
numerical results).
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Statement of the main result

Figure : paths of diffusion
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Statement of the main result

The model used is usually called a-priori-unstable
[Chierchia-Gallavotti94]. This distinction makes sense for analytic
models depending only on one parameter.

The results could be applied just as well for µVi instead of Vi and
0 < µ ≪ 1, but require to choose ε very small (even exponentially
small) with respect to µ. In particular, one could use this method to
produce systems that present instability but which are as close to
integrable as desired. This procedure was pioneered in [Arnold64].

Hamiltonian (1) can be considered as a simplified model of what
happens in a neighborhood of a resonance of multiplicity n in a near
integrable Hamiltonian. The averaging method shows that near a
resonance, one can reduce the system to a Hamiltonian of the form

h(I ) +

n∑

i=1

p2i
2

+ εV (q1, . . . , qn, I ) + O(ε2). (9)
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Statement of the main result

The assumption that the averaged system is given by uncoupled
pendula is not general, but is made often [Holmes-Marsden82,
Haller97]. It is a generic assumption only for n = 1.

Hamiltonian (1) is a simplified model in a neighborhood of a
resonance of multiplicity n in a near integrable Hamiltonian. For a
more general model

h(I ) +
n∑

i=1

p2i
2

+ εV (q1, . . . , qn, I ) + O(ε2). (10)

we would need for our analysis to assume the existence of homoclinic
orbits to a hyperbolic equilibrium point of the mechanical system∑n

i=1
p2i
2 + εV (q1, . . . , qn, I ) [Bolotin78] which are also transversal.
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An example

An explicit example

H(I1, I2, ϕ1, ϕ2, p, q, t, ε) = ±
(
p2

2
+ cos q − 1

)
+ h(I1, I2)

+ ε cos q g(ϕ1, ϕ2, t) (11)

where

h(I1, I2) = Ω1
I 21
2

+ Ω2
I 22
2
,

and

g(ϕ1, ϕ2, t) = a1 cosϕ1 + a2 cosϕ2 + a3 cos(ϕ1 + ϕ2 − t).

Example

Assume that a0, a1, a2, Ω1, Ω2, Ω1 +Ω2, 4Ω1 +Ω2 and Ω1 + 4Ω2 are non
zero. Then Hamiltonian (11) verifies hypotheses H1 to H8 of Theorem 1.

Amadeu Delshams (UPC) June 5th, 2014 13 / 29



Proof

Sketch of the proof

Part I: Existence of a normally hyperbolic invariant manifold with
associated stable and unstable manifolds.

Part II: Outer dynamics.

Part III: Inner dynamics.

Part IV: Combination of both dynamics.
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Proof I: A NHIM with transverse manifolds

ε = 0

Normally hyperbolic invariant manifold (2d + 1)-dimensional:

Λ̃ = {(0, 0, I , ϕ, s) : (I , ϕ, s) ∈ I × T
d+1}

Invariant manifolds (2d + n + 1)-dimensional which coincide:

Γ = W s Λ̃ = W uΛ̃ = {(p∗(τ), q∗(τ), I , ϕ, s) : τ ∈ R
n, (I , ϕ, s) ∈ I×T

d+1
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Proof I: A NHIM with transverse manifolds

0 < ε ≪ 1

Λ̃ persists to Λ̃ε, which is ε-close to Λ̃.

W s Λ̃ε and W uΛ̃ε are ε-close to the unperturbed ones.

Using assumption H7 for the Melnikov potential L(τ, I , ϕ, s), one has
that W s Λ̃ε ⋔ W uΛ̃ε along a homoclinic manifold Γ̃ε.

Amadeu Delshams (UPC) June 5th, 2014 16 / 29



Proof II: Outer dynamics

Scattering map (outer map)

Scattering map (outer map):

Sε : H− ⊂ Λ̃ε → H+ ⊂ Λ̃ε

x− 7→ x+

defined by x+ = Sε(x−) ⇔ ∃ z ∈ Γ̃ε, such that

dist(Φt(z),Φt(x±)) → 0 for t → ±∞
Sε is exact symplectic [D-Llave-S08].

Amadeu Delshams (UPC) June 5th, 2014 17 / 29



Proof II: Outer dynamics

Perturbative computation of the Scattering map

Consider the reduced Poincaré function L∗(I , θ) given in assumption
H8 .

Up to first order in ε, Sε is the ε-time flow of the Hamiltonian flow of
Hamiltonian −L∗(I , θ), where θ = ϕ− sω(I ):

Sε(I , ϕ, s) = (I , ϕ, s) + εJ∇ (L∗(I , ϕ − sω(I ))) +O(ε2), (12)

The scattering map can jump distances of O(ε) along the trajectories
of the Hamiltonian L∗(I , θ).
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Proof III: Inner dynamics

We need now to study the inner dynamics in Λ̃ε and more precisely its
invariant tori to construct a transition chain along Λ̃ε, i.e., a sequence
of whiskered tori {Ti}Ni=1 such that

W u
Ti ⋔ W s

Ti+1

Standard shadowing methods [Fontich-Martin00] provide orbits
connecting arbitrary small neighborhoods of the tori Ti , i = 1 . . .N.

The key point is to use the property

Sε(Ti ) ⋔Λ̃ε

Ti+1 ⇒ W u
Ti ⋔ W s

Ti+1

to choose convenient transition chains.
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Proof III: Inner dynamics

Inner Dynamics

The flow restricted to the NHIM Λ̃ε is a hamiltonian flow of Hamiltonian:

Kε(I , ϕ, s) = h(I ) +

N∑

i=1

εiK i (I , ϕ, s) + O(εN+1),

K i are trigonometric polynomials in ϕ, s easily computable.

We avoid multiple resonances which are of codimension two.

Standard averaging far from resonances and close to single secular
resonances (ressonances which appear in the first or second step of
averaging) provide adequate approximations for KAM tori.
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Proof III: Inner dynamics

Non resonant KAM tori

In the non-resonant region where kω(I ) + ℓ 6= 0 for (k , ℓ) ∈ N [≤2]

one can do at least two steps of averaging:

Kε(I , ϕ, s) = K̄ (I , ε) + O(ε3),

The tori of the averaged system are called primary tori.
They are given by the level sets of a d -dimensional vector function
F = (F1, . . . ,Fd ) of the form

F (I , ϕ, s) = I +O(ε).
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Proof III: Inner dynamics

Primary and secondary tori in the resonant region

Resonances: Values of I such that ω(I ) · k + ℓ = 0, for some
(k , ℓ) ∈ Z

d+1. It is a hypersurface in I∗. We avoid the intersection of
two such surfaces, which are called multiple resonances.

Resonant tori (corresponding to resonances) are typically destroyed by
the perturbation, creating gaps in the foliation of the persistent
primary tori of size up to O(

√
ε) centered around resonances.

Other invariant objects are created inside these gaps, like secondary
tori, which are (d+1)-dimensional invariant KAM tori contractible to
d-dimensional invariant tori.
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Proof III: Inner dynamics

Primary and secondary tori in the resonant region

Given any (k , ℓ) ∈ Z
d+1, k 6= 0, determining a single resonant region

around ω(I ) · k + ℓ = 0, for simplicity of notation, assume kd 6= 0 and
write k = (k̂ , kd ) with k̂ ∈ Z

d−1.

By averaging theory, the invariant tori in this resonant region can be
approximated by the level sets of a vector function
F = (F1, . . . ,Fd ) = (F̂ ,Fd ) where

F̂ = Î − Id
kd

k̂

Fd = K̄ε(I , kϕ + ℓs; ε) +
ℓ

kd
Id .

Once fixed the value of F̂ , thanks to assumption H6, Fd is the
Hamiltonian of a pendulum.
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Proof III: Inner dynamics

Which of the tori obtained in the averaged system survive and at what
distance when we add the perturbation term?

KAM theorem (Quantitative version)
For I ∈ I∗, there exists in Λ̃ε a discrete sequence of invariant tori Ti (some
primary and some secondary) which are ε1+η-closely spaced, with
0 < η ≪ 1. They are given by the leaves LF

∗

E of a foliation FF∗ , with F ∗

close to F .
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Proof III: Inner dynamics

Invariant objects in the NHIM Λ̃ε

εγ1

ε
1+η

ε
1+η

ε
1+η

εγ2

primary tori

secondary tori
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Proof IV: Combination of both dynamics

The image under the scattering map
Sε of a leaf LF

∗

E satisfies

F ∗ ◦ S−1
ε = F ∗ − ε{F ∗,L∗}+ h.o.t

For any j = 1, . . . , d , at points

{Fj ,L∗} < 0 (13)

the scattering map increases the value
of Fj by order ε.

The non-degeneracy assumption
H6-H7 provide explicit conditions to
ensure that {{Fj ,L∗},L∗} 6≡ 0 when
{Fj ,L∗} = 0. For instance, for Fi ,

I = 1, . . . , d − 1, i.e., for F̂ , they

amount to det

(
∂2L∗

∂θ̂2

)
6≡ 0.

εγ1

ε
1+η

ε
1+η

ε
1+η

ε
1+η

εγ2

ε

ε

ε
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Proof IV: Combination of both dynamics

The end of the proof

By the hypotheses of the theorem, for any I± ∈ I∗ and for every
δ > 0, there exists a path from I− to I+ in the set I∗ = Iδ at a
distance δ of the codimension 2 sets where the hypotheses of the
Main Theorem are fulfilled.
By the construction presented, there exists ε0 > 0 such that for any
0 < |ε| < ε0, this path is in an ε-neighborhood of (primary and
secondary) transition tori Ti forming a transition chain, so there exists
an orbit x̃(t) = (p(t), q(t), I (t), ϕ(t)) of (1) which shadows the
transition chain, so that, for some T > 0:

|I (0) − I−| ≤ Cδ

|I (T )− I+| ≤ Cδ
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Proof IV: Combination of both dynamics

Illustration of the transport of invariant tori under the
scattering map

Hε(p, q, I , ϕ, t) = ±
(
p2

2
+ cos q − 1

)
+
I⊤ · I
2

+ε cos q
∑

|k|+|l |=1

akl cos(k ·ϕ+lt).

Red curves: Invariant tori (primary and secondary) around I = 0
Green curves: Images of these invariant tori under the scattering map.
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 0.5

 0
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Proof IV: Combination of both dynamics

Illustration of how to combine the two dynamics to cross the big gaps
region. Invariant tori for the inner dynamics (red curves) and invariant sets
for the outer dynamics (blue curves). Inner dynamics is represented by
dashed lines whereas outer dynamics is represented by solid lines.

0 π 2π
−0.5

 0

 0.5

θ

I

0 π 2π
−0.5

 0

 0.5

θ

I

0 π 2π
−0.5
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 0.5

θ

I
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