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Preliminaries

We consider the Hamiltonian system in R2n with n degrees of
freedom

q̇ = ∂H

∂p , ṗ = −∂H
∂q , (1)

such that the origin is an equilibrium point.

H = H(q,p) in the autonomous case or
H = H(q,p, t) = H(q,p, t+ 2π) in the 2π-periodic case.

H is an analytic function in (q,p) = (q1, · · · , qn, p1 · · · , pn) in a
neighborhood of the origin.
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Preliminaries

Using Taylor’s series of H in a neighborhood of the origin, we
have

H = H2 +H3 + · · ·+Hj + · · · , (2)

where Hj are homogeneous polynomials of degree j in (q,p),
that is,

Hj =
∑

|k|+|l|=j
hkl qkpl, (3)

with k = (k1, · · · , kn) ∈ Zn, l = (l1, · · · , ln) ∈ Zn
|k| = |k1|+ · · ·+ |kn|, |l| = |l1|+ · · ·+ |ln|,

hkl = hk1···knl1···ln ,

qk = qk1
1 · · · qkn

n and pl = pl11 · · · plnn .

Note that in the 2π-periodic case hkl = hkl(t) = hkl(t+ 2π).
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Preliminaries

We will assume that the eigenvalues (respectively, the
characteristic exponents in the periodic case) are pure
imaginary.

We denote them by: ±ω1i, · · · ,±ωni,

H2 is not sign definite in the autonomous case.

Also we assume that we have normalized the quadratic part, so
that

H2 = ω1
2 (q2

1 + p2
1) + · · ·+ ωn

2 (q2
n + p2

n). (4)
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Resonance

Definition
The system (1) presents a resonance relation if there exists an

integer vector k = (k1, . . . , kn) ∈ Zn \ {0} such that

k1ω1 + · · ·+ knωn = 0, in the autonomous case (5)

or
k1ω1 + · · ·+ knωn ∈ Z, in the periodic case. (6)

The number |k| = |k1|+ · · ·+ |kn| is called order of the
resonance. On the other hand, if

k1ω1 + · · ·+ knωn 6= 0 (resp. 6∈ Z) . (7)

holds for all integer vectors (except for the null vector)
k = (k1, · · · , kn) ∈ Zn satisfying |k| = j, for j = 1, · · · , s, we
say that the system (1) does not present resonance relations up
to order s, inclusively.



Construction of the Z-Module Mω

Mω = {k = (k1, · · · , kn) ∈ Zn; k·ω = k1ω1+· · ·+knωn = 0(resp. ∈ Z)},

associated the frequencies ω1, · · · , ωn.

1 Mω = {0}, if and only if, ω1, · · · , ωn are L.I. on Q in the
autonomous case, or ω1, · · · , ωn,−1 are L.I. on Q in the
periodic case.

2 Mω = {0}, if and only if, the system (1) do not possess
resonances.
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Properties of Mω

Mω is a submodule of the finitely generated module Zn and as
Z is a principal domain, we have that Mω is finitely generated.

Thus there are vectors k1, . . . ,ks ∈Mω (L.I. and minimal) such
that

Mω = k1Z + · · ·+ ksZ
= {j1k1 + · · ·+ jsks; j1, . . . , js ∈ Z; k1, · · · ,ks ∈Mω},

(8)
with s < n in the autonomous case and s ≤ n in the periodic
case.
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Single Resonances and multiple Resonances

Definition
Assume that Mω 6= {0}. If Mω is cyclic (or equivalently, s = 1)
we say that system (1) possesses single resonances, in the
opposite case (or equivalently, s > 1) we say that the system
possesses multiple resonances.

The case of multiple resonances can appear in autonomous
Hamiltonian systems with n > 2 or in periodic Hamiltonian
systems with n ≥ 2.
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Examples of Hamiltonian with multiple
Resonances

Consider the autonomous Hamiltonian function with 3-degrees
of freedom in action-angles

H = r1 − 2r2 + 3r3 +H3 + . . . .

Then, ω = (ω1, ω2, ω3) = (1,−2, 3), so

Mω = (2, 1, 0)Z + (3, 0,−1)Z,

and s = 2. Then it has multiple resonances.

Considerer now the periodic Hamiltonian function with
2-degrees of freedom in action-angles variables

H = r1 + 2r2 +H3 + . . . .

Then ω = (ω1, ω2) = (1, 2), and

Mω = (1, 0)Z + (0, 1)Z,

so s = 2. Then it has multiple resonances.
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Resonances with/without Interaction

Definition
Assume that Mω 6= {0} and there are multiple resonances, that
is, s > 1. We say that two vectors of resonances kα1 and kα2

with α1, α2 ∈ {1, . . . , s}, α1 6= α2 do not have interactions if

kα1
1 kα2

1 = · · · = kα1
n kα2

n = 0.

It is said that the set of vectors kα1 , . . . ,kαm with
α1, . . . , αm ∈ {1, . . . , s} do not have interactions if kαi and kαj

do not have interaction for all i, j ∈ {1, . . . ,m}, i 6= j.

Multiple resonances without interactions can appear only in
autonomous Hamiltonian systems with n ≥ 4

In periodic Hamiltonian systems with n ≥ 3.
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Example of Hamiltonian function with
multiple resonances without interactions

Considerer the autonomous Hamiltonian functions with
4-degrees of freedom

H = r1 − 2r2 + πr3 − 3πr4 +H3 + . . . .

Here ω = (ω1, ω2, ω3, ω4) = (1,−2, π,−3π), then

Mω = (2, 1, 0, 0)Z + (0, 0, 3, 1)Z,

thus k1 = (2, 1, 0, 0) and k2 = (0, 0, 3, 1). Therefore, we have
multiple resonances without interactions



Examples of Hamiltonian function with
multiple resonances with interactions

Consider the autonomous Hamiltonian function with 3-degrees
of freedom in action-angles

H = r1 − 2r2 + 3r3 +H3 + . . . .

Then, ω = (ω1, ω2, ω3) = (1,−2, 3), so

Mω = (2, 1, 0)Z + (3, 0,−1)Z,
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Normal form of Lie-Deprit

In order to put the Hamiltonian in its Lie-Deprit normal form,
we write the Hamiltonian in the form

H = H(q, p) = H0
0 + εH0

1 + ε2

2!H
0
2 + · · · .

The variable ε is fictitious and it is used in order to generate a
transformation near the identity.

For us it is just a way to keep track of the homogeneous
polynomials at each order.
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Normal form of Lie-Deprit

It is introduced the generating function W

W = W1 + ε

1!W2 + ε2

2!W3 + · · ·

to generate the Lie transformation, this gives us news functions
via

H i
j = H i−1

j+1 +
j∑

k=0

(
j

k

)
LWk+1H

i−1
j−k.



Normal form of Lie-Deprit

The relation between these functions is easily illustrated by
means of the Lie triangle

H0
0
↓
H0

1 → H1
0

↓ ↓
H0

2 → H1
1 → H2

0
↓ ↓ ↓

The Lie derivative LWK is given by the standard Poisson
bracket

LWK =
n∑
j=1

∂K

∂qj

∂W

∂pj
− ∂K

∂pj

∂W

∂qj
.
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Normal form of Lie-Deprit

In each column Wk+1 is determined in such way that Hk
0 is so

simple as possible. The transformed function (the function in
the normal form) is given by

H̃ = H̃(q, p) = H0
0 + εH1

0 + ε2

2!H
2
0 + · · ·

with ε = 1.



Theorem of Lie-Deprit normal form

Theorem
Let HT

0 (x) = 1
2x

TRx be the Hamiltonian function associated the
system ẋ = ATx. Then there exists a formal transformation in
symplectic coordinates and 2π-periodic, x = φ(y, t) = y + . . .,
which transform the original Hamiltonian in

H∗(y, t) =
∞∑
i=0

H i
0(y, t), (9)

where H i is a homogeneous polynomial of degree i+ 2 in y, and
2π-periodic in t that satisfies

{HT
0 , H

i
0}+ ∂H i

0
∂t

= 0, i = 0, 1, . . . . (10)



Considerations
We assume that the non-degenerate and isolated equilibrium
point is at the origin (0, 0) of system (1) and is linearly stable.
Thus without loss of generality we suppose that

H2 = ω1
2 (q2

1 + p2
1) + · · ·+ ωn

2 (q2
n + p2

n). (11)

Hm represents the truncated Hamiltonian function which is
truncated up to terms of order m > 2, that is,

Hm = H2 + · · ·+Hm. (12)

Hm(r, ϕ, t) is the truncated Hamiltonian function written in its
Lie normal form up to order m inclusively, i.e., we have applied
the Lie normal form process (in a finite order, then the process
is convergent) to the function H up to order m, inclusively.
(r, ϕ) = (r1, . . . , rn, ϕ1, . . . , ϕn) action-angles variables, i.e.,

qj =
√

2rj cosϕj , pj =
√

2rj sinϕj . (13)
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Resonances and Lie normal form
1 If Mω = {0}, then

Hm = Hm(r).

2 If Mω is cyclic with Mω = kZ for some k ∈Mω, then

Hm = Hm(r,k · ϕ+ γt)

with γ = 0 in the autonomous case or γ = k · ω in the
periodic case.

3 If Mω = k1Z + . . .ksZ, then

Hm = Hm(r,k1 · ϕ, · · · ,ks · ϕ)

in the autonomous case, and

Hm = Hm(r,k1 · ϕ+ k1 · ωt, · · · ,ks · ϕ+ ks · ωt)

in the periodic case.
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Normal form for multiple resonances
without interactions

If k1, . . . ,ks do not have interactions then for all m ≥ 2 there
exist functions Hm,0(r) and Hm,j(r,kj · ϕ), j = 1, . . . s, such
that

Hm(r,k1·ϕ, . . . ,ks·ϕ) = Hm,0(r)+Hm,1(r,k1·ϕ)+· · ·+Hm,s(r,ks·ϕ).

Autonomous case (similar in the periodic case).



Stability in the Lie sense

Definition
We say that an equilibrium in (1) is Lie-stable if there exists
m > 2 such that the truncated Hamiltonian system in Lie
normal form associated to Hj is stable (in the sense of
Lyapunov) for any j ≥ m (arbitrary).



Remarks

It is important to observe that the stability of the equilibrium
solution of the truncated Hamiltonian system in its Lie normal
form does not possess in general any relation with the stability
of the truncated Hamiltonian system.



Remarks
As an example we assume the existence of a single resonance
vector of order 4 given by k = (1, 1, 2), thus ω1 + ω2 + 2ω3 = 0.
It is clear that the origin of the Hamiltonian system with
3-degrees of freedom associated to

H2 = ω1
2 (q2

1 + p2
1)− ω2

2 (q2
2 + p2

2) + ω3(q2
3 + p2

3),

is stable.

We can verify that the origin of

H = H2 + (q2
1 + p2

1)2,

is Lie-stable.

While for the Hamiltonian

H = H2+2[q1q2q
2
3−q1q2p

2
3−q2

3p1p2+p1p2p
2
3−2q1q3p2p3−2q2q3p1p3]

the origin is unstable.
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3 + p2

3),

is stable.

We can verify that the origin of

H = H2 + (q2
1 + p2

1)2,

is Lie-stable.

While for the Hamiltonian

H = H2+2[q1q2q
2
3−q1q2p

2
3−q2

3p1p2+p1p2p
2
3−2q1q3p2p3−2q2q3p1p3]

the origin is unstable.



Remarks

Since in the previous examples we have {H,H2} = 0 and
{H,H2} = 0, then both Hamiltonian functions H and H are in
its Lie normal form.



Remarks

We emphasize that in general the problem of stability in the
periodic case is no equivalent to the autonomous case.
For example, for the 2π-periodic Hamiltonian with 1-degree of
freedom

H = 1
2(q2 + p2) + 2u30(q3 − 3qp2) + 2v30(p3 − 3qp2),

where u30 = x30 cos(3t)− y30 sin(3t),
v30 = x30 sin(3t) + y30 cos(3t), with x2

30 + y2
30 6= 0, it is verified

that the origin is unstable in the Lyapunov sense.

Note that the quadratic part is positive definite.
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Statement of the Problem

We will assume the existence of s multiple resonances with
vectors of resonance k1, . . . ,ks.

Let Ij = aj · r, (j = 1, . . . , n− s) with aj · k1 = · · · = aj · ks = 0

S = {r; I1(r) = · · · = In−s(r) = 0},

and
Sm = {r;Hm(r, ϕ) = 0,∀ϕ}.
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Statement of the Problem

We will assume the existence of s multiple resonances with
vectors of resonance k1, . . . ,ks.

Let Ij = aj · r, (j = 1, . . . , n− s) with aj · k1 = · · · = aj · ks = 0

S = {r; I1(r) = · · · = In−s(r) = 0},

and
Sm = {r;Hm(r, ϕ) = 0,∀ϕ}.



Result about stability
First case: we assume that S = {r = 0}.

Proposition
If S = {r = 0}, then the null solution of (1) is Lie-stable.

Proof: Since the function

W = I2
1 + · · ·+ I2

n−s,

is a positive definite first integral of the truncated Hamiltonian
system in its Lie normal form for any arbitrary order.

Corollary
If there exists a = (a1, . . . , an) ∈ Rn, with a1, . . . , an > 0 such

that
k1 · a = · · · = ks · a = 0,

then the null solution of (1) is Lie-stable.

Proof: The existence of a as above implies that S = {r = 0}.
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Proof: Since the function
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If there exists a = (a1, . . . , an) ∈ Rn, with a1, . . . , an > 0 such

that
k1 · a = · · · = ks · a = 0,
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Proof: The existence of a as above implies that S = {r = 0}.



Remark

A necessary condition for the existence of a as in Corollary 1 is
that for all α ∈ {1, . . . , s} there exist i, j ∈ {1, . . . , n}, i 6= j,
such that kαi kαj < 0.

The condition of Proposition 1 depends only on the conditions
about the vectors of resonances k1, . . . ,ks, and it is
independent of the terms of order greater than two of the
Hamiltonian function.
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Example

The autonomous Hamiltonian system with four degrees of
freedom whose Hamiltonian function in action-angle variables is
given by

H = r1 + 2r2 + 3r3 − πr4 +H3 + . . .

has the origin as a Lie-stable solution independently of what
happens with the terms greater than two.

In fact, in this case Mω = (2,−1, 0, 0)Z + (3, 0,−1, 0)Z and
taking a = (1, 2, 3, π) we have
a · (2,−1, 0, 0) = a · (3, 0,−1, 0) = 0, or equivalently, (2,−1, 0, 0)
and (3, 0,−1, 0) has components of different signs.
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Result of stability

Second case: we assume that S 6= {r = 0}.

If r ∈ S, then

a1 · r = 0, . . . ,an−s · r = 0

and as the vectors a1, . . . ,an−s are L.I. in Rn, solving the
previous system, we find subindex j1, . . . , js ∈ {1, . . . , n} such
that

r = r(rj1 , . . . , rjs),

satisfying
aj · r = 0, j = 1, . . . , n− s.
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If r ∈ S, then

a1 · r = 0, . . . ,an−s · r = 0

and as the vectors a1, . . . ,an−s are L.I. in Rn, solving the
previous system, we find subindex j1, . . . , js ∈ {1, . . . , n} such
that

r = r(rj1 , . . . , rjs),

satisfying
aj · r = 0, j = 1, . . . , n− s.



Result of stability

Now we define the auxiliary function

Fm = Hm|S×Rs = Fm(rj1 , . . . , rjs ,k1 · ϕ, . . . ,ks · ϕ). (14)

Theorem (Theorem of Stability)

Under the previous notations, if S = {r = 0} or S 6= {r = 0}
and there is m > 2 such that
Fm(rj1 , . . . , rjs ,k1 · ϕ, . . . ,ks · ϕ) 6= 0 for all
(rj1 , . . . , rjs ,k1 · ϕ, . . . ,ks · ϕ) with rj1 , . . . , rjs > 0 sufficiently
small, then the null solution of (1) is Lie-stable.



Idea of the proof

2) S 6= {r = 0} and consider the function

V = I2
1 + · · ·+ I2

n−s + (Hm)2.

This function is clearly a first integral of the Hamiltonian
system associated to Hm for every m ≥ 2. On the other hand,
we have that V = 0, if and only if, r ∈ S and
Fm(rj1 , . . . , rjs ,k1 · ϕ, . . . ,ks · ϕ) = 0. Assuming that there
exists m > 2 such that Fm(rj1 , . . . , rjs ,k1 · ϕ, . . . ,ks · ϕ) 6= 0 for
all (rj1 , . . . , rjs ,k1 ·ϕ, . . . ,ks ·ϕ) with rj1 , . . . , rjs > 0 sufficiently
small, we must have that r = 0.



Results about instability

Hypothesis: We assume that for each m > 2 there is an angle
vector ϕ∗ such that Fm(rj1 , . . . , rjs ,k1 · ϕ∗, . . . ,ks · ϕ∗) = 0 for
all rj1 , . . . , rjs > 0, sufficiently small.

Natural question: Is the previous condition sufficient to
guarantee that the null solution of system (1) to be unstable in
the Lyapunov sense ?

In our work we will analyze two situations:
1 There exist at least two resonances of different order.
2 There exist resonances of the same order and without

interaction.
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Analysis of the first situation
First situation: We suppose that

|k1| < |k2| ≤ · · · ≤ |ks|, and 2|k1| − 2 < |k2|

that is, there are at least two resonance of different order.
3|k1| − 2 < |k2|, in the periodic case.

Let η = |k1|, then the truncated Hamiltonian function H2η−2 in
its Lie normal form has the form (in the autonomous case)

H2η−2 = H2(r)+· · ·+H2l(r)+Hη(r,k1 ·ϕ)+· · ·+H2η−2(r,k1 ·ϕ),

in the autonomous case, and

H2η−2 = H4(r)+· · ·+H2l(r)+Hη(r,k1 ·ϕ)+· · ·+H2η−2(r,k1 ·ϕ),

in the periodic case, where 2l is a natural number less that η.
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Analysis of the first situation

In the case k1
1, . . . , k

1
n ≥ 0 with k1

1 > 0, define the auxiliary
function

Ψ(φ) =
( 1
k1

1

)η/2
Hη(k1, φ), (15)

where φ = k1 · ϕ = k1
1ϕ1 + · · ·+ k1

nϕn.



Theorem of Instability in the first situation

Theorem
Under the previous notations, if k1

1, . . . , k
1
n ≥ 0, k1

1 > 0,
H4(k1) = · · · = H2l(k1) = 0 and there is φ∗ such that Ψ(φ∗) = 0
and Ψ′(φ∗) 6= 0, then the null solution of (1) is unstable in the
Lyapunov sense.



Idea of the proof
By simplicity and without loss of generality we will suppose that

k1 = (k1
1, . . . , k

1
α1 , 0, . . . , 0)

with k1
1, . . . , k

1
α1 > 0, α1 ≤ n. Next we consider the following

convenient vectors in Zn

b1 = (k1
2,−k1

1, 0, . . . , 0),
b2 = (k1

3, 0,−k1
1, 0, . . . , 0),

...
bα1−1 = (k1

α1 , 0, . . . , 0,−k
1
1, 0, . . . , 0),

(16)

under this construction we have that the n− 1 functions

V1 = b1 · r, V2 = b2 · r, . . . , Vα1−1 = bα1−1 · r, Vα1 = rα1+1, . . . ,
Vn−1 = rn

are first integrals of the truncated Hamiltonian function
associated to H2η−2.



Idea of the proof

Vn = H(r, ϕ)−H2(r)

in the autonomous case and

Vn = H(r, ϕ, t)

in the periodic case.
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Vn = H(r, ϕ)−H2(r)

in the autonomous case and

Vn = H(r, ϕ, t)

in the periodic case.



Idea of the proof

Now we define the Chetaev function

V = V 2
1 + V 2

2 + · · ·+ V 2
n−1 + V 2

n − δ2rη1

where δ is chosen conveniently.
Let

Ωa = {V ≤ 0, r1 < a},

Ω+
a = {V ≤ 0, r1 < a, Ψ′(φ) > 0}

and
Ω−a = {V ≤ 0, r1 < a, Ψ′(φ) < 0},

where a is a convenient positive real number that we will choose
conveniently.



Idea of the proof

There exist real bounded functions fj = fj(r1, rj),
j = 1, . . . , n− 1 with |fj | ≤ 1 such that

rj+1 =
k1
j

k1
1
r1 + |δ|rη/2

1 fj(r1, rj), j = 1, . . . , α1 − 1,

rk = |δ|rη/2
1 fk(r1, rk), k = α1 + 1, . . . , n.

(17)



Idea of the proof

The derivative of V through the solutions of the Hamiltonian
system associated to H:

V̇ = {V,H}+ ∂V
∂t =

n−1∑
j=1

2Vj{Vj , H}+ 2Vn{Vn, H}−

δ2ηrη−1
1 {r1, H}+ ∂V

∂t .

(18)



Idea of the proof

Since Vj , j = 1, 2, . . . , n− 1 are first integrals for the truncated
Hamiltonian system of order 2η − 2 in both cases autonomous
and periodic, then

{Vj , H} = O(rη−1/2
1 ), j = 1, . . . , n− 1,

in Ωa.

Also H2 is a first integral for the Hamiltonian system associated
to H2η−2, then

{Vn, H} = O(rη−1/2
1 )

in Ωa.
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1 )
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Idea of the proof

In the autonomous case ∂V
∂t = 0 and

in the periodic case since we suppose that the Hamiltonian
function H is in the Lie Normal Form up to order 3η − 2 (in
order to eliminate the time-dependence), then

∂V

∂t
= O(r3η/2−1/2

1 ).



Idea of the proof

In the autonomous case ∂V
∂t = 0 and

in the periodic case since we suppose that the Hamiltonian
function H is in the Lie Normal Form up to order 3η − 2 (in
order to eliminate the time-dependence), then

∂V

∂t
= O(r3η/2−1/2

1 ).



Idea of the proof

We conclude that

V̇ = −δ2ηk1
1Ψ′(φ)r3η/2−1

1 +O(r3η/2−1/2
1 ),

that it is used to prove that V is a Chetaev function in the
region Γ, in both cases autonomous and periodic.



Analysis of the Second situation

The second situation consists in to assume the existence of
multiple resonance such that

η := |k1| = · · · = |kµ|, 2η < |kµ+1| ≤ · · · ≤ |ks|,

with s ≥ µ ≥ 2 and

k1, . . . ,kµ do not have interactions.

In this case the Lie normal form of H2η assumes the form

H2η = H2(r) + · · ·+H2l(r) +Hη(r,k1 · ϕ, . . . ,kµ · ϕ) + · · ·+
H2η(r,k1 · ϕ, . . .kµ · ϕ),

where 2l is a natural number less than η.



Analysis of the Second situation

Because of the no-interactions, there exist functions
Hj
i (r,kj · ϕ), and H0

i (r), j = 1, . . . , µ, i = 2, . . . , 2η, such that

Hi(r,k1 ·ϕ, . . . ,kµ ·ϕ) = H0
i (r)+H1

i (r,k1 ·ϕ)+· · ·+Hµ
i (r,kµ ·ϕ).

If kj1, . . . , kjn ≥ 0 and kj1 > 0, we define the auxiliaries functions

Ψj(φj) =
(

1
kj1

)η/2

Hj
η(kj , φj), j = 1, . . . , µ. (19)

where φj = kj · ϕ = kj1ϕ1 + · · ·+ kjnϕn.



Theorem of Instability for the Second
situation

Theorem
Under the previous conditions, if there exist j ∈ {1, . . . , µ}

such that kj1, . . . , kjn ≥ 0, kj1 > 0, H4(kj) = · · · = H2l(kj) = 0
and there are φ∗j such that Ψj(φ∗j ) = 0 and Ψ′j(φ∗j ) 6= 0, then the
null solution of (1) is unstable in the Lyapunov sense.



Idea of the proof
By simplicity we will suppose that j = 1, µ = 2 and

k1 = (k1
1, . . . , k

1
α1 , 0, . . . , 0),

k2 = (0, . . . , 0, k2
α1+1, . . . , k

2
α1+α2 , 0, . . . , 0), (20)

where k1
1, k

1
2, . . . , k

1
α1 > 0. The other cases can be proved

similarly.

H2η = H2(r) + · · ·+H2l(r) +H1
η (r,k1 · ϕ) +H2

η (r,k2 · ϕ) + · · ·+

Here we introduce the notation

Fη = H1
η (r,k1 · ϕ)

and
Gη = H2

η (r,k2 · ϕ).



Idea of the proof

Considering the vectors in Zn

b1 = (k1
2,−k1

1, 0, . . . , 0),
b2 = (k1

3, 0,−k1
1, 0, . . . , 0),

...
bα1−1 = (k1

α1 , 0, . . . , 0,−k
1
1, 0, . . . , 0),

c1 = (0, . . . , 0, k2
α1+1,−k2

α1 , 0, . . . , 0)
c2 = (0, . . . , 0, k2

α1+2, 0,−k2
α1 , 0, . . . , 0)

...
cα2−1 = (0, . . . , 0, k2

α1+α1 , 0, . . . , 0,−k
2
α1 , 0, . . . , 0)

(21)



Idea of the proof

We define the n− 2 functions V1 = b1 · r, V2 = b2 · r, . . . ,
Vα1−1 = bα1−1 · r, W1 = c1 · r, W2 = c2 · r, . . . ,
Wα2−1 = cα2−1 · r, E1 = rα1+α2+1, . . . , En−α1−α2 = rn. They
are first integrals of the Hamiltonian function associated to H2η.
Now, We define

V = V 2
1 + · · ·+ V 2

α1−1 +W 2
1 + · · ·+Wα2−1 + E2

1 + · · ·+
E2
n−α1−α2 + (Fη(r1, . . . , rα1 ,k1 · ϕ))2+

(Gη(rα1+1, . . . , rα1+α1 ,k2 · ϕ))2 − δ2rη1 .

It is verified that

V̇ = −δ2ηk1
1Ψ′1(k1 · ϕ)r3η/2−1

1 +O(r3η/2−1/2
1 ).


