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Preface

From their beginning the ordinary differential equations (ODEs) have been one
of the best language in which scientists from many different fields have shaped
the natural phenomena. Currently its use is so extended that some introductory
aspects and some elemental methods of solving ODEs are part of the curriculum
of the students from various scientific disciplines.

Despite the huge number of natural phenomena that are modeled by ODEs,
from these the ones which can be solved explicitly is negligible. The qualitative
theory and the numeric simulation are the two main tools that allow us to under-
stand the behaviour of the solutions of there ODEs. The qualitative theory usually
works very well locally but only partially when we study the global objects of the
nonlinear ODEs.

However few families of ODEs allow a full treatment from the standpoint of
the qualitative theory. The family of systems of linear differential equations is one
of them. The importance which has this family in the context of the qualitative
theory is evidenced when much of the local analysis of nonlinear ODEs is reduced
to the study of its linear part. However the richness of the dynamic behaviour of
this family is very limited.

With this book we want to emphasize that a first step toward understanding
the behaviour of systems of nonlinear ODEs is to consider systems of piecewise
linear differential systems (PWLS), which are some of the easiest nonlinear ODEs.
More precisely, for the planar PWLS here studied, the full program of the qualita-
tive theory can be applied. Additionally we have the advantage that the richness
of their dynamic behaviour is comparable to that of the general nonlinear ODEs.

On the other hand PWLS are important in applications, where they arise
in a natural way, for instance in control theory, in electric circuits design, etc. In
these disciplines to consider this class of systems is an alternative that fits better
to the experiments.

This book is addressed to the mathematicians, engineers and scientifics in
general who want to introduce in the qualitative theory of ODEs. It is also indi-
cated as a reference book for anyone who needs to know the global phase portraits
and the bifurcation set of all the symmetric three–pieces linear differential systems
(here called fundamental systems) because their full characterization appears here
by first time.
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The book is divided into five chapters. In Chapter 1 we describe the global
phase portraits (including their behaviour at infinity) of all the fundamental sys-
tems and we characterize all the bifurcations exhibit by these systems when the
parameters change.

In Chapter 2 we collect the basic results of the qualitative theory of planar
EDOs that will use in the rest of the book. To simplify the exposition of some
concepts we have limited the scope of our exposition to ODEs having a complete
flow. For this reason some of the results presented here are more restrictive than
those that normally appear in the literature. In Section 2.5 we treat the planar
linear differential systems. We refer frequently to this section throughout the book.
In Section 2.9 we formalize some aspects on the compactification of flows in order
to apply this technique to the fundamental systems. The Poincaré compactifica-
tion is widely used in polynomial differential systems to study the behaviour of
the flow near the infinity. However, although some differential equations can be
compactified satisfactorily, we have not found a systematization of its use outside
of polynomial differential systems.

In Chapter 3 we begin with the study of the fundamental systems and we
show that we can apply to them the existence and uniqueness theorem and the
continuous dependence on initial conditions and parameters theorem. In this chap-
ter we also prove that the behaviour of these systems is determined by a pair of
matrices called fundamental matrices. This justifies that, except in very singular
cases, we use the trace and the determinant of both matrices as fundamental pa-
rameters to describe the dynamics of these systems. Additionally we study the
local phase portrait at the singular points, both finite and infinite, and we give
some results about the existence and configuration of the periodic orbits of the
fundamental systems.

Poincaré maps of PWLS are determined by the linear differential systems
which act in each of the pieces. For fundamental systems, one of these linear
differential systems is homogeneous while the other two are non–homogeneous.
Consequently, in Chapter 4 we study all the Poincaré maps of linear differential
systems associated to two cross sections. These cross sections are parameterized
in such away that the Poincaré maps become invariant by linear transformations.
This parametrization has important implications. First it allows the study of the
Poincaré maps by choosing, in each case, the simplest expression for the funda-
mental matrices. Usually we will consider that the matrices are expressed in their
real Jordan normal form. Second we can characterize the region in the parame-
ter space where we can guarantee the existence of the Poincaré maps. Thus the
bifurcation set associated to the existence or not of the Poincaré maps in the pa-
rameter space is an algebraic manifold homeomorphic to the Witney umbrella.
Finally, this parametrization establishes a link between PWLS having defined the
Poincaré maps with differential systems which are called observables in control
theory.

By collecting the results obtained in the previous chapters, in Chapter 5
we describe and classify all the phase portraits of the fundamental systems. The
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description of the phase portraits is performed via the characterization of all sep-
aratrices and canonical regions. This allows to use in a rigorous way the Marcus–
Newmann–Peixoto Theorem of topological classification of the planar flows. In
this chapter we also give expressions of the bifurcation manifolds. Each of the
sections of the chapter are devoted to fundamental systems having fixed the sign
of two fundamental parameters. All sections of this chapter are structured simi-
larly. First we collect the results about singular points (both finite and infinite)
and limit cycles. Then we locate the rest of the separatrices of the system and
we describe the behaviour of the canonical regions. Finally organize all the infor-
mation in propositions which describe and classify fundamental systems when we
vary the two parameters which have been not fixed. At the end of each section
we describe the bifurcations which take place in this class of fundamental systems
having fixed the sign of two fundamental parameters. We also provide a picture of
the parameter space representing the bifurcation manifolds and the corresponding
phase portraits.

Readers who are interested only in the results can go directly first to Chpater
1 and after to Chapter 5 where they will find at the end of each section a complete
list with all phase portraits and with their bifurcations.

The contents of the book have been arranged for obtainig the full classifi-
cation of the global dynamics of the fundamental systems using the qualitative
theory of EDOs. The authors understand that for readers who only want to learn
how to use the qualitative theory for studying ODEs, do not need to follow com-
pletely this arranged. The many cases that much be consider for obtainig the
global dynamics of all fundamental systems requires that some propositions are
very similar to each other and to follow all of them become a little tedious. In a
first reading to eliminate this potential problem, the authors recommend that in
the Sections 3.11, 4.4 and 4.5, these readers select some of the results in order to
know the qualitative arguments that are used in their proofs and leave the rest of
the results of these sections for a more detailed reading. It also is recommended
in a first approximation to focus on only one of the classe of fundamental systems
having fixed the sign of two fundamental parameters in Chapter 5.

Jaume Llibre
Antonio E. Teruel
Barcelona, 2010.


