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The wind goeth toward the south, and turneth
about unto the north; it whirleth about contin-
ually, and the wind returneth again according
to his circuits.

[Ecclesiastes 1.6]



Preface

In middle 1970’s, many scientists started to investigate one dimensional
dynamical systems. They were mathematicians interested in a pure the-
ory and physicists, biologists, etc. who sought models applicable for their
problems. The reasons of popularity of these systems were complex. The
theory of dynamical systems came to a point where most of problems
considered at that time as important were either solved or turned out
to be very difficult. The study of the simplest systems with complex
behavior promised new problems, easier to solve and shedding light on
similar problems for more general (many dimensional or even infinite di-
mensional) systems. Such simplest systems with “sufficiently complex”
behavior are flows (differential equations) in three dimensions, invertible
maps (homeomorphisms, diffeomorphisms) in two dimensions and non-
invertible maps in one dimension. Various notions of chaotic behavior
started to form and interval maps proved to be sufficiently complex to
display most kinds of chaos. The paper of Li and Yorke [218] “Period
three implies chaos” helped very much to make those ideas popular. The
simplicity of tools necessary to study these systems attracted mathemati-
cians (and physicists) from many areas.

On the other hand, in the natural sciences ideas of reducing dimension
of mathematical models were developed. Although the full model may
be a dynamical system in many dimensions, even infinite, its “most in-
teresting” part can have much less dimension. Moreover, if we pass from
a flow to a non-invertible map, we can reduce this dimension even more,
in many cases to one. This procedure was used successfully in order to
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reduce a model of atmospheric behavior to the Lorenz family of flows in
three dimensions and then to a class of maps in one dimension. Another
application of this procedure resulted in an explanation of the period
doubling phenomena for higher dimensional systems via the Feigenbaum
universality theory for one dimensional systems.

Investigating one dimensional models with computers has two advan-
tages compared to many dimensional models. The first advantage is that
it is quicker. The second advantage is its visual image: if you want to
draw a two dimensional picture, you can use one axis for the space and
save another one for a parameter.

The theory of one dimensional dynamical systems has grown out in
many directions. One of them has its roots in the Sharkovskĭı Theorem.
This beautiful theorem describes the possible sets of periods of all cycles
(periodic orbits) of a continuous map of an interval (or the real line) into
itself. They are given by a certain linear order in the natural numbers; to
get such a set one “cuts” this order in an appropriate place and takes the
right-hand part. All proofs of this theorem inevitably lead to an idea of
a “type” of a cycle. When ordering the points of a cycle p1 < p2 < . . . <
pn, one gets a cyclic permutation σ corresponding to it, such that pi is
mapped to pσ(i). Immediately a problem arises: what happens if we try
to consider cyclic permutations instead of periods? Then the usual thing
happens, the more problems you solve, the more new ones arise. The
whole theory which was developed basing on these ideas, deals mainly
with combinatorial objects; permutations, graphs etc. We decided to call
it combinatorial dynamics.

It is important to be able to measure the complexity of a system, or
the degree of “chaos” present in it. To some extent this can be done by
counting cycles of various periods or various types. A better way to do it
is to compute the topological entropy of a system. Topological entropy
is considered in almost all papers on combinatorial dynamics. There are
also other specific problems in the entropy theory.

We decided that the development of combinatorial dynamics and en-
tropy theory for one dimensional dynamical systems had gone far enough
to try to write a book on them. The subject was never treated in a uni-



fied way. We found many gaps in the theory. We found results belonging
to so called “folk knowledge”: everybody interested in the subject knows
that they are true, but nobody can point out where to find them in the
literature. In many cases the techniques existing now allow one to prove
theorems in a simpler way than they were proved originally.

Of course, we could not try to include in the book everything that
has been done in the subject. The theory is being developed all the time
and we could have never stopped writing. Also we had to exclude some
relevant and interesting subjects, again in order to be able to finish the
book in a finite time. However, we would like the reader to be aware
of many connections of the material presented in the book with other
problems. We describe briefly these connections using

♣ small print (we also refer to it as to small print) which we
mark like this. ♣

We treat each small print as a unit. If there are several small prints in
a row, we nevertheless mark them separately. We also mark the ends of
the proofs by and the ends of examples and remarks by 2 .

As yet, there is no standard terminology in combinatorial dynamics.
Even such fundamental object as a cycle (= periodic orbit) has two dif-
ferent names (if we do not count the name circuit used by Ecclesiastes).
Sometimes we had to choose between existing names, and sometimes we
had to introduce new ones consistent with the rest of our terminology.
This has to be taken into account when reading this book and relevant
papers.

We tried to find all literature on the subject covered by the book (this
does not include small prints; we only chose a few positions for each small
print). We are aware that probably we had overlooked some papers; even
though we tried, finding them all seemed to be impossible. In certain
cases we also omitted some papers consciously. This applies to the short
versions of papers whose full versions can be found as easily as the short
ones. We also had to stop adding new references at some point; therefore
the very recent ones are missing. An even bigger problem was to give
credit to various authors. At the end of every section we include a part
called “Historical remarks”, where we try to indicate who proved first



the results of this section and whose ideas we follow in it. We want to
apologize to every author to whom we did not give enough credit. We
know that we are not good historians. We also want to apologize that our
names appear more often than they should, but after all, when writing
the book we had to follow mainly our own ideas and we were writing the
things we knew the best.

We address the book to the general mathematical audience. We tried
to keep the book on the elementary level. We hope that it is available
even to students after some basic courses in mathematics.

In many proofs it is very important to keep track of relative position
of the points under consideration and to see where they are mapped.
Sometimes we provided appropriate (we hope) figures. If there are no
such figures, we advise the reader to make his/her own ones when reading
the proofs.

We would like to explain the main interdependences between various
sections of this book. The book is divided into four chapters: Prelimi-
naries, Interval maps, Circle maps and Entropy. The material from the
Preliminaries Chapter is extensively used in the Interval and Circle Chap-
ters.

The chapter on interval maps is organized essentially in a linear way:
each section uses the previous ones.

The situation for the chapter on circle maps is more complicated.
The easiest way to explain the relations between Sections 1 – 11 of this
chapter is by means of the diagram shown in the figure on the next page.
Moreover, the results of Section 2.1 are used in Sections 6, 7 and 9 and the
results of Section 2.2 in Sections 6, 7 and 10 of the Circle chapter. This
chapter contains also an appendix, which should be treated as a large
small print. To understand it, one needs the whole theory developed in
the Interval and Circle chapters.

The chapter on entropy is organized again essentially in a linear way,
except that Sections 4 and 5 are independent on each other. The whole
Interval chapter intervenes in Section 4 and the whole Circle chapter in
Sections 7 and 8.

A reader interested in books presenting different approaches to one-
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The relations between Sections 1 – 11 of the Circle chapter.

dimensional dynamics may wish to read for instance [60], [107], [118],
[269], [274], [275], [289], [290] or [314].
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