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Introduction

We are interested in quadratic perturbations of the following special reversible
Lotka-Volterra quadratic system

X0 :

{
ẋ =− y − x2 + y2,

ẏ =x − 2xy
(1)
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The double Lotka-Volterra has a double center

This equivalently written in coordinates z = x + iy , z̄ = x − iy as

dz
dt

= iz − z2. (2)

This implies that the vector field X0 has a center at z = 0 and z = i , that is to say at the
origin (x , y) = (0,0) and at (x , y) = (0,1), see fig.1. The period of the orbits is

T =

∫
dt =

∮
dz

iz − z2 = 2π

hence the two centers are isochronous (the orbits have a constant period).
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Main result

We are interested in the limit cycles which an arbitrary quadratic deformation of (1) can
have. The limit cycles on a finite distance from the origin form two nests, containing either
the focus close to (0,0), or the focus close to (0,1). We denote their number by i and j .
The main result of the paper is easy to formulate: the possible distributions (i , j) of limit
cycles are those, for which i + j ≤ 2.
Although the above result is simple, it hides several difficulties, which were not resolved
until recently. It illustrates some recent developments of the bifurcation theory of planar
vector fields of infinite co-dimension.
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First integral

The system (1) has, as suggested by (2), a first integral

H =
x2 + y2

2y − 1
=

x2 + (y − 1)2

2y − 1
+ 1 (3)

It induces a polynomial foliation on R2 (or C2) defined by

(1− 2y)2dH = 0. (4)
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Perturbation setting

An arbitrary quadratic perturbation of (4) or (1), can be written in one of the following
alternative forms

1
2

(1− 2y)2dH +
∑

0≤i,j≤2

(aijx iy jdy + bijx iy jdx) = 0 (5)

or

Xa,b :


ẋ =− y − x2 + y2 +

∑
0≤i,j≤2

aijx iy j ,

ẏ = x − 2xy −
∑

0≤i,j≤2

bijx iy j
(6)
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Perturbation setting in complex variables

In coordinates z = x + iy , z̄ = x − iy , and up to an affine transformation of R2 and a
scaling of time, each of the above systems can be written in the following normal form

ż = (λ1 + i)z + Az2 + Bzz̄ + Cz̄2,B,C ∈ C, λ1 ∈ R (7)

where

A = −1, B = λ2 + iλ3,C = λ4 + iλ5, λi ∈ R. (8)

and λ1, λ2, . . . , λ5 are small real constants.
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Complex perturbation setting

We obtain finally the vector field

Xλ :

{
ẋ =− y − x2 + y2 + λ1x + λ2(x2 + y2) + λ4(x2 − y2) + 2λ5xy ,

ẏ =x − 2xy + λ1y + λ3(x2 + y2) + λ5(x2 − y2)− 2λ4xy .
(9)

to be studied in this talk.
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Change of parameters

Thus, to obtain from (6), the normal form (9), we have to substitute

a10 = λ1, b01 =− λ1

a20 = λ2 + λ4, b20 =− λ3 − λ5

a02 = λ2 − λ4, b02 =− λ3 + λ5

a11 = 2λ5, b11 =2λ4

and a00 = b00 = a01 = b10 = 0.
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Final form

The foliation underlying the vector field Xλ takes the form

ω = 1
(1−2y)2

∑
0≤i,j≤2(aijx iy jdy + bijx iy jdx) =

∑5
i=1 λiωi

ω1 = xdy−ydx
(2y−1)2 , ω2 = (x2+y2)dy

(2y−1)2 , ω3 = − x2+y2

(2y−1)2 dx

ω4 = (x2−y2)dy+2xydx
(2y−1)2 , ω5 = 2xydy−(x2−y2)dx

(2y−1)2 .
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Poincaré first return map and the Bautin ideals

Let P(h) be the Poincaré first return map associated to one of the foci of (6), which are
close to (0,0) and (0,1) for aij ,bij sufficiently small. Here h is as usual the restriction of the
first integral H of the non-perturbed system on a transversal open segment through the
focus. It is easily seen that P(h) is analytic both in h and the parameters aij ,bij , provided
that the deformation is small and h is close to the critical value of H. Expanding the
displacement map

P(h)− h

in a power series in h

P(h)− h =
∞∑

k=0

pk (λ)hk

we consider the ideal B =< pk (λ) >⊂ R{x , y} generated by the coefficients of hk . The
fundamental fact about this Noetherian ideal is, that it is polynomially generated.
The main advantage of the form (7) is that its Bautin ideal is known and relatively simple,
which is not the case of (6). For this reason the forms (7) and (9) will be used from now on.
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Pair of Bautin ideals

We denote B1,B2 the local Bautin ideals associated to (0,0) and (0,1), localised at λ = 0.
Our first result is the explicit form of the generators of B1,B2 in the parameter space
R{λ1, . . . , λ6}. It follows from this result, that the irreducible algebraic set of quadratic
systems of Lotka-Volterra type L(1,1,1), has a self-intersection at the "point" X0. The two
local branches of L(1,1,1) near the point X0 are interchanged by the involution on the
parameter space, induced by the affine involution z 7→ i − z.
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The pair of Bautin ideals

Theorem

The vector field Xλ has, for small parameters λi , two foci close to (0,0) and (0,1). The
respective Bautin ideals B1,B2 are given by

B1 =< λ1, λ3, λ2λ5 > (10)
B2 =< λ1 + λ3 + λ1λ2, λ5, λ3λ4 > . (11)

The zero locus of B1 has two irreducible components corresponding to systems or
reversible or Lotka-Volterra type :

λ1 = λ3 = λ5 = 0 (reversible component) (12)
λ1 = λ2 = λ3 = 0 (Lotka-Volterra component) (13)

with a similar structure of the isomorphic zero locus of B2

λ1 = λ3 = λ5 = 0 (reversible component) (14)
λ1 + λ3 + λ1λ2 = λ4 = λ5 = 0 (Lotka-Volterra component) (15)
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First part of the proof of the theorem

The proof goes back to Dulac (1908). Indeed, following Zoladek and Iliev we deduce that
B1 is generated by λ1 and the focal values v3, v5, v7 where

v3 = 2πImAB (16)

v5 =
2
3

Im[(2A + B̄)(A− 2B̄)B̄C] (17)

v7 =
5
4

(|B|2 − |C|2)Im[(2A + B̄)B̄2C]. (18)

According to (8) A = −1 and v3 = −2πλ3. Assuming that λ3 = 0 we have

v5 =
2
3

Im[(−2 + λ2)(−1− 2λ2)λ2(λ4 + iλ5)] (19)

=
2
3

(−2 + λ2)(−1− 2λ2)λ2λ5 (20)

and therefore locally < v3, v5 >=< λ3, λ2λ5 > and v7 is generated by v3, v5, which proves
(10).
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Second part of the proof

The proof of (11) will be done in two steps.
1 First, we prove that the center set of the second center (the variety of the ideal B2) is

defined by (14), (15). For this, we show that when the vector field satisfies (14), (15),
then it has a first integral analytic near (0,1) and hence has a center.

2 Second, we show that the ideal B2 is radical. For this we use the information obtained
from the computation of the first and the second Melnikov functions, and a version of
Nakayama lemma, as suggested by Briskin-Roytfarf-Yomdin.
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The zero set of the ideal B2

In what follows we assume that λ5 = λ4 = 0. The equation (7) takes the form

ż = (λ1 + i)z − z2 + Bzz̄ = z(λ1 + i + Bz̄) (21)

where B = λ2 + iλ3 ∈ C and λ1, λ2, λ3 ∈ R. The above equation can be eventually
integrated as follows. Consider the underlying foliation defined by

(1− iλ1 + iz − iBz̄)zdz̄ + (1 + iλ1 − i z̄ + i B̄z)z̄dz = 0. (22)

It is integrable if and only if it has at least three invariant lines intersecting at singular
points of the foliation.



Perturbation Theory to any order and Hilbert’s 16th problem on period annuli

The pair of Bautin ideals

The zero set is a center
Indeed, the following two lines are obviously invariant

z = x + iy = 0, z̄ = x − iy = 0

and let the third one be

αz + ᾱz̄ + 1 = 0, α ∈ C.

This implies on its turn an ansatz for the first integral as follows :

H = z1+iλ1 z̄1−iλ1 (αz + ᾱz̄ + 1)β , β ∈ R.

The polynomial foliation d log H = 0 is

(1 + iλ1)
dz
z

+ (1− iλ1)
dz̄
z̄

+ β
d(αz + ᾱz̄ + 1)

αz + ᾱz̄ + 1
= 0

or equivalently

(αz + ᾱz̄ + 1)[(1 + iλ1)z̄dz + (1− iλ1)zdz̄] + βzz̄d(αz + ᾱz̄ + 1) = 0
(1 + iλ1)z̄dz + (1− iλ1)zdz̄

+(1 + iλ1)(αz + ᾱz̄)z̄dz + (1− iλ1)(αz + ᾱz̄)zdz̄ + βzz̄d(αz + ᾱz̄) = 0

and finally

(1− iλ1)zdz̄ + [(1− iλ1)αz2 + (ᾱ(1− iλ1) + βᾱ)zz̄]dz̄

+(1 + iλ1)z̄dz + [(1 + iλ1)αz̄2 + (α(1 + iλ1) + βα)z̄z]dz = 0.
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existence of an integral

Comparing this to (22) we impose

(1− iλ1)α = i
ᾱ(1− iλ1 + β) = −iB

where B = λ2 + iλ3. Therefore

1− iλ1 + β = (λ2 + iλ3)(1 + iλ1)

and finally

1 + β = λ2 − λ1λ3

−λ1 = λ1λ2 + λ3.

The conclusion is that if
λ1 + λ3 + λ1λ2 = 0

then

H =
z1+iλ1 z̄1−iλ1

(αz + ᾱz̄ + 1)1−λ2+λ1λ3
, α =

i − λ1

1 + λ2
1

is a first integral of (21).
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Nakayama lemma

In the ring of convergent power series R{λ} consider the ideal of functions vanishing along
the variety (14), (15). It is obviously generated by

a = λ1 + λ3 + λ1λ2,b = λ5, c = λ3λ4

and at the second step we shall show that

B2 =< a,b, c > .

We examine first the information obtained from the first and the second Melnikov functions
(see the next sections). It follows from (38) that there are elements v2

1 , v
2
2 of the ideal B2

such that

v2
1 (λ) = λ1 + λ3 + . . .

v2
2 (λ) = λ5 + . . .

where the dots replace some analytic series which vanish of order at least two at λ = 0.
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Nakayama lemma

We can write therefore

v2
1 (λ) = a + αc + . . .

v2
2 (λ) = b + βc + . . .

where the dots replace some analytic series which vanish along (14), (15), vanish of order
at least two at λ = 0, and α, β are appropriate constants. We can write finally

v2
1 (λ) = a (1 + O(λ)) + b O(λ) + c (α + O(λ)) (23)

v2
2 (λ) = a O(λ) + b (1 + O(λ)) + c (β + O(λ)). (24)

Similarly, the identity (22) implies that under the condition

λ1 + λ3 = λ5 = 0

there is an element v2
3 of B2 such that

v2
3 (λ) = λ3λ4 + . . .

where the dots replace some analytic series vanishing along (14), (15), and vanish of
order at least three at λ = 0.
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Without the conditions λ1 + λ3 = λ5 = 0, we get

v2
3 (λ) = λ3λ4 + (λ1 + λ3)(γ + O(λ)) + λ5(δ + O(λ)) + ...

where the dots replace some analytic series which vanish of order at least three at λ = 0.
Thus

v2
3 (λ) = c(1 + O(λ)) + a (γ + O(λ)) + b (δ + O(λ)).

and combining with (23), (24) v2
1

v2
2

v2
3

 =

 1 + O(λ) 0 α + O(λ)
0 1 + O(λ) β + O(λ)

γ + O(λ) δ + O(λ) 1 + O(λ)

 a
b
c

 (25)

As the above matrix is invertible for λ close to the origin, then a,b, c belong to B2, which
completes the proof of Theorem 1 .
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Poincaré maps

The vector field Xλ, see (9), defines return maps P1,P2 with associated Bautin ideals

B1 =< v1
1 (λ), v1

2 (λ), v1
3 (λ) >=< λ1, λ3, λ2λ5 > (26)

B2 =< v2
1 (λ), v2

2 (λ), v2
3 (λ) >=< λ1 + λ3 + λ1λ2, λ5, λ3λ4 > . (27)

P1,P2 can be divided in the corresponding ideals (26) and (27) as follows, (see
Françoise-Yomdin).
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The bifurcation functions

P1(h;λ)(h)− h = v1
1 (λ)(M1

1 (h) + O(λ)) + v1
2 (λ)(M1

2 (h) + O(λ))

+ v1
3 (λ)(M1

3 (h) + O(λ))

P2(h;λ)(h)− h = v2
1 (λ)(M2

1 (h) + O(λ)) + v2
2 (λ)(M2

2 (h) + O(λ))

+ v2
3 (λ)(M2

3 (h) + O(λ)).

Definition

The functions (of h)
M1

1 (h),M1
2 (h) and M2

1 (h),M2
2 (h)

are called the first order (or linear) Melnikov functions, associated to the centers at (0,0)
and (0,1). The functions

M1
3 (h) and M2

3 (h)

are called the second order (or non-linear) Melnikov functions, associated to the centers at
(0,0) and (0,1).
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Link with arcs

The terminology is due to J.-P.Françoise-L. Gavrilov-D. Xiao, and it will be justified in what
follows. Given an arc,

ε 7→ λ(ε), ε ∈ (R,0), λ(0) = 0, (28)

we obtain

P1
1 (h;λ(ε))(h)− h = εk1 (c1

1M1
1 (h) + c1

2M1
2 (h) + c1

3M1
3 (h) + O(ε))

P2
1 (h;λ(ε))(h)− h = εk2 (c2

1M2
1 (h) + c2

2M2
2 (h) + c2

3M2
3 (h) + O(ε)).

Note that not all linear combinations

c1
1M1

1 (h) + c1
2M1

2 (h) + c1
3M1

3 (h), c2
1M2

1 (h) + c2
2M2

2 (h) + c2
3M2

3 (h) (29)

of Melnikov functions are admissible.
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Admissible limit cycles

Definition

Let K ⊂ R2 be a compact set. A (i , j) distribution of limit cycles is said to be admissible for
Xλ, if for every ε > 0 there exists λ, such that ‖λ‖ < ε and Xλ has a (i , j) distribution of limit
cycles in K .

Let (i , j) be admissible distribution of limit cycles for Xλ in the compact set K . Then there
exists a germ of analytic arc (28), such that the one-parameter family of vector fields Xλ(ε)
allows a distribution (i , j) limit cycles, for ε close to 0. Therefore to compute the possible
distributions (i , j) of limit cycles we have to compute the number of zeros i and j of each
admissible pair of Melnikov functions (29).
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First Bifurcation functions

In this section we compute, for completeness the first Melnikov functions of Xλ. These
results are classical, see Chicone-Shafer, Li-Llibre, Garijo, Gasull, Jarque,... Here we use
a simple residue calculus, following Françoise-Yang. If we write Xλ in the form (5)

1
2

(1− 2y)2dH + ω = 0 (30)

where

H =
x2 + y2

2y − 1
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First Bifurcation functions and punctures on the Riemann surface

Denote
Γh = {(x , y) ∈ C2 : x2 + y2 = (2y − 1)h, y 6= 1

2
}. (31)

which, for h 6= 0,1, is a four-punctured Riemann sphere, where the punctures are at

(±
√
−1
2

,
1
2

),∞±. (32)

Let

δ(h), δ̃(h) ∈ H1(Γh, ) (33)

be a continuous family of cycles vanishing at the singular points (0,0) and (0,1), when h
tends to h = 0 or h = 1 respectively. These two families of cycles are defined in a
neighbourhood of h = 0 and h = 1 respectively, and hence on the real segment (0,1).
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First Bifurcation functions and Riemann sphere

Definition

The first Melnikov functions M1(λ,h), M̃1(λ,h) associated to the centers (0,0) and (0,1)
respectively, are defined by

M1(λ,h) = 2
∫
δ(h)

ω, M̃1(λ,h) = 2
∫
δ̃(h)

ω.

The functions are analytic on (0,1) and therefore can be computed and compared there.
This is easy, as they are Abelian integrals on a Riemann sphere, so the computation is
reduced to residue calculus.
Following Françoise-Yang, chose an uniformizing variable z : Γ̄h → P1 by the formula

z = x + i(y − h), i =
√
−1. (34)

If we note z̄ = x − i(y − h) (so that z̄ is complex conjugate to z when h ∈ R) we have

Γh = {(z, z̄) ∈ C2 : zz̄ = h(h − 1)}.

The images of the four punctures (32) on the curve (31) under z : Γ̄h → P1 are

z(∞+) =∞, z(∞−) = 0, z(
i
2
,

1
2

) = −i(h − 1), z(− i
2
,

1
2

) = −ih (35)

where i is an appropriate determination of
√
−1.
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The model of four-punctured Riemann sphere

The model of the four-punctured Riemann sphere Γh will be therefore the punctured
complex plane C \ {a,b, c}, where

a = −ih,b = −i(h − 1), c = 0.

α, β, γ, δ, δ̃

We have
lim
h 7→0

a(h) = c, lim
h 7→1

b(h) = c

and it is easy to check that the vanishing cycles δ(h) and δ̃(h) are represented by "small"
simple loops containing a, c for h ∼ 0, and b, c for h ∼ 1, as shown on below.
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The homology classes

It follows that for the homology classes (denoted by the same letters) holds

Figure: The loops α, β, γ, δ and δ̃ for h ∈ (0, 1).

δ = α + γ, δ̃ = β + γ

and hence
1
2

M1(h) =

∫
α(h)

ω +

∫
γ(h)

ω,
1
2

M̃1(h) =

∫
β(h)

ω +

∫
γ(h)

ω.
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Simple residue calculus
The explicit computation of M1 is a simple residue calculus. It was already computed by
Françoise and Yang and we reproduce them below. With the notations (3), (11), (11), (11)
it follows that

M1(λ,h) = − 1
16
π4h(A1

4h − 1
8

+ A0), h < 0

M̃1(λ,h) =
1

16
π4(h − 1)(B1

4h − 1
8

+ B0), h > 1

where

A1 = 16(λ3 + λ1), A0 = 2(λ3 − 3λ1)

B1 = A1, B0 = 2(λ3 + λ1)− 16λ5

which implies

M1(λ,h) = λ1M1
1 (h) + λ3M1

2 (h) = (36)

λ1[−2πh(h − 1)] + λ3[−2πh2], h < 0 (37)

M̃1(λ,h) = (λ1 + λ3)M2
1 (h) + λ5M2

2 (h) = (38)
(λ1 + λ3)[2πh(h − 1)] + λ5[−4π(h − 1)], h > 1. (39)

As expected M1 6= M̃1 which allows to construct at a first order all possible distributions
(i , j) of limit cycles, such that i ≤ 1, j ≤ 1.



Perturbation Theory to any order and Hilbert’s 16th problem on period annuli

Bifurcation functions

Recall of the first order

Denote

δ(h) = {(x , y) ∈ R2 : H(x , y) = h},h ≤ 0

δ̃(h) = {(x , y) ∈ R2 : H(x , y) = h},h ≥ 1

the family of real ovals of the affine algebraic curve Γh ∈ C2. Using the notations (11), (11),
(11) , the following integral formulae for the linear Melnikov functions are well known,
The linear Melnikov functions are given by

1
2

M1
1 (h) =

∫
δ(h)

ω1,
1
2

M1
2 (h) =

∫
δ(h)

ω3

1
2

M2
1 (h) =

∫
δ̃(h)

ω1,
1
2

M2
2 (h) =

∫
δ̃(h)

ω5.
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Proof of the proposition

It is easy to verify that ∫
δ(h)

ω2 =

∫
δ(h)

ω4 =

∫
δ(h)

ω5 = 0∫
δ̃(h)

ω2 =

∫
δ̃(h)

ω4 = 0,
∫
δ̃(h)

ω1 =

∫
δ̃(h)

ω3.

and hence ∫
δ(h)

ω = λ1

∫
δ(h)

ω1 + λ3

∫
δ(h)

ω3∫
δ̃(h)

ω = (λ1 + λ3)

∫
δ̃(h)

ω1 + λ5

∫
δ̃(h)

ω5.
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Gelfand-Leray residue

The second order (nonlinear) Melnikov function is given by the second order in λ
homogeneous piece of the displacement maps P1 − id ,P2 − id . For a differential one-form
on C2 let ω′ be the Gelfand-Leray residue of ω with respect to H defined by the identity

ω′ ∧ dH = dω.

The second order Melnikov function of a deformed foliation dH + εω = 0 is defined by the
following iterated integral of length two (Gavrilov).∫

δ(h)
ωω′

with appropriate choice of the path δ(h). In our case this implies



Perturbation Theory to any order and Hilbert’s 16th problem on period annuli

Bifurcation functions

Second-order Melnikov functions

Proposition

Assume that the linear Melnikov function M1
1 = M1

2 = 0 . Then

1
4

M1
3 (h) =

∫
δ(h)

ω2ω
′
5 + ω5ω

′
2 (40)

Similarly, if M2
1 = M2

2 = 0, then

1
4

M2
3 (h) =

∫
δ̃(h)

(ω3 − ω1)ω′5 + ω5(ω3 − ω1)′ (41)
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Proof

The vanishing of
∫
δ(h) ω implies λ1 = λ3 = 0. The function M1

3 (h) corresponds to the
coefficient λ2λ5 in the iterated integral∫

δ(h)
ωω′, ω =

5∑
i=1

λiωi .

Therefore, assuming in addition that λ4 = 0 we get

∫
δ(h)

ωω′ =

∫
δ(h)

(λ2ω2 + λ5ω5)(λ2ω2 + λ5ω5)′

= λ2λ5

∫
δ(h)

ω2ω
′
5 + ω5ω

′
2

where we used that
∫
δ(h) ω2ω

′
2 =

∫
δ(h) ω5ω

′
5 = 0 (This will be justified latter in the text by

using the shuffle formula). The proof of the formula for M2
3 (h) follows the same lines.
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Analytic computations

Let

H =
x2 + y2

(2y − 1)

be the first integral of X0, see (1). On each level set

Γh = {(x , y) ∈ C2 : H(x , y) = h}

holds
x2 + y2 = h(2y − 1),

x2 + (y − h)2 = h(h − 1).

The real level sets {(x , y) ∈ R2 : H(x , y) = h}, h ∈ R, are therefore circles centered at
(0,h) of radius R =

√
h(h − 1). The critical values of H are h = 0 and h = 1. The two

period annuli are

{(x , y) ∈ R2 : H(x , y) < 0}, {(x , y) ∈ R2 : H(x , y) > 1}.

Note that the symmetry σ : y → 1− y induces σ∗(H) = H − 1.
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Analytic computations

Recall that Γh is a four-punctured Riemann sphere, uniformized by the complex parameter

z = x + i(y − h)

where
x − i(y − h) = R2/z.

Γh is therefore identified with the complex z-plane with three punctures at a,b, c where

a = −ih,b = −i(h − 1), c = 0 and R2 = −ab.

In what follows, as in the preceding section, ω is the differential one-form (11), but under
the condition that ∫

δ(h)
ω = 0

or ∫
δ̃(h)

ω = 0.

The loops δ, δ̃ are represented by circles surrounding a, c or b, c respectively. The
one-form ω is holomorphic on Γh and has poles at z = a,b, c,∞.
Our purpose is to compute the second Melnikov function of the perturbed equation
dH − ω = 0 (the 1/2 factor of H was skipped for convenience).
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Computation of the perturbative part in new coordinates

In the normal form, the perturbative part can be written as:

ω = λ1
xdy−ydx
(2y−1)2 + λ2

(x2+y2)dy
(2y−1)2 − λ3

(x2+y2)dx
(2y−1)2

+λ4
(x2−y2)dy+2xydx

(2y−1)2 + λ5
2xydy−(x2−y2)dx

(2y−1)2 .
(42)

If we assume that M1(h) ≡ 0, then λ1 = λ3 = 0 so

ω = λ2ω2 + λ4ω4 + λ5ω5

= λ2
(x2 + y2)dy

(2y − 1)2 + λ4
(x2 − y2)dy + 2xydx

(2y − 1)2

+ λ5
2xydy − (x2 − y2)dx

(2y − 1)2 .

It is easily verified that

C2 → C2 : (x , y) 7→ (z,h), h = H(x , y))

is a bi-rational transformation of C2. Therefore we can use z,h coordinates to express
dH − ω and compute the corresponding second Melnikov function.
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Expressions in the new coordinates

We have

dx =
(z2 − R2)

2z2 dz +
1
2

2h − 1
z

dh

dy =
1

2iz2 (z2 + R2)dz +
[z − a+b

2 ]

z
dh.

We get by simple substitutions:

x2dy
(2y − 1)2 =

i
8

(z2 − ab)3

[z(z − a)(z − b)]2
dz

− 1
4

(z2 − ab)2(z − a+b
2 )

z[(z − a)(z − b)]2
dh.

y2dy
(2y − 1)2 =− i

8
[(z − a)(z − b) + iz]2(z2 − ab)

[z(z − a)(z − b)]2
dz

+
1
4

[(z − a)(z − b) + iz]2(z − a+b
2 )

z[(z − a)(z − b)]2
dh.
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Expressions in the new coordinates

2xy
(2y − 1)2 dx =− 1

4i
(z2 − ab)(z2 + ab)[(z − a)(z − b) + iz]

[z(z − a)(z − b)]2
dz

− (2h − 1)

4i
(z2 − ab)[(z − a)(z − b) + iz]

z[(z − a)(z − b)2 dh.

2xy
(2y − 1)2 dy =

1
4

(z2 − ab)2[(z − a)(z − b) + iz]

[z(z − a)(z − b)]2
dz

− 1
2i

(z2 − ab)(z − a+b
2 )[(z − a)(z − b) + iz]

z[(z − a)(z − b)]2
dh.

−x2 + y2

(2y − 1)2 dx =
1
8

((z2 − ab)2 + [(z − a)(z − b) + iz]2)(z2 + ab)

[z(z − a)(z − b)]2
dz

+
2h − 1

8
(z2 − ab)2 + [(z − a)(z − b) + iz]2

z[(z − a)(z − b)]2
dh.
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The second-order Melnikov function defined by an iterated integral

From ω = Fdz + ΦdH, we get:

dω = (F ′H − Φ′z)dH∧dz.

The Gelfand-Leray derivative of ω is defined (modulo dH) by

ω′ = (F ′H − Φ′z)dz.

The associated second-order Melnikov function is defined as the iterated integral (of
length two):

M2(h) = −
∫
ωω′. (43)

From previous calculation the only terms which contribute effectively are:

M2(h) = −(
∫
ω2ω

′
5 +

∫
ω5ω

′
2)λ2λ5. (44)

The main result we show here is that such an iterative integral can be computed by
residues. For this purpose, we have first to compute ω2, ω5 and ω′2, ω

′
5 in the coordinates

(z,h) and to determine their partial fraction decompositions.
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Shuffle formula

We recall an important formula (particular case of the shuffle formula for any couple of
one-forms ω0, ω1: ∫

ω0ω1 +
∫
ω1ω0 =

∫
ω0.

∫
ω1. (45)

In particular this yields that if
∫
ω0 = 0 or

∫
ω1 = 0, then∫

ω0ω1 = −
∫
ω1ω0. (46)



Perturbation Theory to any order and Hilbert’s 16th problem on period annuli

Bifurcation functions

Computation of ω2 and its derivatives

We note that:

ω2 =
1
2

hd(ln(2y − 1)) =
hdy

2y − 1
=

x2 + y2

(2y − 1)2 dy , (47)

and thus we get:
ω′2 = dy

2y−1 =

1
2iz2(2y−1) (z2 + R2)dz +

[z− a+b
2 ]

z(2y−1)dh.
(48)
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Computation of ω2 and its derivatives

If we change coordinates (x , y) into (z,h), we obtain:

ω2 = h[
z2 − ab

2z(z − a)(z − b)
dz + i

(z − a+b
2 )

(z − a)(z − b)
dh], (49)

and thus:
ω2 = F2(z,h)dz + φ2(z,h)dh, (50)

with
F2(z,h) = h

2 [− 1
z + 1

z−a + 1
z−b ]

Φ2(z,h) = ih
2 [ 1

z−a + 1
z−b ].

(51)
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Computation of ω2 and its derivatives

We see that: ∫
ω2 =

∫
H=h F2dz = 0. (52)

The shuffle formula implies for instance:∫
ω2ω2 = −

∫
ω2ω2 = 0. (53)

Similar (but more complicated) computation can be done for ω5 and its derivatives
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Computation of −
∫
ω5ω

′
2

We begin by the observation that:

ω′2 =
1
2

[−1
z

+
1

z − a
+

1
z − b

]dz + ...(dH), (54)

and so: ∫
H=h

ω′2 = 0, (55)

hence we can apply the shuffle formula and obtain:

−
∫
ω5ω

′
2 =

∫
ω′2ω5. (56)

This displays:∫
ω′2ω5 =

∫ 1
2 [− 1

z + 1
z−a + 1

z−b ]dzω5 =

− i(h−1)
2

∫
[− 1

z + 1
z−a + 1

z−b ]dz[ 1
z −

1
z−a + 1

z−b ]dz

+ 1
2

∫
h=h[− 1

z + 1
z−a + 1

z−b ]{ 1
2 z + h(h − 1)[ 1

z + 1
z−a ] + (h−1)2

2
1

z−b}dz.
(57)
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Computation of −
∫
ω5ω

′
2

Note that the second expression can be readily computed by residue. The first component
breaks into four pieces that we compute by the shuffle formula:∫

[−1
z

+
1

z − a
]dz[

1
z
− 1

z − a
] = 0, (58)

∫
[

1
z − b

]dz[
1
z
− 1

z − a
]dz =

∫
[−1

z
+

1
z − a

]dz[
1

z − b
]dz, (59)∫

[
1

z − b
]dz[

1
z − b

]dz = 0. (60)

This gives the contribution:

−i(h − 1)[
∫

H=h(− 1
z + 1

z−a )Log(z − b)dz =

−i(h − 1)(2πi)[−Log(−b) + Log(a− b)] =
2π(h − 1)[−Log(−i(1− h)) + Log(−i)] = −2π(h − 1)Log(1− h).

(61)
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Computation of −
∫
ω2ω

′
5

The last component contributes to the sum of residues:

π

2
h − πh(h − 1)

2
+
πh
2
− π

2
(h − 1)2(

1
h − 1

+ 1), (62)

and all together this holds:

−
∫
ω5ω

′
2 = π(2h − h2)− 2π(h − 1)Log(1− h). (63)

Similar computation of −
∫
ω2ω

′
5 can be done.
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Final expression of M1
3 (λ,h)

To conclude we have proved the:

Theorem

The value of M1
3 (λ,h) is:

M1
3 (λ,h) = [π(2h − h2)− 2π(h − 1)Log(1− h) + 2π(h)Log(1− h) + 2πh2]λ2λ5

= 2π[h +
h2

2
+ Log(1− h)]λ2λ5.

Similar computation can be done for

M2
3 (λ,h) = [P(h) + Log(h)]λ3λ4 = [O(1− h)3]λ3λ4.

In the article, this is checked independently by a monodromy analysis of the iterated
integrals.
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Blow up of an ideal
Let C{λ} be the ring of convergent power series at λ = 0, where (λ1, ...λn) ∈ Cn, and

B = (v1, . . . , vN) ⊂ C{λ}

be an ideal with zero set

Z (B) = {λ ∈ (Cn,0) : v1(λ) = v2(λ) = · · · = vN(λ) = 0}

The blowup ΓB ⊂ (Cn,0)× PN−1 of (Cn,0) with center B is the analytic closure of the
graph of the map

Cn \ Z (B)→ PN−1

λ 7→ [v1(λ) : · · · : vN(λ)]

with projection on the first factor

πB : ΓB ⊂ (Cn,0)× PN−1 → (Cn,0).

Here [v1(λ) : · · · : vN(λ)] is the projectivization of (v1(λ), . . . , vN(λ)). The exceptional
divisor

EB = π−1(0) ⊂ PN−1

is therefore a well defined closed algebraic set. The importance of EB lies in the fact that it
is in bijective correspondence with the projectivized set of bifurcation (or Melnikov)
functions, computed in the preceding sections, see J.-P.Françoise-L. Gavrilov-D. Xiao.
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Blow-up of a product of ideals

Suppose that B1,B2 ⊂ C{λ} be two ideals

B1 = (v1
1 , . . . , v

1
N1

)

B2 = (v2
1 , . . . , v

2
N1

)

and consider the direct product

B = B1 × B2 ⊂ C{λ} × C{λ}.

We note that B is also an ideal and consider the corresponding blowup

ΓB ⊂ (Cn,0)× PN1−1 × PN2−1

defined as the analytic closure of the graph of the map

Cn \ Z (B)→ PN1−1 × PN2−1

λ 7→ ([v1
1 (λ) : · · · : v1

N1
(λ)], [v1

1 (λ) : · · · : v1
N2

(λ)])

with corresponding exceptional divisor

EB1×B2 = π−1(0) ⊂ PN1−1 × PN2−1.
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Exceptional divisor EB1×B2

To the end of the present section we compute EB1×B2 in the case when

B1 =< v1
1 (λ), v1

2 (λ), v1
3 (λ) >=< λ1, λ3, λ2λ5 >

B2 =< v2
1 (λ), v2

2 (λ), v2
3 (λ) >=< λ1 + λ3 + λ1λ2, λ5, λ3λ4 > .

It follows with same proof as FGX that

Proposition

The projectivized set of pairs of Melnikov functions computed in the preceding section are
in bijective correspondence with the points on the exceptional divisor EB1×B2 .
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Irreducible components of EB1×B2

The main result of the present section is

Theorem

The exceptional divisor
EB1×B2 ⊂ P2 × P2

has three irreducible components as follows

{([c1
1 : c1

2 : c1
3 ], [c2

1 : c2
2 : c2

3 ]) : c2
1 = c2

3 = 0} (64)

{([c1
1 : c1

2 : c1
3 ], [c2

1 : c2
2 : c2

3 ]) : c1
1 + c1

2 = 0, c1
3 = 0} (65)

{([c1
1 : c1

2 : c1
3 ], [c2

1 : c2
2 : c2

3 ]) : c1
3 = c2

3 = 0}. (66)
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Irreducible components of EB1×B2

A point (P1,P2) ∈ (P2,P2) belongs to EB1×B2 if and only if there is an arc

ε 7→ λ(ε) = (λ1(ε), . . . , λ6(ε)), λ(0) = 0 (67)

such that the vector

([v1
1 (λ(ε)) : v1

2 (λ(ε)) : v1
3 (λ(ε))], [v2

1 (λ(ε)) : v2
2 (λ(ε)) : v2

3 (λ(ε))])

tends to the vector (P1,P2) as ε tends to 0. It is easy to show now that the components
(64),(65), (66) belong to EB1×B2 .
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Irreducible components of EB1×B2

For instance, for (65) we may consider the family of arcs

ε 7→ λ(ε) = (ε, ε2,−ε+ λ0
3ε

2,−λ0
4ε, λ

0
5ε

2)

and then

lim
ε 7→0

([v1
1 (λ(ε)) : v1

2 (λ(ε)) : v1
3 (λ(ε))], [v2

1 (λ(ε)) : v2
2 (λ(ε)) : v2

3 (λ(ε))])

= ([1 : −1 : 0], [λ0
3 : λ0

5 : λ0
4])

The other inclusion are also obvious.
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Irreducible components of EB1×B2

Next, we consider an arbitrary arc (28) and we must show that

lim
ε 7→0

([v1
1 (λ(ε)) : v1

2 (λ(ε)) : v1
3 (λ(ε))], [v2

1 (λ(ε)) : v2
2 (λ(ε)) : v2

3 (λ(ε))])

belongs to one of (64),(65), (66). For this purpose we note that for fixed λ2, λ4, the
generators v j

i of B1,B2 are linear homogeneous in λ1, λ3, λ5.
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Irreducible components of EB1×B2

Therefore we shall consider separately each of the cases

d1 = min
i=1,3,5

di ,d3 = min
i=1,3,5

di ,d5 = min
i=1,3,5

di .

where
λ1 = O(εd1 ), λ3 = O(εd3 ), λ5 = O(εd5 ).

The case d1 = mini=1,3,5 di We put

λ1 = λ0
1ε

d1 + . . . , λ3 = λ0
3ε

d3 + . . . , λ5 = λ0
5ε

d5 + . . .

and hence
lim
ε 7→0

[λ1 : λ3 : λ2λ5] = [λ0
1 : λ0

3 : 0].

If λ1 + λ3 = O(εd1 ) then

lim
ε 7→0

[λ1 + λ3 + λ1λ2 : λ5 : λ3λ4] = [∗, ∗,0]

and therefore the limit is in the set (66). If, however λ1 + λ3 = O(εd̃1 ) where d̃1 > d1,
then

lim
ε 7→0

[λ1 : λ3 : λ2λ5] = [1 : −1 : 0].

and the limit is in the set (65).
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Irreducible components of EB1×B2

The case d3 = mini=1,3,5 di We may suppose in addition that d3 < d1 (otherwise we
are in the preceding case). Then we check immediately that the limit is in the set (66)
The case d5 = mini=1,3,5 di We may suppose in addition that d5 < d1 and d5 < d3
(otherwise we are in one of the preceding two cases). Therefore

lim
ε 7→0

[λ1 + λ3 + λ1λ2 : λ5 : λ3λ4] = [0 : 1 : 0]

and we are in the case (64).
This completes the proof of Theorem 6.
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Distributions of limit cycles

We determine the possible distributions (i , j) of limit cycles of small quadratic deformations
(5) of the quadratic vector field (1) on the finite plane R2. This excludes the limit cycles,
which bifurcate from "infinity".

Definition

We say that the germ of a family of vector fields Xa,b

Xa,b :


ẋ =− y − x2 + y2 +

∑
0≤i,j≤2

aijx iy j ,

ẏ = x − 2xy −
∑

0≤i,j≤2

bijx iy j

has an admissible distribution (i , j) of limit cycles, if there is a sequence (ak ,bk )k in the
parameter space {(a,b)} such that for every sufficiently big R ∈ R the following holds true
: every vector field Xak ,bk has exactly i limit cycles surrounding the equilibrium point near
(0,0), exactly j limit cycles surrounding the equilibrium point near (0,1), and these limit
cycles are contained in the disc {(x , y) ∈ R2 : ‖(x , y‖ < R}.
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Cyclicity

The maximal value of i is therefore the cyclicity Cycl(Π1,Xa,b) of the open period annulus
containing (0,0), the maximal value of j is the cyclicity Cycl(Π2,Xa,b) of the open period
annulus containing (0,1), and finally

max
i,j

i + j = Cycl(R2,Xa,b)

Recall that the cyclicity Cycl(Π,Xa,b) of an open set Π ⊂ R2 with respect to the germ of a
family of vector fields Xa,b is, roughly speaking, the maximal number of limit cycles which
bifurcate from an arbitrary compact set K ⊂ Π when a,b ∼ 0.
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Admissible Distributions

The main result of the paper is

Theorem

The distribution (i , j) of limit cycles is admissible if and only if i + j ≤ 2.

Without loss of generality we replace the germ of families Xa,b by Xλ, see (9). The first
return maps P1,P2 parameterized by the restriction h = H(x , y) of the first integral on a
cross-section to the annulus Π1 or Π2 can be divided in the corresponding ideals (26) and
(27) as follows

P1(h;λ)(h)− h = v1
1 (λ)(M1

1 (h) + O(λ)) + v1
2 (λ)(M1

2 (h) + O(λ))

+ v1
3 (λ)(M1

3 (h) + O(λ))

P2(h;λ)(h)− h = v2
1 (λ)(M2

1 (h) + O(λ)) + v2
2 (λ)(M2

2 (h) + O(λ))

+ v2
3 (λ)(M2

3 (h) + O(λ))

where the Melnikov functions M j
i were computed in the preceding sections.
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Associated arcs

It follows, that if (i , j) is an admissible distribution of limit cycles for Xλ, then there exists a
germ of analytic arc

ε 7→ λ(ε), ε ∈ (R,0), λ(0) = 0

such that the one-parameter family of vector fields Xλ(ε) allows a distribution (i , j) of limit
cycles, for ε close to 0. For such an arc we obtain

P1(h;λ(ε))(h)− h = εk1 (c1
1M1

1 (h) + c1
2M1

2 (h) + c1
3M1

3 (h) + O(ε))

P2(h;λ(ε))(h)− h = εk2 (c2
1M2

1 (h) + c2
2M2

2 (h) + c2
3M2

3 (h) + O(ε))

Therefore to compute the distribution (i , j) of limit cycles we have to compute the number
of zeros i and j of each admissible pair of bifurcation functions

c1
1M1

1 (h) + c1
2M1

2 (h) + c1
3M1

3 (h), c2
1M2

1 (h) + c2
2M2

2 (h) + c2
3M2

3 (h)
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Limit cycles and bifurcation functions

According to section 6 and (36), (38), the bifurcation function associated to the first period
annulus is co-linear to

h[c1
1(h − 1) + c1

2h] + c1
3M1

3 (h)

and the bifurcation function associated to the second annulus is

(h − 1)[c2
1h − 2c2

2 ] + c2
3M2

3 (h).

According to FGX, the admissible pairs of vectors

[c1
1 : c1

2 : c1
3 ], [c2

1 : c2
2 : c2

3 ] ∈ P2

are in one-to-one correspondance to the points on the exceptional divisor

EB1×B2 ⊂ P2 × P2

described in Theorem 6. We consider each of the three irreducible components of EB1×B2

separately.
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Irreducible components of EB1×B2 and limit cycles

In the component (64) we have c2
1 = c2

3 = 0 so the bifurcation function associated to the
second annulus Π2 is co-linear to h − 1. Thus no limit cycles bifurcate from Π2 and from
Π1, the number of limit cycles is given by the number of zeros of
c1

1h2 + c2
1h + c1

3Log(1− h) which is at most 2.
In the component (65) we have c1

1 + c1
2 = 0, c1

3 = 0 and hence the bifurcation function
associated to the first period annulus Π1 is co-linear to h. Thus no limit cycles bifurcate
from Π1 and at most two limit cycles bifurcate from Π2.
In the component (66) we have c1

3 = c2
3 = 0 and hence the bifurcation functions

associated to the period annuli are co-linear to

h[c1
1(h − 1) + c1

2h], (h − 1)[c2
1(h − 1)− 2c2

2 ].

Therefore in each period annulus at most one limit cycle can bifurcate. This completes the
proof.
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Conclusions and Perspectives
The main novelties of this article are:

The explicit computation of the pair of Bautin ideals
The self-intersection of the Lotka-Volterra center set at the double quadratic
Lotka-Volterra system (see the conference of Lubomir Gavrilov at GADEPS)
The proof that we can stop at order two to compute the number of limit cycles born at
infinite order of the perturbation.
Two approaches (analytical and geometrical) to find the second-order Bifurcation
functions.
Provide a new application of the use of the Nash space of arcs and of the main
theorem of FGX.
Note that there are two different arguments used to obtain the maximal number of
limit cycles. One is directly computed from the Bautin ideals and the determination of
the singular fiber of the blow-up of the product of the two Bautin ideals (use of the
FGX theorem). The other uses the bound of the number of zeros of the functions of h,
M i

j (h), j = 1,2,3; i = 1,2).

Although we recall that the methods we have used do not allow to keep track of all the limit
cycles which are born at the boundaries of the period annuli. This issue has been
adressed in several other bifurcation settings ("alien cycles"). This is certainly an
interesting perspective for further researches.
Another important perspective would be to try to extend the outline of a general bifurcation
theory of plane systems of infinite co-dimension that we have introduced here, in particular
to other reversible quadratic double centers.
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Revisiting Petrowski-Landis

Petrowski-Landis article certainly contains interesting ideas that have not been yet
explored. Roughly speaking they consider the viewpoint of complex foliations and they
propose to introduce a notion of "regularly situated complex limit cycles". The article is
organized in three parts. The first one is devoted to the definition of these special complex
limit cycles and their main properties. It should be certainly clarified. The second part
consists in a careful study of a perturbative situation. Amazingly, this perturbative situation
is exactly the one we have studied in our article! It should be certainly revisited...
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