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Introduction
In this work, we study analytic vector fields X in R3 with associated differential system in the following

form:
ẋ = y + P (x, y, z),
ẏ = Q(x, y, z),
ż = −λz + R(x, y, z),

(1)

where λ 6= 0 and P,Q,R are analytic functions and j1P (0) = j1Q(0) = j1R(0) = 0. For such systems, by
the Center Manifold Theorem, there exists an invariant bidimensional Cr-manifold tangent to the xy-plane
at the origin for every r > 1.

The restriction of this system to a center manifold has a nilpotent singular point at the origin. Henceforth we
say that a three-dimensional analytical vector field has a nilpotent singular point if its associated differential
system can be written as (1).

We study the formal integrability and the center problem for those types of singular points in the mon-
odromic case. Our approach does not require polynomial approximations of the Center Manifold in order to
study the center problem. We conclude the work solving the Nilpotent Center Problem for the Generalized
Lorenz system.

Monodromy Criterion

Theorem 1 (Cr-Andreev’s Theorem) Let X be the vector field associated to the Cr-system, r > 3,
given by

ẋ = y + X2(x, y),
ẏ = Y2(x, y),

(2)

where X2, Y2 ∈ Cr, j1X2(0) = j1Y2(0) = 0 and such that the origin is an isolated singular point. Let
y = F (x) be the solution of the equation y + X2(x, y) = 0 through (0, 0) and consider f (x) = Y2(x, F (x))
and Φ(x) = divX|(x,F (x)). We can write

f (x) = axα + O(xα+1),

Φ(x) = bxβ + O(xβ+1).

for α < r. Suppose that a 6= 0, then the origin is monodromic if and only if a < 0, α = 2n − 1 and one of
the following conditions holds:

i) β > n− 1 or jrΦ(0) ≡ 0;

ii) β = n− 1 and b2 + 4an < 0;

The positive integer n in the statements of Theorem 1 plays an important role in the study of nilpotent
monodromic singular points. So we define the Andreev number of a nilpotent singular point by the number
n in function f (x) = ax2n−1 + O(x2n). The Andreev number is invariant by analytical and formal orbital
equivalence, i.e. via analytical and formal diffeomorphisms and time rescalings [1].

Consider the following representation of analytic system (1):

ẋ = y +
∑

j+k+l>2
ajklx

jykzl,

ẏ =
∑

j+k+l>2
bjklx

jykzl,

ż = −λz +
∑

j+k+l>2
cjklx

jykzl.

(3)

Proposition 1 The origin is a nilpotent monodromic singular point with Andreev number 2 on a center
manifold of system (3) if and only if b200 = 0 and

b101c200

λ
< −(2a200 − b110)2

8
− b300. (4)

Moreover, if 2a200 + b110 6= 0, the restricted system satisfies the monodromy condition β = n− 1 in Theorem
1.

Proposition 2 For Cr planar systems having an isolated monodromic nilpotent singular point at the origin,
with Andreev number n such that 2n − 1 < r, the monodromy conditions (i) and (ii) in Theorem 1 are
invariant by local diffeomorphisms.

Belitskii Formal Normal Form
We first look at the Normal Form theory to search the most practical normal forms for system (1). Using
Theorem 5.1 in [2] we obtain the following result:

Theorem 2 (Nilpotent Normal Form in R3) For system (1) having a nilpotent singular point at the
origin, there exist a formal change of variables that transforms it into the formal normal form

ẋ = y + xP1(x),
ẏ = Q2(x) + yP1(x),
ż = −λz + zR1(x).

(5)

for which P1(0) = j1Q2(0) = R1(0) = 0.

We were not able to prove that the normal form (5) is analytic, i.e. that the series P1, Q2 and R1 are
convergent. That does not mean that this normal form is not useful. We remark that the above normal form
has z = 0 as an invariant surface which is a center manifold and the first two components are decoupled from
the third.

The Belitskii normal form for planar systems having a nilpotent singular point is

ẋ = y + xP1(x),
ẏ = Q2(x) + yP1(x),

(6)

where j1Q2(0) = P1(0) = 0, which is very similar to its three-dimensional counterpart.

Formal Integrability

Theorem 3 Consider a vector field X associated to system (1) having a nilpotent singular point. Then there
exists a formal series H(x, y, z) = y2 +

∑
n>3Hn(x, y, z) such that XH =

∑
n>4 ωnx

n.

Theorem 4 Let X be the vector field associated to system (1) having a nilpotent singular point and H be
a formal series as in Theorem 3. If there exists n ∈ N such that j2nXH(0) = ω2nx

2n with ω2n 6= 0, then the
origin cannot be a center on the center manifold.

Lemma 1 If H is a formal first integral for the normal form (5), then
∂H

∂z
≡ 0, that is H = H(x, y).

The previous lemma lets us conclude that formal integrability of the normal form (5) is essentially formal
integrability of the planar normal form (6). Hence, we proceed to study the formal integrability of the formal
system (6).

One of the consequences of Lemma 1 is that if system (1) is formally integrable, then it has a formal first
integral H such that j2H(0) = y2. In fact, since (1) is transformed into (5) via near-identity changes of
variables and the formal integrability of system (1) is equivalent to the formal integrability of system (5), it
is enough to verify this statement for system (6). But this is a known result [3]. Therefore, the quantities ωn
in Theorem 3 present obstructions for the system (1) to be analytically or formally integrable. For integrable
systems, the monodromic singular point must be a center, since in this case the restricted system is also
integrable. However not all nilpotent centers are formally integrable. For instance, consider the following
system:

ẋ = y + x2,

ẏ = −x3,
ż = −λz.

(7)

which has z = 0 as a center manifold and its restriction is a time-reversible system which implies that the
origin is a center on the center manifold. If we try to construct a formal first integral H(x, y, z) for system we
obtatin ω5 = 2. Note that the obstruction is a coefficient of odd power of x in XH . If it was an even power,
we would not have a nilpotent center.

Lemma 2 Consider system (6) having a monodromic singular point satisfying monodromy condition β =
n− 1 in Theorem 1. Then it is not formally integrable.

Theorem 5 Consider system (1) having a monodromic singular point such that its restriction to a center
manifold satisfies monodromy condition β = n− 1 in Theorem 1. Then it cannot admit formal first integral.

Theorem 6 Suppose that the origin of system (1) is monodromic with odd Andreev number n and satisfies
the monodromy condition β = n− 1. Then the origin cannot be a center on a center manifold.

Theorem 7 Consider system (5) having a monodromic singular point. If it admits formal first integral H ,
then either P1(x) ≡ 0 or m = 2sn− 1 for some s ∈ N.

Generalized Lorenz system
The Generalized Lorenz system is one of the most studied three-dimensional systems in the literature since its
dynamics are very rich. Among the particular cases of the Generalized Lorenz systems are the Lü and Chen
systems. Its expression is given by

ẋ = a(y − x),
ẏ = bx + cy − xz,
ż = dz + xy.

(8)

We consider ad 6= 0 for the singular points of system (8) to be isolated. For the origin to be a nilpotent
singular point, we must have b + c = 0 and c = a. By means of the coordinate change x̄ = y, ȳ = a(y − x),
z̄ = z, dropping the bars, system (8) becomes

ẋ = y − xz + 1
ayz,

ẏ = −axz + yz,

ż = dz + x2 − 1
axy.

(9)

Theorem 4 is powerful enough to solve the Nilpotent Center Problem for the above system. We compute
the quantities ωn (Theorem 3) for system (9) and obtain the first non-zero one:

ω6 = −2 a (2 a + d)

3d3
.

Thus, by Theorem 4, the origin can only be a nilpotent center on a center manifold if d = −2a. Under
this condition, by Proposition 1, the origin is monodromic with Andreev number 2. Moreover, it satisfies
monodromy condition β > n− 1 from Theorem 1.

For d = −2a, the function V (x, y, z) = x2− 2xy
a + y2

a2
− 2az defines an invariant surface V ≡ 0 for (9) which

is tangent to the xy-plane, thus, it is a center manifold for system (9). Moreover, the restriction of the system
to this center manifold is a Hamiltonian system. Thus, the origin is a nilpotent center on a center manifold.
We conclude:

Theorem 8 The origin of the Generalized Lorenz system (8) is a nilpotent center on a center manifold if and
only if b = −a, c = a, d = −2a.
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[8] E. Stróżyna and H. Żo ladek, The analytic and formal normal form for the nilpotent singular-
ity, J. Differential Equations, 179 (2002), pp. 479-537.

Financial support
The present poster was supported by São Paulo Research Foundation (FAPESP) grant 21/14450-4.


