Poincaré Maps And Dynamics In Restricted Planar (n + 1)-Bodies Problems

Antonio García¹

¹Departamento de Matemáticas Universidad Autónoma Metropolitana-Iztapalapa

> Barcelona, Catalunya June, 2014

• The *n*-center problem

2 Fundamental region

- Definition of the fundamental region
- Differential geometry of the fundamental region
- Symplectic elliptic change of coordinates

3 Billiard maps

イロト イ理ト イヨト イヨト

Setting

Fundamental region Billiard maps Restricted (n+1)-body problem

Main Problems

n particles (the primaries) with mass 1 in a regular polygon. An infinitesimal mass particle (the secondary). Let $\mathbf{q} = (x, y)$ be the position and $\mathbf{p} = (X, Y)$ be the velocity of the secondary.

We study the following problems:

- The primaries are fixed: (The n-center problem).
- The primaries rotate at uniform angular velocity ω. (The restricted (n+1)-body problem).

Objetive: To study the motion of the secondary.

The *n*-center problem

Main Problems

n particles (the primaries) with mass 1 in a regular polygon. An infinitesimal mass particle (the secondary). Let $\mathbf{q} = (x, y)$ be the position and $\mathbf{p} = (X, Y)$ be the velocity of the secondary.

We study the following problems:

- The primaries are fixed: (The *n*-center problem).
- The primaries rotate at uniform angular velocity ω. (The restricted (n+1)-body problem).

Main Problems

n particles (the primaries) with mass 1 in a regular polygon. An infinitesimal mass particle (the secondary). Let $\mathbf{q} = (x, y)$ be the position and $\mathbf{p} = (X, Y)$ be the velocity of the secondary.

We study the following problems:

- The primaries are fixed: (The n-center problem).
- The primaries rotate at uniform angular velocity ω. (The restricted (n+1)-body problem).

Objetive: To study the motion of the secondary.

The *n*-center problem

Main Problems

n particles (the primaries) with mass 1 in a regular polygon. An infinitesimal mass particle (the secondary). Let $\mathbf{q} = (x, y)$ be the position and $\mathbf{p} = (X, Y)$ be the velocity of the secondary.

We study the following problems:

- The primaries are fixed: (The n-center problem).
- The primaries rotate at uniform angular velocity ω. (The restricted (n+1)-body problem).

Main Problems

n particles (the primaries) with mass 1 in a regular polygon. An infinitesimal mass particle (the secondary). Let $\mathbf{q} = (x, y)$ be the position and $\mathbf{p} = (X, Y)$ be the velocity of the secondary.

We study the following problems:

- The primaries are fixed: (The n-center problem).
- The primaries rotate at uniform angular velocity ω. (The restricted (n+1)-body problem).

Main Problems

n particles (the primaries) with mass 1 in a regular polygon. An infinitesimal mass particle (the secondary). Let $\mathbf{q} = (x, y)$ be the position and $\mathbf{p} = (X, Y)$ be the velocity of the secondary.

We study the following problems:

- The primaries are fixed: (The n-center problem).
- The primaries rotate at uniform angular velocity ω. (The restricted (n+1)-body problem).

The *n*-center problem

The *n*-center problem

Theorem

The n-center problem has the following properties:

- The Hamiltonian is: $H(\mathbf{q}, \mathbf{p}) = \frac{1}{2}\mathbf{p} \cdot \mathbf{p} U(\mathbf{q})$, where $U(\mathbf{q}) = \sum_{k=0}^{n-1} \frac{1}{|\mathbf{q} (A_k, B_k)|}$.
- The only singularities are: (A_k, B_k) , k = 0, ..., n-1, the positions of the fixed points.
- $h = H(\mathbf{q}, \mathbf{p})$ is an integral.
- D_n-symmetry.

イロト イ理ト イヨト イヨト

Theorem

If -h is a regular value of $U(\mathbf{q})$ thus

• The set $A = \{\mathbf{q} : h + U(\mathbf{q}) \ge 0\} \subset \mathbb{R}^2$ is a manifold with boundary $\partial A = \{\mathbf{q} : h + U(\mathbf{q}) = 0\}$ and interior

$$A^{\circ} = \{\mathbf{q}: h + U(\mathbf{q}) > 0\}.$$

• For certain values of h the set A has a ring shape.

Definition

A is the Hill region for the value of energy h.

Values: n = 8, h = 3.3.

イロト イポト イヨト イヨト

Theorem

If -h is a regular value of $U(\mathbf{q})$ thus

• The set $A = \{\mathbf{q} : h + U(\mathbf{q}) \ge 0\} \subset \mathbb{R}^2$ is a manifold with boundary $\partial A = \{\mathbf{q} : h + U(\mathbf{q}) = 0\}$ and interior

$$A^{\circ} = \{\mathbf{q}: h + U(\mathbf{q}) > 0\}.$$

• For certain values of h the set A has a ring shape.

Definition

A is the Hill region for the value of energy h.

Values: n = 8, h = 3.3.

イロト イポト イヨト イヨト

Definition of the fundamental region Differential geometry of the fundamental region Symplectic elliptic change of coordinates

Let L_a be the Y-axis and L_b be the line that joins the center of mass and the singularity (A_1, B_1) , L_a and L_b are symmetry axis of the motion. Let S be the region between them. It is a fundamental region of the problem (Using the D_n symmetry).

S is simply connected. The boundary has 4 components. The only singularity: (A_1, B_1) , is in one of them.

イロト 不得 とくほ とくほう

Definition of the fundamental region Differential geometry of the fundamental region Symplectic elliptic change of coordinates

Let L_a be the *Y*-axis and L_b be the line that joins the center of mass and the singularity (A_1, B_1) , L_a and L_b are symmetry axis of the motion. Let *S* be the region between them. It is a fundamental region of the problem (Using the D_n symmetry).

S is simply connected. The boundary has 4 components. The only singularity: (A_1, B_1) , is in one of them.

イロト イ理ト イヨト イヨト

Definition of the fundamental region Differential geometry of the fundamental region Symplectic elliptic change of coordinates

Let L_a be the *Y*-axis and L_b be the line that joins the center of mass and the singularity (A_1, B_1) , L_a and L_b are symmetry axis of the motion. Let *S* be the region between them. It is a fundamental region of the problem (Using the D_n symmetry).

S is simply connected. The boundary has 4 components. The only singularity: (A_1, B_1) , is in one of them.

< 回 > < 三 > < 三

Definition of the fundamental region Differential geometry of the fundamental region Symplectic elliptic change of coordinates

Definition

The mechanical or Jacobi metric on *A* is: $\tilde{g} = 2(h + U(\mathbf{q}))g$.

Meaning: $\tilde{g}((\mathbf{q}, \mathbf{v}), (\mathbf{q}, \mathbf{w})) = 2(h + U(\mathbf{q}))\mathbf{v} \cdot \mathbf{w}$

Definition of the fundamental region Differential geometry of the fundamental region Symplectic elliptic change of coordinates

Theorem

We have the following properties:

- The mechanical and the standard metric are conformal.
- The mechanical curvature is:

$$K_{h}(x,y) = -\infty \text{ in } \partial A \text{ and } \text{ in } (A_{1},B_{1})^{3})^{2} < 0$$

• The geodesics of the mechanical metric on A are the solutions of the Hamiltonian system.

Definition of the fundamental region Differential geometry of the fundamental region Symplectic elliptic change of coordinates

Theorem

We have the following properties:

- The mechanical and the standard metric are conformal.
- The mechanical curvature is:

$$K_{h}(x,y) = -\infty \text{ in } \partial A \text{ and } \text{ in } (A_{1},B_{1})^{3})^{2} < 0$$

• The geodesics of the mechanical metric on A are the solutions of the Hamiltonian system.

Definition of the fundamental region Differential geometry of the fundamental region Symplectic elliptic change of coordinates

Theorem

We have the following properties:

- The mechanical and the standard metric are conformal.
- The mechanical curvature is:

$$K_{h}(x,y) = \frac{-\left[\begin{pmatrix} \sum_{k=0}^{n-1} \frac{x-A_{k}}{|(x,y)-(A_{k},B_{k})|^{3}} \end{pmatrix}^{2} \\ + \left(\sum_{k=0}^{n-1} \frac{y-B_{k}}{|(x,y)-(A_{k},B_{k})|^{3}} \right)^{2} \\ + (h+U((x,y))) \sum_{k=0}^{n-1} \frac{1}{|(x,y)-(A_{k},B_{k})|^{3}} \\ Z(h+U((x,y))) \\ K_{h}(x,y) = -\infty \text{ in } \partial A \text{ and in } (A_{1},B_{1}). \end{cases} < 0$$

 The geodesics of the mechanical metric on A are the solutions of the Hamiltonian system.

Definition of the fundamental region Differential geometry of the fundamental region Symplectic elliptic change of coordinates

Theorem

We have the following properties:

- The mechanical and the standard metric are conformal.
- The mechanical curvature is:

$$K_{h}(x,y) = \frac{-\left[\begin{pmatrix} \sum_{k=0}^{n-1} \frac{x-A_{k}}{|(x,y)-(A_{k},B_{k})|^{3}} \end{pmatrix}^{2} \\ + \left(\sum_{k=0}^{n-1} \frac{y-B_{k}}{|(x,y)-(A_{k},B_{k})|^{3}} \right)^{2} \\ + (h+U((x,y)))\sum_{k=0}^{n-1} \frac{1}{|(x,y)-(A_{k},B_{k})|^{3}} \\ 2(h+U((x,y))) \\ K_{h}(x,y) = -\infty \text{ in } \partial A \text{ and in } (A_{1},B_{1}). \end{cases} < 0$$

 The geodesics of the mechanical metric on A are the solutions of the Hamiltonian system.

Definition of the fundamental region Differential geometry of the fundamental region Symplectic elliptic change of coordinates

Symplectic elliptic change of coordinates (Birkhoff).

Definition of the fundamental region Differential geometry of the fundamental region Symplectic elliptic change of coordinates

Symplectic elliptic change of coordinates (Birkhoff).

Definition of the fundamental region Differential geometry of the fundamental region Symplectic elliptic change of coordinates

Symplectic elliptic change of coordinates (Birkhoff).

The Hamiltonian becomes:

$$H(\phi, \psi, \Phi, \Psi) = [\cos(2\psi) - \cosh(2\phi)]^{-1} A(\phi, \psi, \Phi, \Psi)$$

The term $g(\phi, \psi) = \cos(2\psi) - \cosh(2\phi)$ is related to the singularities $(\pm 1, 0)$. $A(\phi, \psi, \Phi, \Psi)$ has singularities associated to the remaining collisions.

Let *h* be a level of energy, and define the function:

$$\widehat{H}(\phi,\psi,\Phi,\Psi) = g(\phi,\psi) (H(\phi,\psi,\Phi,\Psi) - h)$$

The flows associated to $H(\phi, \psi, \Phi, \Psi)$ in the set H = h and $\widehat{H}(\phi, \psi, \Phi, \Psi)$ in the level set $\widehat{H} = 0$ are conjugated (except in the points $\phi = 0$ and $\psi = k\pi$, $k \in \mathbb{Z}$). The flow of \widehat{H} on *S* is smooth.

イロト イ理ト イヨト イヨト

Definition of the billiard map

The Poincaré map is $P(s, \theta) = (s_1, \theta_1)$.

Definition of the billiard map

The Poincaré map is $P(s, \theta) = (s_1, \theta_1)$.

Definition of the billiard map

The Poincaré map is $P(s, \theta) = (s_1, \theta_1)$.

Definition of the billiard map

The Poincaré map is $P(s, \theta) = (s_1, \theta_1)$.

Antonio García

Definition of the billiard map

The Poincaré map is $P(s, \theta) = (s_1, \theta_1)$.

Definition of the billiard map

The Poincaré map is $P(s, \theta) = (s_1, \theta_1)$.

Theorem

There are three types of orbits on the fundamental region S:

- Orbits that start in L_a, point to the interior of S, and reach L_b.
- Orbits that start in L_b , point to the interior of S, and reach L_b again.
- Orbits that start in L_b , point to the interior of S, and reach L_a .

Corollary

The flow defines a geodesic billiard, it consists in the three types of Poincaré maps:

$$P_{ab}: L_a \times (0, \pi) \to L_b \times (0, \pi)$$
$$P_{ba}: L_b \times (0, \pi) \to L_a \times (0, \pi)$$
$$P_{bb}: L_b \times (0, \pi) \to L_b \times (0, \pi)$$

Theorem

There are three types of orbits on the fundamental region S:

- Orbits that start in L_a , point to the interior of S, and reach L_b .
- Orbits that start in L_b , point to the interior of S, and reach L_b again.
- Orbits that start in L_b, point to the interior of S, and reach L_a.

Corollary

The flow defines a geodesic billiard, it consists in the three types of Poincaré maps:

$$P_{ab}: L_a \times (0, \pi) \to L_b \times (0, \pi)$$

$$P_{ba}: L_b \times (0, \pi) \to L_a \times (0, \pi) \quad (s, \theta) \to (s_1, \theta_1)$$

$$P_{bb}: L_b \times (0, \pi) \to L_b \times (0, \pi)$$

(日) (四) (日) (日) (日)

 $P_{ba}: L_b \times (0,\pi) \to L_a \times (0,\pi)$

 $P_{ba}: L_b \times (0,\pi) \to L_a \times (0,\pi)$

(日) (四) (日) (日) (日)

 $P_{bb}: L_b \times (0,\pi) \to L_b \times (0,\pi)$

イロン イロン イヨン イヨン

 $P_{bb}: L_b \times (0,\pi) \to L_b \times (0,\pi)$

イロン イロン イヨン イヨン

 $P_{bb}: L_b \times (0,\pi) \to L_b \times (0,\pi)$

Antonio García Poincaré Maps And Dynamics In Restricted Planar (n + 1)-Bodies

イロン イロン イヨン イヨン

A simple way of finding periodic orbits:

Antonio García

A simple way of finding periodic orbits:

Antonio García

A simple way of finding periodic orbits:

Antonio García

The restricted (n + 1)-body problem

Now the primaries are subject to their mutual attraction and move in a regular polygon at uniform angular velocity ω . Using rotating coordinates, we fix the primaries. Two of them are in $(\pm 1,0)$. The Hamiltonian associated to the motion of the secondary is

$$H(\mathbf{x}, \mathbf{X}) = \frac{1}{2c_1} |\mathbf{X}|^2 + \omega \left[x_2 X_1 - x_1 X_2 + \cot\left(\frac{\pi}{n}\right) X_1 \right] - U(\mathbf{x}),$$
$$U(\mathbf{x}) = \frac{1}{c_2 |1 - \mathbf{x}|} + \frac{1}{c_2 |1 + \mathbf{x}|} + \sum_{k=2}^{n-1} \frac{1}{c_2 |A_k + iB_k - \mathbf{x}|}.$$

Antonio García

e □ ▷ < □ ▷ < ⊇ ▷ < ⊇ ▷ < ⊇ ▷ < ⊇ ▷ < ⊇ ○ </p>
Poincaré Maps And Dynamics In Restricted Planar (n + 1)-Bodies

Main differences between the Hamiltonians

- The Hamiltonian is not mechanical. (Extra term: $\omega \left[x_2 X_1 - x_1 X_2 + \cot \left(\frac{\pi}{n}\right) X_1 \right].$
- 2 The system is not reversible, but has a rotational symmetry \mathbb{Z}_n .

Main differences between the Hamiltonians

- The Hamiltonian is not mechanical. (Extra term: $\omega \left[x_2 X_1 - x_1 X_2 + \cot \left(\frac{\pi}{n} \right) X_1 \right].$
- 2 The system is not reversible, but has a rotational symmetry \mathbb{Z}_n .

Fundamental region: Between the lines L_2 y L_4 . There are two singularities: (±1,0).

$$\begin{split} P_{L_3L_1} &: \ L_3 \times \mathbb{S}^1 \to L_1 \times \mathbb{S}^1 \\ P_{L_3L_3} &: \ L_3 \times \mathbb{S}^1 \to L_3 \times \mathbb{S}^1 \\ P_{L_3L_2} &: \ L_3 \times \mathbb{S}^1 \to L_2 \times \mathbb{S}^1 \\ P_{L_1L_3} &: \ L_1 \times \mathbb{S}^1 \to L_3 \times \mathbb{S}^1 \\ P_{L_1L_1} &: \ L_1 \times \mathbb{S}^1 \to L_1 \times \mathbb{S}^1 \\ P_{L_1L_4} &: \ L_1 \times \mathbb{S}^1 \to L_4 \times \mathbb{S}^1 \end{split}$$

Fundamental region: Between the lines L_2 y L_4 . There are two singularities: (±1,0).

$$\begin{split} P_{L_3L_1} &: \ L_3 \times \mathbb{S}^1 \to L_1 \times \mathbb{S}^1 \\ P_{L_3L_3} &: \ L_3 \times \mathbb{S}^1 \to L_3 \times \mathbb{S}^1 \\ P_{L_3L_2} &: \ L_3 \times \mathbb{S}^1 \to L_2 \times \mathbb{S}^1 \\ P_{L_1L_3} &: \ L_1 \times \mathbb{S}^1 \to L_3 \times \mathbb{S}^1 \\ P_{L_1L_1} &: \ L_1 \times \mathbb{S}^1 \to L_1 \times \mathbb{S}^1 \\ P_{L_1L_4} &: \ L_1 \times \mathbb{S}^1 \to L_4 \times \mathbb{S}^1 \end{split}$$

Fundamental region: Between the lines L_2 y L_4 . There are two singularities: $(\pm 1, 0)$.

$$\begin{split} P_{L_3L_1} &: \ L_3 \times \mathbb{S}^1 \to L_1 \times \mathbb{S}^1 \\ P_{L_3L_3} &: \ L_3 \times \mathbb{S}^1 \to L_3 \times \mathbb{S}^1 \\ P_{L_3L_2} &: \ L_3 \times \mathbb{S}^1 \to L_2 \times \mathbb{S}^1 \\ P_{L_1L_3} &: \ L_1 \times \mathbb{S}^1 \to L_3 \times \mathbb{S}^1 \\ P_{L_1L_1} &: \ L_1 \times \mathbb{S}^1 \to L_1 \times \mathbb{S}^1 \\ P_{L_1L_4} &: \ L_1 \times \mathbb{S}^1 \to L_4 \times \mathbb{S}^1. \end{split}$$

Some collition-collition orbits.

◆□ > ◆□ > ◆豆 > ◆豆 >

æ

For Further Reading

- M. Alvarez-Ramírez, A. García, Poincaré maps and near-collision dynamics for a restricted planar (n+1)-body problem. App. Math. and Comp. (233), 2014, 328-337.
- 0. Chong-Pin, *Curvature and Mechanics* Adv. in Math. (15), 1975, 269-311.
- N. Soave, S. Terracini Symbolic dynamics for the N-centre problem at negative energies Disc. and Cont. Dyn. Sys. (32), 2012, 3245-3245.

For Further Reading

- M. Alvarez-Ramírez, A. García, Poincaré maps and near-collision dynamics for a restricted planar (n+1)-body problem. App. Math. and Comp. (233), 2014, 328-337.
- 0. Chong-Pin, *Curvature and Mechanics* Adv. in Math. (15), 1975, 269-311.
- N. Soave, S. Terracini Symbolic dynamics for the N-centre problem at negative energies Disc. and Cont. Dyn. Sys. (32), 2012, 3245-3245.

For Further Reading

- M. Alvarez-Ramírez, A. García, Poincaré maps and near-collision dynamics for a restricted planar (n+1)-body problem. App. Math. and Comp. (233), 2014, 328-337.
- 0. Chong-Pin, *Curvature and Mechanics* Adv. in Math. (15), 1975, 269-311.
- N. Soave, S. Terracini Symbolic dynamics for the N-centre problem at negative energies Disc. and Cont. Dyn. Sys. (32), 2012, 3245-3245.

