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Aim of this work

Consider the difference equation

xn+1 = F (xn) = λxn +
∞∑
i=1

aix
k+i
n , (1)

where F : U ⊂ R→ R, F ∈ C∞(U), being U an open subset of the
origin, k ≥ 1, a1 6= 0, and 0 ≤ |λ| ≤ 1.

According to the different possibilities of F , i.e. of λ

Question:

What is the asymptotic behaviour of solutions, {xn}n∈N, in terms of n,
when limn→∞ xn = 0?
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Some examples
The difference equation

xn+1 =
xn−k

1 + xn + · · ·+ xn−k+1
, for k = 1

I Berg and Stevi’c in 2002, gives the first five terms in the asymptotic
expansions of the solutions

2

n
+

2

n2
ln n +

a

n3
ln2 n ≤ xn ≤

2

n
+

2

n2
ln n +

b

n3
ln2 n,

where a < 2 < b, and proves existence of {xn}n → 0

I Stevi’c in 2006, for all k , proved the existence of a positive solution,
{xn}n, converging to zero, by assuming that the first five terms in
the asymptotic expansion of xn have the following form:

xn ∼
a

n
+

b ln n + c

n2
+

d ln2 n + e ln n

n3
.
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Some examples
The second example concerns the difference equation, Berg in 2008 and
by Berg-Stević in 2011,

xn =
xn−k

1 + xn−1 . . . xn−k+1
, (2)

I existence of a solution s.t. {xn}n → 0 is proved for k = 3 (2008) and
for all k (2011), by assuming that the asymptotic expansion of xn

xn =
1√
n

(
a +

b

n
+

1

n2
(c ln2 n + d ln n + e)

)
,

where the coefficients are fixed s.t. xn is proved to be a solution.

I Idea: For k = 3, the authors approximate the discrete equation by
the differential equation

x(1 + x2) = x − 3x ′

and the approximate solution is given by x(t) =
√

3
2t

(
1 + 3

8t ln t
)
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Recalling the complex case 0 ≤ |λ| < 1

In the complex case,

F (z) = λz +
∑
i≥1

aiz
k+i , λ, z , ai ∈ C, a1 6= 0

by using conformally conjugate (c.c.) functions to F , it is possible reduce
this study to more simpler cases (canonical forms):

I 0 < |λ| < 1, the linearization Theorem (Koenigs) applies
⇒ F (z) is c.c. to λz

I λ = 0, the conjugation theorem for superattracting fixed points
(Boettcher) can be used
⇒ F (z) is c.c. to zk+1

A first Goal:

when 0 ≤ |λ| < 1, give the asymptotic behaviour of solutions, {xn}n∈N, in
terms of n, for the dynamics in the real case
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Main results. Asymptotic dynamical properties in 1d

Asymptotic behaviour in the real case, when 0 ≤ |λ| < 1.

xn+1 = F (xn) = λxn +
∞∑
i=1

aix
k+i
n , k ≥ 1, a1 6= 0, 0 ≤ |λ| < 1.

1. if 0 < |λ| < 1, then

xn = x0λ
n + O(λ2n), x0 = x0(x0)

2. if λ = 0, then

xn = aβ(k+1)n + O
(
β(k+1)n+1

)
, β = a

2
k
1 x0, |a| = |a1|−

1
k

Idea of the proof: We use the conformally conjugate theory, as in the
complex case.

B. Coll, A. Gasull, R. Prohens (UAB, UIB) Asymptotic dynamics 9 / 36



1 2 2 3 4 5 6

The complex case λ = 1

Concerning the asymptotic behaviour of complex solutions, {zn}n∈N, in
terms of n, for parabolic diffeomorphisms zn+1 = F (zn)

I Resman 2013, proved that the asymptotic development of zn is
given by

zn =
k∑

i=1

gin
−i/k + gk+1n

− k+1
k log n + o(n−

k+1
k log n),

where the coefficients gi = gi (k ,A, a2, . . . , ai ) ∈ C, i = 1, . . . , k + 1,

are complex-valued functions, and A = (−ka1)−
1
k .

A second goal:

when λ = 1, give the complete asymptotic development of xn in the real
case.
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Recalling the real case λ = 1. Parabolic case

When assuming a parabolic fixed point at the origin for

xn+1 = F (xn) = xn +
∞∑
i=1

aix
k+i
n , x ∈ Rm.

I The linear part of the map F at the fixed point is the identity and a
whole neighborhood of the origin is a center manifold

I However there may exist invariant submanifolds of points which go
to the origin by the iteration of the map (stable manifolds)

B. Coll, A. Gasull, R. Prohens (UAB, UIB) Asymptotic dynamics 11 / 36



1 2 2 3 4 5 6

Recalling the real case λ = 1. Parabolic case

When assuming a parabolic fixed point at the origin for

xn+1 = F (xn) = xn +
∞∑
i=1

aix
k+i
n , x ∈ Rm.

I The linear part of the map F at the fixed point is the identity and a
whole neighborhood of the origin is a center manifold

I However there may exist invariant submanifolds of points which go
to the origin by the iteration of the map (stable manifolds)

B. Coll, A. Gasull, R. Prohens (UAB, UIB) Asymptotic dynamics 11 / 36



1 2 2 3 4 5 6

Main results. Asymptotic dynamical properties in 1d

Asymptotic behaviour in the parabolic type fixed point case,
λ = 1.

F (x) = x + a1x
k+1 + a2x

k+2 + . . . , a1 6= 0, k ≥ 1, x , ai ∈ R

Theorem 1
For each x0 initial condition belonging to an attracting domain of the
origin, i.e. such that limn→∞ xn = 0,

xn =
∞∑
p=0

k∑
i=1

1

np+i/k

 p∑
j=0

g i,j
p lnj n

 ,

where coefficients g i,j
p = g i,j

p (k , a1, a2, . . . ) are real valued functions.
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Main results. Asymptotic dynamical properties in 1d

A similar result on the asymptotic behaviour in the case,
λ = −1.

F (x) = −x + a1x
k+1 + a2x

k+2 + . . . , a1 6= 0, k ≥ 1, x , ai ∈ R

Corollary 2

xn =
∞∑
p=0

k∑
i=1

1

np+i/k

 p∑
j=0

g i,j
p lnj n

 ,

for some integer number k such that: k = k if k is even, and k > k if k
is odd; and the coefficients g i,j

p = g i,j
p (k , a1, a2, . . . ) are real valued

functions.
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Idea of the proof of Theorem 1

Lemma 3 (Technical result)
Given n0 ∈ N, let us consider the recurrence relation

un+1 − un = f (n) + o (f (n)) , n ≥ n0, n ∈ N,

where f is a real and continuous non-negative function, defined on R.
Suppose that un0 > 0 and that f is a monotonous function on [n0,+∞).
Consider a function F such that

F ′(x) = f (x), x ≥ n0,

and suppose that one of the following hypotheses holds:

1. limx→+∞ F (x) =∞ and limn→+∞ f (n)/f (n + 1) = 1,

2. limx→+∞ F (x) ∈ R
Then, for some F (x), x ≥ n0,

un = F (n) + o (F (n)) .
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Idea of the proof of Theorem 1

xn+1 = F (xn) = xn + a1x
k+1
n + a2x

k+2
n + . . . , a1 6= 0, lim

n→∞
xn = 0.

I Step1. (c.o.v. x → ω) x = Aω−
1
k , where A = (−ka1)−

1
k ,

ωn+1 = ωn + 1 +
∞∑
i=1

ci

ω
i/k
n

=⇒ ωn+1 − ωn = 1 + o(1)

I Step 2. ωn+1 − ωn = 1 + o(1) ⇒ (Lemma 4) ωn = n + o(n)

I Step 3. We define pn = ωn − n

I Step 4.
pn+1 − pn =

∑∞
i=1

ci
ω

i/k
n

=
∑∞

i=1
ci

(n+o(n))i/k
=
∑q

i=1
di
ni/k

+ o(n−
q
k )

I Step 5. (Lemma 4)

pn =
∑k−1

i=1
ei

n(i−k)/k + ek ln(n) +
∑k(q+1)

i=k+1
ei

n(i−k)/k + o(n−q)
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Idea of the proof of Theorem 1

I Step 6.

ωn = n + pn = n +
k−1∑
i=1

ei
n(i−k)/k

+ ek ln n +

k(q+1)∑
i=k+1

ei
n(i−k)/k

+ o(n−q)

I Step 7. If we undo the c.o.v.

xn = Aωn
− 1

k =
A

n1/k

(
1

1 + M

)1/k

,

where M =
∑k(q+1)

i=1
i 6=k

ei
n(k−i)/k + ek

1
n ln n + o(n−q−1), using Taylor

development of (1/(1 + M))1/k , on the variable M, in a
neighbourhood of the origin, up to order p, then

B. Coll, A. Gasull, R. Prohens (UAB, UIB) Asymptotic dynamics 16 / 36
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Idea of the proof of Theorem 1

I

xn,p =

p∑
m=0

k∑
i=1

1

nm+i/k

 m∑
j=0

g i,j
m lnj n

+
1

np+1+1/k
g1,p+1
p+1 lnp+1 n+Rp(n).

I Step 9. formula

xn =
∞∑
p=0

k∑
i=1

1

np+i/k

 p∑
j=0

g i,j
p lnj n

 ,

follows by using mathematical induction on p. �

Remark
We are just involved into the control how the functions (lni n)/nj/k

emerge, not into fix the coefficients g i,j
p
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An application to 2d difference equations

The difference equation

xn+1 =
xn−k

1 + xn + · · ·+ xn−k+1

case k = 1:

I Berg 2002, gives the first five terms in the asymptotic expansions of
the solutions and proves existence of {xn}n → 0

I Stević 2002 proves existence of {xn}n → 0. In 2006, for all k

Defined through the shift function G (x , y),

(xn+1, yn+1) = G (xn, yn) :=

(
yn,

xn
1 + yn

)
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An application to 2d difference equations
Consider

(xn+1, yn+1) = F (xn, yn)

where

F = G 2 := G ◦ G ⇒ F (x , y) =

(
x

1 + y
,
y(1 + y)

1 + x + y

)
.

If we define the stable invariant manifold of the origin, as

W s
V ={(x , y) ∈ U : π1Fm(x , y) ∈ V , π2Fm(x , y) > 0,m ≥ 0,

Fm(x , y)→ 0, as m→∞},

where V = (0, r), then

x

y

F W
s

V
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Consider

(xn+1, yn+1) = F (xn, yn)

where

F = G 2 := G ◦ G ⇒ F (x , y) =

(
x

1 + y
,
y(1 + y)

1 + x + y

)
.

If we define the stable invariant manifold of the origin, as

W s
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Parameterization method
Consider F : U ⊂ R1+n → R1+n,F (0, 0) = 0,DF (0, 0) = Id ,F ∈ C r

The Aim: ∃ 1-D invariant manifolds passing through the origin.

I Parameterization method: One tries to look at the same time for the
parameterization of the invariant manifold and for a version of the
dynamics on it (Ref: Cabré, Fontich et al, 2003,2004, 2007).

I It consists in looking simultaneously for a parameterization of a
curve, K : I0 ⊂ R→ R1+n, and a representation of the dynamics on
the curve, R : I0 ⊂ R→ R such that

F ◦ K = K ◦ R, (invariance equation)

x

y

t

K

R

F

K
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An application to 2d difference equations

Consider F (x , y) =
(

x
1+y ,

y(1+y)
1+x+y

)
.

Theorem 4

1. There exists an open region in the first quadrant on which

2. the invariant manifold of the origin, W s
V , is the graph of an analytic

function, K , where

K (x) = x − 1

2
x2 +

1

2
x3 − 9

16
x4 +

5

8
x5 − 41

64
x6 + O(x7),

3. the dynamics on W s
V is given by the analytic function R,

R(t) = t − t2 +
3

2
t3 − 5

2
t4 +

69

16
t5 − 15

2
t6 + O(t7),
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An application to 2d difference equations

4. on W s
V , the first terms of the asymptotic development of the

solutions corresponding to the difference equation

tn+1 = R(tn)

are given by

tn =
1

n
+

1

n2

(
−c +

1

2
ln n

)
+

1

n3

(
c2 − 1 + 4c

4
ln n +

1

4
ln2 n

)
+

1

n4

(
g1,0
3 + g1,1

3 ln n + g1,2
3 ln2 n + g1,3

3 ln3 n
)

+
1

n5

(
g1,0
4 + g1,1

4 ln n + g1,2
4 ln2 n + g1,3

4 ln3 n + g1,3
4 ln4 n

)
+ o

(
ln4 n

n5

)

where g i,j
p = g i,j

p (c), being c a constant parameter that is fixed from
the intitial condition of the orbit.
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An application to 2d difference equations

Idea of the proof (some facts):

I The origin, (0, 0), is a parabolic fixed point

I Points on the coordinate axes are fixed points

I V (x , y) = x2 + y2 is a Lyapunov function

I In a neighbourhood of the origin, we observe that F is an analytic
function given by

F (x , y) = (x−xy+xy2+o(‖(x , y)‖3), y−xy+xy2+x2y+o(‖(x , y)‖3))

To prove the existence and analyticity of one-dimensional stable manifold
associated to (0, 0), we apply Theorem 4.1 of Baldomá, Fontich 2004,
[BF2004].
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An application to 2d difference equations

To obtain the first terms of the asymptotic development of tn given by

tn+1 = R(tn)

it is enough to apply Theorem 1 to the obtained expression of R(t).

Remark
Since we can identify xn = tn, the obtained expression of tn gives the
asymptotic expansion of xn, in terms of n. This expansion includes the
one proved by Berg 2002.
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Taking a look in higher dimensions. Examples

For higher dimensions, concerning the asymptotic dynamic behaviour of
solutions tending to the origin, we wonder if

Question

can previous results on 1d difference equations be extrapolated to higher
dimensions?

i.e. for xn ∈W s
V , is

xn =
∞∑
p=0

k∑
i=1

1

np+i/k

 p∑
j=0

g i,j
p lnj n

?
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Taking a look in higher dimensions. Examples

I Let us take a look at the asymptotic dynamic behaviour of solutions
tending to the origin

I through the study of two families of difference equations defined in a
neighbourhood of the origin in 3d

We proceed by:

I assuming, if necessary, that the invariant manifold of the origin W s
V

is the graph of an analytic function K .

I using the parameterization method

F ◦ K = K ◦ R, (invariance equation).

where R is the representation of the dynamics on the curve.

I approach analytically K and R.
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Taking a look in higher dimensions. Examples

Both examples agree with the following scheme.

I Consider the “shift” function

(xn+1, yn+1, zn+1) = G (xn, yn, zn) = (yn, zn, g(xn, yn, zn)) ,

where g is given either by

g(x , y , z) =
x

1 + y + z
or g(x , y , z) =

x

1 + yz
.

I We take the three-dimensional scheme iteration, F , given by

F = G 3 := G ◦ G ◦ G

i.e. by

F (x , y , z) = (g(x , y , z), g(y , z , g(x , y , z)), g(z , g(x , y , z), g(y , z , g(x , y , z))))

B. Coll, A. Gasull, R. Prohens (UAB, UIB) Asymptotic dynamics 27 / 36



1 2 2 3 4 5 6

Taking a look in higher dimensions. Examples

Both examples agree with the following scheme.

I Consider the “shift” function

(xn+1, yn+1, zn+1) = G (xn, yn, zn) = (yn, zn, g(xn, yn, zn)) ,

where g is given either by

g(x , y , z) =
x

1 + y + z
or g(x , y , z) =

x

1 + yz
.

I We take the three-dimensional scheme iteration, F , given by

F = G 3 := G ◦ G ◦ G

i.e. by

F (x , y , z) = (g(x , y , z), g(y , z , g(x , y , z)), g(z , g(x , y , z), g(y , z , g(x , y , z))))

B. Coll, A. Gasull, R. Prohens (UAB, UIB) Asymptotic dynamics 27 / 36



1 2 2 3 4 5 6

Taking a look in higher dimensions. Example 1.
Example 1: g(x , y , z) = x

1+y+z

(xn+1, yn+1, zn+1) = F (xn, yn, zn)

I Each component of F agrees with the difference equation

xn+1 =
xn−k

1 + xn + · · ·+ xn−k+1
, when k = 2.

Stević 2006 proves existence of {xn}n → 0, for all k.
I On each coordinate plane, the dynamical behaviour of F coincides

with the one given in case k = 1, v.g.
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Taking a look in higher dimensions. Example 1.
By using the parameterization method,

F ◦ K = K ◦ R, invariance equation

-K is assumed to be the analytic graph of W s
V

-R the representation of the dynamics on the curve,w�
1. There exists an invariant curve, K , through the origin, analytically

approached by

K (t) = (t, t−2

3
t2+

10

9
t3−58

27
t4+o(t4), t−4

3
t2+

28

9
t3−224

27
t4+o(t4)).

2. The dynamics on K is approached by the analytic function R

R(t) = t − 2t2 + 6t3 − 182

9
t4 +

214

3
t5 − 20762

81
t6 + o(t6).
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Taking a look in higher dimensions. Example 1.

Proposition 1
There exist two positive solutions in W s

V with different asymptotic speeds
developments in n when approaching the origin, given by

xn =
1

n
+

1

n2

(
−c +

1

2
ln n

)
+

1

n3

(
c2 − 1 + 4c

4
ln n +

1

4
ln2 n

)
+

1

n4

(
g1,0
3 + g1,1

3 ln n + g1,2
3 ln2 n + g1,3

3 ln3 n
)

+ o

(
ln3 n

n4

)

while the other is given by

xn =
1

2n
+

1

4n2
(−2c + ln n) +

1

8n3

(
1

9
+ 4c2 − (1 + 4c) ln n + ln2 n

)
+

1

16n4

(
g1,0
3 + g1,1

3 ln n + g1,2
3 ln2 n + ln3 n

)
+ o

(
ln3 n

n4

)
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Taking a look in higher dimensions. Example 1.

Figure: Stable invariant manifold of the origin: arrowhead. Different
perspectives. Two different asymptotic speeds developments in n when
approaching the origin
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Taking a look in higher dimensions. Example 2.

Example 2: g(x , y , z) = x
1+yz

(xn+1, yn+1, zn+1) = F (xn, yn, zn)

I Each component of F agrees with the difference equation

xn =
yn−k

1 + yn−1 . . . xn−k+1
, when k = 3.

Berg 2008 and Berg-Stević 2011 (for all k) proved the existence of
{xn}n → 0.

I Making a guess, they also fix the first five terms in the asymptotic
expansion of xn.

I All points in the coordinate planes are fixed points.
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Taking a look in higher dimensions. Example 2.
By using the parameterization method,

F ◦ K = K ◦ R, invariance equation

-K is assumed to be the analytic graph of W s
V

-R the representation of the dynamics on the curve,w�
1. There exists an invariant curve, K , through the origin, analytically

approached by

K (t) = (t, t − 1

3
t3 +

1

3
t5− 1

3
t7 + o(t7), t − 2

3
t3 + t5− 5

3
t7 + o(t7)).

2. The dynamics on K is approached by the analytic function R

R(t) = t − t3 + 2t5 − 41

9
t7 +

32

3
t9 − 2014

81
t11 + o(t11).
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Taking a look in higher dimensions. Example 2.

Proposition 2
There exists a positive solution in W s

V whose asymptotic behaviour is

xn =
1√
2n

(
1 +

1

n

(
−c

2
+

1

8
ln n

)
− 1

32n2

(
7

9
+ ln n

)
+

1

256n3

(
55

18
+

31

9
ln n − ln2 n

)
+

1

n4

(
g1,0
4 + g1,1

4 ln n + g1,2
4 ln2 n + g1,3

4 ln3 n
))

+ o

(
ln3 n

n9/2

)
,

being c a constant parameter that is fixed from the inititial condition.
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Taking a look in higher dimensions. Example 2
g(x , y , z) = x

1+yz

Figure: Stable invariant manifold of the origin: curve.
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Per Molts d’Anys Armengol!!
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