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Preface

Poincaré’s program for the global analysis of a dynamical system starts by consid-
ering simple solutions, such as equilibria and periodic orbits, together with their
corresponding asymptotic solutions in forward and backward time. Geometrically
speaking, these solutions correspond to invariant objects that form the skeleton of
the dynamics in phase space. After the middle of the twentieth century, they were
joined by a plethora of other invariant objects, such as hyperbolic sets, attractors,
quasi-periodic orbits and normally hyperbolic invariant manifolds. All these land-
marks were used to perform qualitative sketches to organize the long-term behavior
of the system. With the advent of the age of computers, this qualitative approach
started to be more quantitative, as researchers started to develop algorithms for ef-
fectively computing these invariant objects. Hence, it is not surprising that the last
30 years have witnessed a strong interest in the development of methods for their
computation, spreading the range of applications and fostering the collaboration
with other scientists and engineers. Meanwhile, the complexity of problems and ap-
plications has increased rapidly, thus motivating new research in the development
of mathematical methods, computational algorithms and software implementations.
Also, the interactions between these aspects have given rise to mutual refinements.

With the dawn of the twenty-first century, the parameterization method has
emerged as a novel method that has promoted new developments in the theory and
computation of invariant manifolds. It is a new point of view in which parame-
terizations of invariant manifolds are obtained through an analysis (which can be
function-theoretical or numerical) of their invariance equations that takes advan-
tage of the geometric structures of the problem under study. By its very nature, the
parameterization method has led to a considerable synergy between rigorous math-
ematics and numerical computations. Of course, the methodology is not isolated
and has received inspiration from many other approaches in each of the contexts it
has been applied. Although traces of the method go back to Poincaré and partic-
ular formulations had been used in the literature, the systematic application of the
method is relatively recent. The foundational papers of the parameterization method
[CFdlL03a, CFdlL03b, CFdlL05] dealt with rigorous results on invariant manifolds

v
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of fixed points of maps (some partial rigorous and numerical results had already
appeared in [CF94, FR81, dlL97, Sim90]). The paper [dlLGJV05] provided rigor-
ous results on KAM theory without using classical angle-action coordinates (see
some precedents in [dlL01]). The series of papers [HdlL06c, HdlL06b, HdlL07]
considered invariant tori and whiskers of quasi-periodically forced systems, cov-
ering from rigorous results, numerical algorithms, and implementations in actual
examples. Since then, the range of applications of the parameterization method has
been continuously growing.

A remarkable property of the parameterization method is its applicability to dif-
ferent contexts in which other methodologies are fundamentally different. A first
goal of this monograph is to provide a unified formulation of the parameterization
method valid for different contexts. The specific contexts covered by this mono-
graph are invariant manifolds associated with fixed points, invariant tori in quasi-
periodically forced systems, invariant tori in Hamiltonian systems, and normally
hyperbolic invariant manifolds. Although this plan may seem ambitious, our goal
is not to provide a comprehensive treatment. Each of the contexts has a big amount
of literature devoted to different theoretical and numerical techniques applicable.
We will only cover the parameterization method, but not even in this case we will
be comprehensive. For instance, the monograph is more focused in discrete than in
continuous dynamical systems. Moreover, we do not cover the most recent results,
because research on the parameterization method is still ongoing. This monograph
complements the literature with new results, both rigorous and numerical, in con-
texts in which the parameterization method has already been applied. On the other
hand, we also introduce normally hyperbolic invariant manifolds as a whole new
context of application of the parameterization method.

The proofs done using the parameterization method involve proving convergence
of iterative schemes that, by themselves, can be turned into numerical methods. This
synergy between rigorous results and numerical methods is a signature of the pa-
rameterization method. A second goal of this monograph is to provide efficient and
reliable algorithms for the numerical computation of invariant manifolds based on
the parameterization method. Efficiency is attained through the use of the geomet-
ric structure of the problem, which leads to cancelations that simplify the structure
of the functional equations to be solved at each iterative step. Reliability is a conse-
quence of the proximity between algorithms and theory. For instance, error estimates
for the approximate (numerically computed) parameterizations can be deduced eas-
ily from the invariance equations, and the non-degeneracy of the problem is usually
a numerically evaluable hypothesis of the theorems that support the algorithms. In
summary, we can obtain fast algorithms with low storage requirements and, more
importantly, we have a notion of when they are reliable. Hence, it becomes possible
to study an invariant object for parameter values very close to the one in which the
object ceases to exist. These systematic studies lead to conjectures that enrich the
theory.

A third objective of this monograph is to provide some methodology for compu-
ter-assisted proofs. The ability to produce theorems in a posteriori format is another
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characteristic of the parameterization method. The rigorous numerical evaluation of
the hypotheses of these theorems leads to a proof of the existence of a true invariant
object near an approximate invariant one. A very convenient fact of this strategy is
that the computer-assisted methodology is independent of the procedure (such as
expansions, interpolation, or even hand calculations) used for the computation of
the starting approximate invariant object.

A fundamental part of this monograph is a series of 12 fully detailed examples,
some of which are computer-assisted proofs, that realize the three previous objec-
tives. These examples are accompanied by some practical details of their imple-
mentation, so that the reader can either reproduce them or adapt the methodology to
other problems. A public version of the software used for some of these examples
is available at http://www.maia.ub.es/dsg/param/.

The parameterization method is unique in its ability to be applied to a problem in
several stages, all mentioned in the previous paragraphs, that go from rigorous re-
sults to validated numerical results. These stages give rise to the following program:
write the functional equations for the parameterization of an invariant object (the in-
variance equations), provide adequate functional frameworks to ensure the conver-
gence of iterative methods for the solution of these equations, to develop numerical
algorithms based on these iterative schemes, implement them in actual problems
using appropriate discretizations, and rigorously validate (invoking an a posteriori
theorem) the numerical results. This “from theory-to algorithms-to computations-to
validations” philosophy is a driving force in this monograph.

We believe that several types of readers can benefit from this monograph. It is
aimed to either applied scientists and engineers with an interest in rigorous devel-
opments or more theoretically oriented mathematicians with an interest in applica-
tions. For instance, a reader interested in the implementation of the parameterization
method in applications can benefit from the detailed algorithmic descriptions of this
monograph. A more mathematically oriented reader interested in KAM theory can
find a complete proof of a KAM theorem in a posteriori format. The theoretical and
algorithmic parts are self-contained and can be read independently.

The reader is assumed to have some familiarity with dynamical systems, more
particularly with invariant manifolds and normal forms. A reader novel to dynam-
ical system can consult introductory books such as [Arn88, BS02, Chi06, Irw01,
KH95, HK03, GH90, PdM82, Rob95, Rob04]. Except for this fact, this monograph
is essentially self-contained. It is divided in 5 chapters, of which the first one is an
introduction and the remaining ones correspond to different contexts of application
of the parameterization method. Except for notation drawn from the first chapter,
Chapters 2 to 5 are independent of each other.

Chapter 1 starts by providing an overview of the literature. After that, it intro-
duces unified formulations of the parameterization method for invariant manifolds
of fixed points and for invariant tori in different contexts. These formulations are the
basis of the subsequent chapters. This chapter can be considered a reading guide of
the rest of the book.

http://www.maia.ub.es/dsg/param/
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Chapter 2 discusses computational aspects of invariant manifolds of vector fields
at fixed points. It is focused on algorithms and implementations, since the theory
of invariant manifolds of fixed points is well established. There are many classical
textbooks including the main results of the theory, to which the trilogy [CFdlL03a,
CFdlL03b, CFdlL05] adds the rigorous results of the parameterization method. The
goal is to provide algorithms for the computation of semi-local expansions, based
on the algebraic manipulation of power series and novel automatic differentiation
techniques. The detailed examples of this chapter are the 2D stable manifold of
the origin of the Lorenz system, the 4D center manifold of a collinear point of the
Restricted Three-Body Problem, and a 6D partial normal form in the same problem
that allows the generation of Conley’s transit and non-transit trajectories associated
with any object of the center manifold.

Chapter 3 revisits the papers [HdlL06c, HdlL06b, HdlL07, FH12]. First, it pro-
vides a full proof of a Kantorovich-like theorem for invariant tori in discrete quasi-
periodic systems. The proof of this theorem leads to several algorithms for the com-
putation of invariant tori in this context that are also detailed. Next, we explain a
computer-assisted methodology for the validation of numerical results based on the
previous a posteriori theorem. The chapter ends with three examples: validation of
saddle invariant tori on the verge of breakdown, computation of a rigorous upper
bound of the measure of Cantor-like spectra of a discrete Schrödinger operator, and
validation of an attracting torus that by direct double precision seems to be a strange
nonchaotic attractor.

Chapter 4 is devoted to the parameterization method in KAM theory, also referred
to as KAM theory without action-angle coordinates. It adds a more geometrical per-
spective to the original paper [dlLGJV05] in the spirit of [GHdlL14]. More broad
views on KAM theory can be found in [BHS96, dlL01], which include many refer-
ences to the extensive literature. The chapter states and proves a KAM theorem in
a posteriori format, with explicit bounds suitable to be applied in an effective and
quantitative way. The proof is quite technical, but the reader can skip it without los-
ing the flavor of the application of the method. We have included full descriptions of
the derived algorithms and applications to the examples that follow, which are ap-
plication of the theorem (by hand calculations) to obtain persistence of the golden
invariant curve for tiny values of the parameter of the standard map, numerical con-
tinuation of this same curve up to values close to breakdown, and computation of
2D tori in the Froeschlé map.

Chapter 5 presents some ideas of normally hyperbolic manifold theory, focus-
ing on the algorithmic application of the parameterization method in such context
(the classical theory can be found in [HPS77, Fen72], and a more recent account
in [Wig94]). This new method is applied to the following examples: computation
of an attracting invariant curve in a 2D Fattened Arnold family, computation of a
saddle invariant curve in a 3D Fattened Arnold family, and the computation of a 2D
normally hyperbolic invariant cylinder in the Froeschlé map.

Along the monograph, we cover all the aspects of the “from theory-to algorithms-
to computations-to validations” program, although not all the aspects are covered in
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each chapter. Chapter 2 focuses on algorithmic and practical issues on the com-
putation of invariant manifolds of fixed points. Chapter 3 covers the full program
for a particular case (invariant tori in quasi-periodic systems). Chapter 4 is close
to that, since it covers the first three aspects, and the KAM theorem stated there is
ready to be used in computer-assisted proofs. Chapter 5 covers new research on the
parameterization method for normally hyperbolic invariant manifolds, in particular
on development of numerical algorithms. We emphasize these and other novelties
in Chapter 1.

We finish this preface paraphrasing the following inspiring words in the review
[CDD+91], written by S. Coffey, A. Deprit, E. Deprit, L. Healy, and B. R. Miller
more than 20 years ago: “The discipline (of nonlinear dynamics) instead must try
with tenacity to keep pace with computational technology and make room for its
innovations the same way. The challenge thus is endless, for each generation of
mathematical physicist needs to keep abreast of techniques relentlessly emerging
from the engineering shops.” And techniques emerge not only from the engineering
shops but also from the rigorous results in mathematical papers. Hence, researchers
benefit from the combination and feedback between theorems, algorithms, and nu-
merical experiments that often spur conjectures that motivate further research. The
parameterization method is one of the emerging techniques in the area of dynamical
systems. The research is on the way, and there is still much to come.
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