Ulam-Hyers stability and exponential dichotomy

Adriana Buică Universitatea Babeș-Bolyai, Cluj-Napoca, România

AQTDE2023 Port de Soller, February 7

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

	x'=A(t)x	Linear equations	
_			
Content			

1 Introduction

- 2 Finite dimensional linear systems
- 3 Linear equations
- 4 Nonlinear equations

(日) 《聞》 《聞》 《聞》 《日)

Introduction	x'=A(t)x	Linear equations	

2 Finite dimensional linear systems

3 Linear equations

4 Nonlinear equations

・ロ・・値・・曲・・曲・・目・ ひゃつ

Ulam 1940 and Hyers 1941

Ulam-Hyers stability of a given equation is its property of having a solution sufficiently near each approximate solution.

Stan Ulam proposed in 1940 in a talk at the University of Wisconsin to study this type of stability for the linear functional equation

$$f(x+y)=f(x)+f(y),$$

where the unknown f is a map between Banach spaces. A positive answer was given by D. H. Hyers one year later in

D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222-224.

Definitions for linear ODEs

Let $A \in C(\mathbb{R}, \mathcal{L}(\mathbb{C}^n))$. We say that

x' = A(t)x

is Ulam-Hyers stable when there exists a constant m > 0 such that, for any $\varepsilon > 0$ and any $\varphi \in C^1(\mathbb{R}, \mathbb{C}^n)$ with

$$|arphi'(t)-{\it A}(t)arphi(t)|\leq arepsilon, \quad t\in \mathbb{R},$$

there exists $\psi \in C^1(\mathbb{R}, \mathbb{C}^n)$ a solution of x' = A(t)x, such that $(\varphi - \psi) \in C_b(\mathbb{R}, \mathbb{C}^n)$ and

$$|\varphi - \psi|_{\infty} \leq m\varepsilon.$$

We say that the equation x' = A(t)x is Ulam-Hyers stable with uniqueness when, for a given φ as above, there exists a unique ψ_{φ}

Definitions for linear ODEs

Let $a_1,\ldots,a_n\in C(\mathbb{R},\mathbb{C}).$ We say that

$$x^{(n)} + a_1(t)x^{(n-1)} + \ldots + a_n(t)x = 0$$

is Ulam-Hyers stable on the time interval \mathbb{R} if there exists m > 0 such that, for any $\varepsilon > 0$, and any $\varphi \in C^n(\mathbb{R}, \mathbb{C})$ for which

$$|arphi^{(n)}(t)+\mathsf{a}_1(t)arphi^{(n-1)}(t)+\ldots+\mathsf{a}_n(t)arphi(t)|\leqarepsilon,\quad t\in\mathbb{R},$$

there exists $\psi \in C^n(\mathbb{R}, \mathbb{C})$ solution of the equation such that $(\varphi - \psi) \in C_b(\mathbb{R}, \mathbb{C}^n)$ and

$$|\varphi - \psi|_{\infty} \leq m\varepsilon.$$

We say that the equation x' = A(t)x is Ulam-Hyers stable with uniqueness when, for a given φ as above, there exists a unique ψ_{φ}

Let $\lambda \in \mathbb{R}$ and $x' = \lambda x$.

Claudi Alsina, Roman Ger, On some inequalities and stability results related to the exponential function, Journal of Inequalities and Applications, 2 (1998), 373-380.

Theorem

If $\lambda = 0$ then x' = 0 is not UH-stable. If $\lambda \neq 0$ then $x' = \lambda x$ is UH-stable with uniqueness and the best constant is $m = \frac{1}{|\lambda|}$.

$$\lambda = 0$$
: $\varphi(t) = \varepsilon t + c_1$, $\psi(t) = c_2$ implies
 $\varphi(t) - \psi(t) = \varepsilon t + c_1 - c_2$.

$x' = \lambda x$ with $\lambda \neq 0$

For any $g \in C_b(\mathbb{R})$ there exists a unique $u \in C_b(\mathbb{R})$ solution of

$$u'-\lambda u=g(t).$$

Moreover, this function is

$$u(t) = e^{\lambda t} \int\limits_{\mathrm{sgn}(\lambda)\infty}^t g(s) e^{-\lambda s} ds$$

and

$$|u|_{\infty} \leq \frac{1}{|\lambda|}|g|_{\infty}.$$

Let φ be an ε -solution, let $g(t) = \varphi'(t) - \lambda \varphi(t)$. Then $|g|_{\infty} \leq \varepsilon$. Take $\psi = u - \varphi$.

x'=A(t)x	Linear equations	

2 Finite dimensional linear systems

3 Linear equations

4 Nonlinear equations

・ロ・・値・・曲・・曲・・目・ ひゃつ

We say that the equation x' = A(t)x has property (M) when x' = A(t)x + g(t) has a bounded solution for any $g \in C_b(\mathbb{R}, \mathbb{C}^n)$. We say that the equation x' = A(t)x has property (M) with uniqueness when the bounded solution is unique.

Theorem

x' = A(t)x is Ulam-Hyers stable (with uniqueness) if and only if x' = A(t)x has property (M) (with uniqueness).

	x'=A(t)x	Linear equations	
Proof			

First assume that x' = A(t)x is Ulam-Hyers stable.

Let g be a bounded function and φ be a solution of x' = A(t)x + g.

Then φ is an $|g|_{\infty}$ -solution of x' = A(t)x.

We have that $(\varphi - \psi)$ is a bounded solution of x' = A(t)x + g.

	x'=A(t)x	Linear equations	
Proof			
11001			

Now assume that x' = A(t)x has property (M).

Denote with R_1 the set of initial values $\eta \in \mathbb{C}^n$, for which the solution of the IVP x' = A(t)x, $x(0) = \eta$ is bounded.

Additionally let R_2 be the supplementary space of R_1 , i.e., $\mathbb{C}^n = R_1 \oplus R_2$.

A theorem in [W.A. Coppel, Stability and asymptotic behavior of differential equations, Heath, 1965] states that there exists m > 0, and for each bounded g there exists a unique bounded solution u of X' = A(t)X + g with $u(0) \in R_2$. Moreover, $|u|_{\infty} \leq m|g|_{\infty}$. From here the UH stability of X' = A(t)X is obtained.

3

A practical result

Lemma

Let the matrix Q(t) be such that Q(t) is invertible for any $t \in \mathbb{R}$ and both Q and Q^{-1} are bounded on \mathbb{R} . Consider y' = B(t)yobtained from x' = A(t)x by the change of variable y = Q(t)x. Then we have that x' = A(t)x is UH stable (with uniqueness) if and only if y' = B(t)y is UH stable (with uniqueness).

Remark. If Q(t) is periodic, then both Q and Q^{-1} are bounded on \mathbb{R} .

Linear systems with constant coefficients

Theorem

If $Re(\lambda) \neq 0$ for each $\lambda \in \sigma(A)$ then x' = Ax has property (M) with uniqueness. Otherwise, x' = Ax does not have property (M).

Proof. It is possible to consider only the case when A is a real Jordan block. Let λ be its eigenvalue. First assume that $Re(\lambda) < 0$. Then there exist $M, \omega > 0$ such that

$$||e^{tA}|| \leq Me^{-\omega t}, \quad t \in [0,\infty).$$

For each g bounded the unique bounded solution of X' = Ax + g is

$$u(t) = \int_{-\infty}^{t} e^{(t-s)A}g(s)ds.$$

Moreover, we have

$$|u|_{\infty} \leq \frac{M}{\omega}|g|_{\infty}.$$

	x'=A(t)x	Linear equations	
Droot			

Assume that $Re(\lambda) = 0$.

TOOL

When $\lambda = 0$, due to the fact that A is a Jordan block, one of the equations of the system X' = AX has the form x' = 0. We choose $g \in C_b(\mathbb{R}, \mathbb{R}^n)$ such that the corresponding equation of the system u' = Au + g(t) is x' = 1. Then any solution of u' = Au + g(t) must be unbounded.

When $\lambda = \pm i\beta$, two equations of the system X' = AX must be of the form $x' = -\beta y$, $y' = \beta x$. We have that any solution of the system $x' = -\beta y$, $y' = \beta x + \cos(\beta t)$ is unbounded.

Linear systems with periodic coefficients

Theorem

If each of the characteristic multipliers of the periodic system x' = A(t)x is not on the unit circle then x' = A(t)x has property (M) with uniqueness. Otherwise x' = A(t)x does not have property (M).

Proof. By Floquet theory, there exist Q(t) a periodic matrix and R a constant matrix such that the linear change of variables x = Q(t)y gives y' = Ry.

Moreover, the condition on the characteristic multipliers of x' = A(t)x is equivalent to $Re(\lambda) \neq 0$ for each $\lambda \in \sigma(R)$.

Uniform exponential dichotomy

Let E(t) be the principal matrix solution of x' = A(t)x and

$$U(heta, au) = E(heta)E(au)^{-1}.$$

We say that x' = A(t)x admits a uniform exponential dichotomy on \mathbb{R} if there exists a family of linear bounded projectors P(t) for $t \in \mathbb{R}$ with $P(\theta)U(\theta, \tau) = U(\theta, \tau)P(t)$ for $\theta \ge \tau$, and there exists $M, \omega > 0$ such that, for each $\theta \ge \tau$,

 $||U(\theta,\tau)P(\tau)|| \leq Me^{-\omega(\theta-\tau)}$ and $||U(\theta,\tau)^{-1}(I-P(\theta))|| \leq Me^{-\omega(\theta-\tau)}.$

I. Assume that $Re(\lambda) \neq 0$ for each $\lambda \in \sigma(A)$. Then x' = Ax admits a uniform exponential dichotomy.

II. Assume that each of the characteristic multipliers of the periodic system x' = A(t)x is not on the unit circle. Then x' = A(t)x admits a uniform exponential dichotomy.

Uniform exponential dichotomy and property (M)

Theorem (Coppel)

Assume that the system x' = A(t)x has bounded coefficients. We have that x' = A(t)x admits a uniform exponential dichotomy if and only if it has property (M) with uniqueness.

Corollary

Assume that the system x' = A(t)x has bounded coefficients. We have that x' = A(t)x is Ulam-Hyers stable with uniqueness if and only if it admits a uniform exponential dichotomy.

Nonuniqueness

Theorem

Assume that X' = A(t)X has property (M) and that it has nonnull bounded solutions. Then $\lim_{t\to\pm\infty} t^k v(t) = 0$ for any $k \in \mathbb{N}$ and any bounded solution v of X' = A(t)X.

Proof. There exists a sequence of bounded functions $(u_k)_{k\geq 0}$ defined by

$$u_0 = v, \quad u'_{k+1} = A(t)u_{k+1} + u_k \quad k \ge 0.$$

Now define a sequence of functions $(v_k)_{k\geq 0}$ explicitly by $v_0 = v$ and

$$v_{k} = u_{k} + \sum_{j=1}^{k-1} (-1)^{j} \frac{t^{j}}{j!} u_{k-j} + (-1)^{k} \frac{t^{k}}{k!} v.$$

3

	x'=A(t)×	Linear equations	
5			
Proof			

By direct computations we get that, for each $k \ge 0$, v_k is a solution of X' = A(t)X.

Thus the n + 1 functions v, v_1 , ..., v_{n-1} , v_{n+j} are linearly dependent for each $j \ge 0$. Then there are constants c_0 , c_1 , ..., c_{n-1} , c_n such that

$$c_0v + c_1v_1 + \ldots + c_{n-1}v_{n-1} + c_nv_{n+j} = 0,$$

where

$$v_k = u_k + \sum_{j=1}^{k-1} (-1)^j \frac{t^j}{j!} u_{k-j} + (-1)^k \frac{t^k}{k!} v.$$

・ロト ・同ト ・ヨト ・ヨト

3

1 Introduction

2 Finite dimensional linear systems

3 Linear equations

Linear equations with constant coefficients

T. Miura, S. Miyajima, S.E. Takahasi, Hyers-Ulam stability of linear differential operator with constant coefficients, Math. Nachr. 258 (2003) 90-96.

Theorem

The linear equation with constant coefficients of arbitrary order is Ulam-Hyers stable on \mathbb{R} if and only if its characteristic polynomial has only roots with $\Re(\lambda) \neq 0$.

 $x^{(n)} + a_1(t)x^{(n-1)} + \cdots + a_n(t)x = 0$ and its equivalent system X' = A(t)X with $X = (x, x', \dots, x^{(n-1)})$.

Bing Xu, Janusz Brzdek, and Weinian Zhang, Fixed point results and the Hyers-Ulam stability of linear equations of higher orders, Pacific Journal of Mathematics, 273(2):483498, 2015.

Linear equations with periodic coefficients

$$Lx = x^{(n)} + a_1(t)x^{(n-1)} + \cdots + a_n(t)x.$$

Theorem

The linear equation with periodic coefficients Lx = 0 is Ulam-Hyers stable if and only if its equivalent system X' = A(t)Xwith $X = (x, x', ..., x^{(n-1)})$ is Ulam-Hyers stable.

Proof.

I. If the corresponding system X' = A(t)X is Ulam-Hyers stable then the equation is Ulam-Hyers stable.

II. Now consider that the equation is Ulam-Hyers stable. Then for any bounded g there exists a bounded solution of Lx = g.

Assume, by contradiction that the system is not Ulam-Hyers stable. Our aim is to construct a g such that any solution of Lx = g is unbounded.

We have that the linear system has a characteristic multiplier on the unit circle. Then $\lambda_1 = i\beta_1$ is a characteristic exponent, whose characteristic multiplier has modulus one. There exists a periodic function f(t) such that

$$q(t)=f(t)e^{i\beta_1}$$

satisfies Lq = 0. Of course, q is bounded.

Since the mappings $q, tq, \ldots, t^{n+1}q$ are linearly independent, there is a smallest $\mu \ge 1$ such that $L(t^{\mu}q) \ne 0$, hence by definition

$$L(q) = L(tq) = \ldots = L(t^{\mu-1}q) = 0.$$

Now let us define the differential operators

$$\mathcal{L}_0 = L, \quad \mathcal{L}_i(x) = \sum_{k=i}^n (n-k+1)\cdots(n-k+i)a_{k-i}x^{(n-k)}, \quad i = \overline{1,n}.$$

Define

$$g = \mathcal{L}_{\mu}(q).$$

Looking at the expression of \mathcal{L}_{μ} we can see that $\mathcal{L}_{\mu}(q)$ is bounded, since all derivatives of q are bounded, and so are the coefficients of \mathcal{L}_{μ} . Therefore $g \in C_b(\mathbb{R}, \mathbb{C})$. We showed that

$$g = \mathcal{L}_{\mu}(q) = L(t^{\mu}q).$$

Hence any solution of L(x) = g is of the form $t^{\mu}qx_0 + \tilde{x}(t)$, where \tilde{x} is a solution of L(x) = 0. Then we showed that $t^{\mu}qx_0 + \tilde{x}$ is unbounded 1 Introduction

2 Finite dimensional linear systems

3 Linear equations

Perturbations with small Lipschitz constant

Theorem

Let x' = A(t)x be uniformly exponentially dichotomic and f(t,x) be globally Lipschitz with respect to x, with a sufficiently small Lipschitz constant. Then x' = A(t)x + f(t,x) is Ulam-Hyers stable with uniqueness.

Proof. Use the Banach contractions fixed point theorem.

Johanna D. Garcia-Saldana, Armengol Gasull, A theoretical basis for the Harmonic Balance Method, J. Differential Equations, 254 (2013), 67-80.

Theorem

Let $\varphi(t)$ be an approximate *T*-periodic solution of the *T*-periodic equation x' = f(t, x). Assume that it is "non-critical". Then there exists a *T*-periodic solution of x' = f(t, x), unique in a given region, and sufficiently close to φ .

(日) (同) (三) (三)

э

A.B., Ulam-Hyers stability and exponentially stable evolution equations in Banach spaces, Carpathian Journal of Mathematics, 37 (2021).

A.B. and György Tőtős, Characterization of Ulam-Hyers stability of linear differential equations with periodic coefficients, submitted.

A.B., Ulam-Hyers stability and exponentially dichotomic evolution equations in Banach spaces, EJQTDE, accepted.

Thank you for your attention.

◆ロ → ◆□ → ◆ 三 → ◆ □ → ● ● ● ● ●