Hopf-Hopf and Hopf-Pitchfork bifurcations in coupled systems

Fátima Drubi, Santiago Ibáñez and Diego Noriega

Universidad de Oviedo

February 6, 2023

Motivation

- Coupled oscillatory systems: Isolated systems undergo a Hopf bifurcation
- Additional degeneracies may lead to Hopf-Hopf and Hopf-Pitchfork type bifurcations
- I ikely, they become germs of complex bifurcation diagrams
- Particular case: Coupled neuron models

Motivation

- Coupled oscillatory systems: Isolated systems undergo a Hopf bifurcation
- Additional degeneracies may lead to Hopf-Hopf and Hopf-Pitchfork type bifurcations
- Likely, they become germs of complex bifurcation diagrams
- Particular case: Coupled neuron models

Motivation

- Coupled oscillatory systems: Isolated systems undergo a Hopf bifurcation
- Additional degeneracies may lead to Hopf-Hopf and Hopf-Pitchfork type bifurcations
- Likely, they become germs of complex bifurcation diagrams
- Particular case: Coupled neuron models

Motivation

- Coupled oscillatory systems: Isolated systems undergo a Hopf bifurcation
- Additional degeneracies may lead to Hopf-Hopf and Hopf-Pitchfork type bifurcations
- Likely, they become germs of complex bifurcation diagrams
- Particular case: Coupled neuron models

(Figure from Quasar Jarosz at English Wikipedia (edited))

Coupled Oscillatory Systems

Two identical systems...

diffusively coupled

Isolated Oscillations

Coupled Oscillatory Systems

Two identical systems...

diffusively coupled

Isolated Oscillations
Dynamical Complexity?

Coupled Oscillatory Systems

The Coupled Brusselator System:

The Brusselator model:

$$
\left\{\begin{array}{l}
x^{\prime}=A-(B+1) x+x^{2} y \\
y^{\prime}=B x-x^{2} y
\end{array}\right.
$$

with A and B positive.

where λ_{1} and λ_{2} are not negative.
Supercritical Hopf bifurcation

Coupled Oscillatory Systems

The Coupled Brusselator System:

The Brusselator model:
$\left\{\begin{array}{l}x^{\prime}=A-(B+1) x+x^{2} y \\ y^{\prime}=B x-x^{2} y\end{array}\right.$
with A and B positive.

Supercritical Hopf bifurcation

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=A-(B+1) x_{1}+x_{1}^{2} y_{1}+\lambda_{1}\left(x_{2}-x_{1}\right) \\
y_{1}^{\prime}=B x_{1}-x_{1}^{2} y_{1}+\lambda_{2}\left(y_{2}-y_{1}\right) \\
x_{2}^{\prime}=A-(B+1) x_{2}+x_{2}^{2} y_{2}+\lambda_{1}\left(x_{1}-x_{2}\right) \\
y_{2}^{\prime}=B x_{2}-x_{2}^{2} y_{2}+\lambda_{2}\left(y_{1}-y_{2}\right)
\end{array}\right.
$$

where λ_{1} and λ_{2} are not negative.

Coupled Oscillatory Systems

The Coupled Brusselator System:

The Brusselator model:
$\left\{\begin{array}{l}x^{\prime}=A-(B+1) x+x^{2} y \\ y^{\prime}=B x-x^{2} y\end{array}\right.$
with A and B positive.

Supercritical Hopf bifurcation

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=A-(B+1) x_{1}+x_{1}^{2} y_{1}+\lambda_{1}\left(x_{2}-x_{1}\right) \\
y_{1}^{\prime}=B x_{1}-x_{1}^{2} y_{1}+\lambda_{2}\left(y_{2}-y_{1}\right) \\
x_{2}^{\prime}=A-(B+1) x_{2}+x_{2}^{2} y_{2}+\lambda_{1}\left(x_{1}-x_{2}\right) \\
y_{2}^{\prime}=B x_{2}-x_{2}^{2} y_{2}+\lambda_{2}\left(y_{1}-y_{2}\right)
\end{array}\right.
$$

$$
\text { where } \lambda_{1} \text { and } \lambda_{2} \text { are not negative. }
$$

Projection of a strange attractor:

[1] I. Schreiber, M. Marek, Physica D: Nonlinear Phenomena 5 (1982).

Coupled Oscillatory Systems

The Coupled Brusselator System:
The Brusselator model:
$\left\{\begin{array}{l}x^{\prime}=A-(B+1) x+x^{2} y \\ y^{\prime}=B x-x^{2} y\end{array}\right.$
with A and B positive.

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}^{\prime}=A-(B+1) x_{1}+x_{1}^{2} y_{1}+\lambda_{1}\left(x_{2}-x_{1}\right) \\
y_{1}^{\prime}=B x_{1}-x_{1}^{2} y_{1}+\lambda_{2}\left(y_{2}-y_{1}\right) \\
x_{2}^{\prime}=A-(B+1) x_{2}+x_{2}^{2} y_{2}+\lambda_{1}\left(x_{1}-x_{2}\right) \\
y_{2}^{\prime}=B x_{2}-x_{2}^{2} y_{2}+\lambda_{2}\left(y_{1}-y_{2}\right)
\end{array}\right. \\
& \text { where } \lambda_{1} \text { and } \lambda_{2} \text { are not negative. }
\end{aligned}
$$

Interaction between two systems with simple dynamics can develop more dynamical complexity (e.g. chaos).
[2] F. Drubi, S. Ibáñez, J. A. Rodríguez, J. Differential Equations 239 (2007).
[3] F. Drubi, S. Ibáñez, J. A. Rodríguez, Bull. Belg. Math. Soc. Simon Stevin 15 (2008)
[4] F. Drubi et al., Chaos, Solitons \& Fractals (2023).

Coupled Oscillatory Systems

The Coupled Brusselator System:
The Brusselator model:
$\left\{\begin{array}{l}x^{\prime}=A-(B+1) x+x^{2} y \\ y^{\prime}=B x-x^{2} y\end{array}\right.$
with A and B positive.

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=A-(B+1) x_{1}+x_{1}^{2} y_{1}+\lambda_{1}\left(x_{2}-x_{1}\right) \\
y_{1}^{\prime}=B x_{1}-x_{1}^{2} y_{1}+\lambda_{2}\left(y_{2}-y_{1}\right) \\
x_{2}^{\prime}=A-(B+1) x_{2}+x_{2}^{2} y_{2}+\lambda_{1}\left(x_{1}-x_{2}\right) \\
y_{2}^{\prime}=B x_{2}-x_{2}^{2} y_{2}+\lambda_{2}\left(y_{1}-y_{2}\right)
\end{array}\right.
$$

where λ_{1} and λ_{2} are not negative.

In any generic unfolding X_{μ}, with $\mu \in \mathbb{R}^{n}$, of an n-dimensional nilpotent singularity of codimension n, there exist two bifurcation curves of $(n-1)$-dimensional nilpotent singularities of codimension $n-1$ which are generically unfolded by X_{μ}.
[2] F. Drubi, S. Ibáñez, J. A. Rodríguez, J. Differential Equations 239 (2007).
[3] F. Drubi, S. Ibáñez, J. A. Rodríguez, Bull. Belg. Math. Soc. Simon Stevin 15 (2008)
[4] F. Drubi et al., Chaos, Solitons \& Fractals (2023).

Coupled Oscillatory Systems

The dynamics of coupled system in the synchronization plane

$$
S=\left\{x_{1}=x_{2}, y_{1}=y_{2}\right\}
$$

are those of the isolated system, i.e., there is a Hopf bifurcation in S.
The simplest dynamics expected by a transversal plane S^{*} are:

- a zero eigenvalue in its linear part that will lead to a

Hopf-Pitchfork bifurcation of codimension two or higher.

Coupled Oscillatory Systems

The dynamics of coupled system in the synchronization plane

$$
S=\left\{x_{1}=x_{2}, y_{1}=y_{2}\right\}
$$

are those of the isolated system, i.e., there is a Hopf bifurcation in S.
The simplest dynamics expected by a transversal plane S^{*} are:

- a zero eigenvalue in its linear part that will lead to a Hopf-Pitchfork bifurcation of codimension two or higher.
- a pair of imaginary eigenvalues in its linear part that will lead to a Hopf-Hopf bifurcation of codimension two or higher.
Both bifurcations are partially studied in the literature.
[6] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer (1983).
[7] Y. Kuznetsov, E'ements of applied bifurcation theory, 2ed, Springer (1998)

Coupled Oscillatory Systems

The dynamics of coupled system in the synchronization plane

$$
S=\left\{x_{1}=x_{2}, y_{1}=y_{2}\right\}
$$

are those of the isolated system, i.e., there is a Hopf bifurcation in S.
The simplest dynamics expected by a transversal plane S^{*} are:

- a zero eigenvalue in its linear part that will lead to a Hopf-Pitchfork bifurcation of codimension two or higher.
- a pair of imaginary eigenvalues in its linear part that will lead to a Hopf-Hopf bifurcation of codimension two or higher.
Both bifurcations are partially studied in the literature.
[6] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer (1983).
[7] Y. Kuznetsov, Elements of applied bifurcation theory, 2ed, Springer (1998).

Coupled Oscillatory Systems

The Coupled Brusselator System

[5] F. Drubi, S. Ibáñez, J. A. Rodríguez, Physica D: Nonlinear Phenomena 240 (2011).

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators
The FitzHugh-Nagumo (FN) model is raised from a traslation of Van der Pol's equation for a relaxation oscillator:

$$
\left\{\begin{array}{l}
x^{\prime}=c\left(y+x-\frac{1}{3} x^{3}+l\right) \\
y^{\prime}=-\frac{1}{c}(x-a+b y)
\end{array}\right.
$$

with x the neuron membrane potential and y a recovery variable.
The action potential / corresponds to an external stimulus. Assuming
the system has a unique atractor (a resting state) when $I=0$ and a Hopf bifurcation on the parameter I.
[8] R. Fitzhugh, Biophysical Journal 1 (1961).
[9] M. Kawato, M. Sokabe, R. Suzuki, Biological Cybernetics 34 (1979).

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators
The FitzHugh-Nagumo (FN) model is raised from a traslation of Van der Pol's equation for a relaxation oscillator:

$$
\left\{\begin{array}{l}
x^{\prime}=c\left(y+x-\frac{1}{3} x^{3}+l\right) \\
y^{\prime}=-\frac{1}{c}(x-a+b y)
\end{array}\right.
$$

with x the neuron membrane potential and y a recovery variable.
The action potential / corresponds to an external stimulus.
Assuming
the system has a unique atractor (a resting state) when $I=0$ and a Hopf bifurcation on the parameter l.
[8] R. Fitzhugh, Biophysical Journal 1 (1961).
[9] M. Kawato, M. Sokabe, R. Suzuki, Biological Cybernetics 34 (1979),

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

The FitzHugh-Nagumo (FN) model is raised from a traslation of Van der Pol's equation for a relaxation oscillator:

$$
\left\{\begin{array}{l}
x^{\prime}=c\left(y+x-\frac{1}{3} x^{3}+l\right) \\
y^{\prime}=-\frac{1}{c}(x-a+b y)
\end{array}\right.
$$

with x the neuron membrane potential and y a recovery variable.
The action potential / corresponds to an external stimulus.
Assuming

$$
0<b<1, \quad c>0, \quad 1-2 b / 3<a<1, \quad \text { and } \quad b<c^{2}
$$

the system has a unique atractor (a resting state) when $I=0$ and a Hopf bifurcation on the parameter I.
[8] R. Fitzhugh, Biophysical Journal 1 (1961).
[9] M. Kawato, M. Sokabe, R. Suzuki, Biological Cybernetics 34 (1979).

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators
Two FN neurons interacting symmetrically by a linear coupling is modelled by the 4-dimensional system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=c\left(y_{1}+x_{1}-\frac{1}{3} x_{1}^{3}\right)+\alpha_{1}\left(x_{2}-x_{1}\right) \\
y_{1}^{\prime}=-\frac{1}{c}\left(x_{1}-a+b y_{1}\right)+\alpha_{2}\left(y_{2}-y_{1}\right) \\
x_{2}^{\prime}=c\left(y_{2}+x_{2}-\frac{1}{3} x_{2}^{3}\right)+\alpha_{1}\left(x_{1}-x_{2}\right) \\
y_{2}^{\prime}=-\frac{1}{c}\left(x_{2}-a+b y_{2}\right)+\alpha_{2}\left(y_{1}-y_{2}\right)
\end{array}\right.
$$

with $\alpha_{1} \leq 0$.
The plane $S=\left\{x_{1}=x_{2}, y_{1}=y_{2}\right\}$ is invariant by the flow.
[10] M. Kawato, M. Sokabe, R. Suzuki, Biological Cybernetivs 34 (1979)
[11] S. A. Campbell, M. Waite, R. Suzuki, Nonlinear Analysis 47 (2001).
[12] L. Santana et al., Chaos 31 (2021).

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Two FN neurons interacting asymmetrically by a linear coupling is modelled by the 4-dimensional system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=c\left(y_{1}+x_{1}-\frac{1}{3} x_{1}^{3}\right)+\alpha_{1}\left(x_{2}-x_{1}\right) \\
y_{1}^{\prime}=-\frac{1}{c}\left(x_{1}-a+b y_{1}\right)+\alpha_{2}\left(y_{2}-y_{1}\right) \\
x_{2}^{\prime}=c\left(y_{2}+x_{2}-\frac{1}{3} x_{2}^{3}\right)+\left(\alpha_{1}+\varepsilon_{1}\right)\left(x_{1}-x_{2}\right) \\
y_{2}^{\prime}=-\frac{1}{c}\left(x_{2}-a+b y_{2}\right)+\left(\alpha_{2}+\varepsilon_{2}\right)\left(y_{1}-y_{2}\right)
\end{array}\right.
$$

with lineal diffusion parameteres $\alpha_{1}, \alpha_{2}, \varepsilon_{1}, \varepsilon_{2} \in \mathbb{R}$.
The plane $S=\left\{x_{1}=x_{2}, y_{1}=y_{2}\right\}$ is invariant by the flow.
[10] M. Kawato, M. Sokabe, R. Suzuki, Biological Cybernetivs 34 (1979).
[11] S. A. Campbell, M. Waite, R. Suzuki, Nonlinear Analysis 47 (2001).
[12] L. Santana et al., Chaos 31 (2021).

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Two FN neurons interacting asymmetrically by a linear coupling is modelled by the 4-dimensional system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=c\left(y_{1}+x_{1}-\frac{1}{3} x_{1}^{3}\right)+\alpha_{1}\left(x_{2}-x_{1}\right) \\
y_{1}^{\prime}=-\frac{1}{c}\left(x_{1}-a+b y_{1}\right)+\alpha_{2}\left(y_{2}-y_{1}\right) \\
x_{2}^{\prime}=c\left(y_{2}+x_{2}-\frac{1}{3} x_{2}^{3}\right)+\left(\alpha_{1}+\varepsilon_{1}\right)\left(x_{1}-x_{2}\right) \\
y_{2}^{\prime}=-\frac{1}{c}\left(x_{2}-a+b y_{2}\right)+\left(\alpha_{2}+\varepsilon_{2}\right)\left(y_{1}-y_{2}\right)
\end{array}\right.
$$

with lineal diffusion parameteres $\alpha_{1}, \alpha_{2}, \varepsilon_{1}, \varepsilon_{2} \in \mathbb{R}$.
The plane $S=\left\{x_{1}=x_{2}, y_{1}=y_{2}\right\}$ is invariant by the flow.
[13] F. Clément, J.-P. Françoise, SIAM J. Appl. Dyn. Syst. 6 (2007).
[14] S. Fernández-García, A. Vidal, Physica D 401 (2020).

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Two FN neurons interacting asymmetrically by a linear coupling is modelled by the 4-dimensional system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=c\left(y_{1}+x_{1}-\frac{1}{3} x_{1}^{3}\right)+\alpha_{1}\left(x_{2}-x_{1}\right) \\
y_{1}^{\prime}=-\frac{1}{c}\left(x_{1}-a+b y_{1}\right)+\alpha_{2}\left(y_{2}-y_{1}\right) \\
x_{2}^{\prime}=c\left(y_{2}+x_{2}-\frac{1}{3} x_{2}^{3}\right)+\left(\alpha_{1}+\varepsilon_{1}\right)\left(x_{1}-x_{2}\right) \\
y_{2}^{\prime}=-\frac{1}{c}\left(x_{2}-a+b y_{2}\right)+\left(\alpha_{2}+\varepsilon_{2}\right)\left(y_{1}-y_{2}\right)
\end{array}\right.
$$

with lineal diffusion parameteres $\alpha_{1}, \alpha_{2}, \varepsilon_{1}, \varepsilon_{2} \in \mathbb{R}$.
The plane $S=\left\{x_{1}=x_{2}, y_{1}=y_{2}\right\}$ is invariant by the flow.
[13] F. Clément, J.-P. Françoise, SIAM J. Appl. Dyn. Syst. 6 (2007).
[14] S. Fernández-García, A. Vidal, Physica D 401 (2020).

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

A change of coordinates:
$u_{1}=\frac{1}{2}\left(x_{1}-x_{2}\right), \quad v_{1}=\frac{1}{2}\left(y_{1}-y_{2}\right), \quad u_{2}=\frac{1}{2}\left(x_{1}+x_{2}\right), \quad v_{2}=\frac{1}{2}\left(y_{1}+y_{2}\right)$
provides the equivalent equations

$$
\left\{\begin{array}{l}
u_{1}^{\prime}=c\left(v_{1}+u_{1}-\frac{1}{3} u_{1}^{3}-u_{1} u_{2}^{2}\right)-\left(2 \alpha_{1}+\varepsilon_{1}\right) u_{1} \\
v_{1}^{\prime}=-\frac{1}{c}\left(u_{1}+b v_{1}\right)-\left(2 \alpha_{2}+\varepsilon_{2}\right) v_{1}, \\
u_{2}^{\prime}=c\left(v_{2}+u_{2}-\frac{1}{3} u_{2}^{3}-u_{1}^{2} u_{2}\right)+\varepsilon_{1} u_{1}, \\
v_{2}^{\prime}=-\frac{1}{c}\left(u_{2}-a+b v_{2}\right)+\varepsilon_{2} v_{1} .
\end{array}\right.
$$

with the invariant (synchronization) plane $\bar{S}=\left\{u_{1}=v_{1}=0\right\}$. We will denote as \bar{S}^{*} to a plane transverse to \bar{S}.

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Linear Analysis at the equilibrium on the invariant plane

The equilibrium on the invariant plane \bar{S} is of the form $\left(0,0, p_{2}, q_{2}\right)$, where p_{2} and q_{2} fulfill the identities:

$$
\frac{a}{b}+\left(1-\frac{1}{b}\right) p_{2}-\frac{1}{3} p_{2}^{3}=0 \quad \text { and } \quad q_{2}=\frac{a-p_{2}}{b}
$$

The linear part at $\left(0,0, p_{2}, q_{2}\right)$ is given by

$$
\left(\begin{array}{cccc}
c\left(1-p_{2}^{2}\right)-\left(2 \alpha_{1}+\varepsilon_{1}\right) & c & 0 & 0 \\
-\frac{1}{c} & -\frac{b}{c}-\left(2 \alpha_{2}+\varepsilon_{2}\right) & 0 & 0 \\
\varepsilon_{1} & 0 & c\left(1-p_{2}^{2}\right) & c \\
0 & \varepsilon_{2} & -\frac{1}{c} & -\frac{b}{c}
\end{array}\right) .
$$

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators
Elementary Local Bifurcations

$\mathcal{H}_{\bar{S}}$	$p_{2}^{2}=1-b / c^{2}, \quad b<c$
$\mathcal{P}_{\bar{S}^{*}}$	$p_{2}^{2}=1-1 /\left(b+c\left(2 \alpha_{2}+\varepsilon_{2}\right)\right)-\left(2 \alpha_{1}+\varepsilon_{1}\right) / c$
$\mathcal{H}_{\bar{S}^{*}}$	$p_{2}^{2}=1-\frac{1}{c}\left(b / c+2 \alpha_{1}+2 \alpha_{2}+\varepsilon_{1}+\varepsilon_{2}\right)$ $1-\left(b / c-\left(2 \alpha_{1}+\varepsilon_{1}\right)\right)\left(b / c+2 \alpha_{2}+\varepsilon_{2}\right)>0$
$\mathcal{H} \mathcal{P}=\mathcal{H}_{\bar{S}} \cap \mathcal{P}_{\bar{S}^{*}}$	$1 /\left(b+c\left(2 \alpha_{2}+\varepsilon_{2}\right)\right)+\left(2 \alpha_{1}+\varepsilon_{1}\right) / c=b / c^{2}$ Hyperbolic eigenvalue: $-\left(2 \alpha_{1}+2 \alpha_{2}+\varepsilon_{1}+\varepsilon_{2}\right)$
$\mathcal{H} \mathcal{H}=\mathcal{H}_{\bar{S}} \cap \mathcal{H}_{\bar{S}^{*}}$	$p_{2}^{2}=1-b / c^{2}, \quad 2 \alpha_{1}+2 \alpha_{2}+\varepsilon_{1}+\varepsilon_{2}=0$ $\left(b / c+2 \alpha_{2}+\varepsilon_{2}\right)^{2}<1, \quad b<c$

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Resonance phenomena

In the Hopf-Hopf case, the eigenvalues are:

$$
\pm i \sqrt{1-\left(\frac{b}{c}-2 \alpha_{1}-\varepsilon_{1}\right)^{2}} \text { and } \pm i \sqrt{1-\frac{b^{2}}{c^{2}}}
$$

If $2 \alpha_{1}+\epsilon_{1}=0$, the system will show a resonance $1: 1$. Hence, non-resonant bifurcations of codimension 2 can be unfolded.

As it occurs in S. A. Campbell and M. Waite (2001), where $\alpha_{2}=\varepsilon_{2}=0$ and $\alpha_{1} \leq 0$.
[15] S. A. van Gils, M. Krupa, W. F. Langford, Nonlinearity 3 (1990).

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Resonance phenomena
In the Hopf-Hopf case, the eigenvalues are:

$$
\pm i \sqrt{1-\left(\frac{b}{c}-2 \alpha_{1}-\varepsilon_{1}\right)^{2}} \text { and } \pm i \sqrt{1-\frac{b^{2}}{c^{2}}}
$$

If $2 \alpha_{1}+\epsilon_{1}=0$, the system will show a resonance $1: 1$. Hence, non-resonant bifurcations of codimension 2 can be unfolded.

As it occurs in S. A. Campbell and M. Waite (2001), where $\alpha_{2}=\varepsilon_{2}=0$ and $\alpha_{1} \leq 0$.
[15] S. A. van Gils, M. Krupa, W. F. Langford, Nonlinearity 3 (1990).

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Bifurcation Diagram with AUTO: $\boldsymbol{b}=0.4, \boldsymbol{c}=2$, and $\alpha_{2}=\varepsilon_{2}=0$

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Bifurcation Diagram with AUTO: $\boldsymbol{b}=0.4, \boldsymbol{c}=2$, and $\alpha_{2}=\varepsilon_{2}=0$

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Bifurcation Diagram with AUTO: $\boldsymbol{b}=0.4, \boldsymbol{c}=2$, and $\alpha_{2}=\varepsilon_{2}=0$

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Bifurcation Diagram with AUTO: $\boldsymbol{b}=0.4, \boldsymbol{c}=2$, and $\alpha_{2}=\varepsilon_{2}=0$

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Bifurcation Diagram with AUTO: $\boldsymbol{b}=0.4, \boldsymbol{c}=2$, and $\alpha_{2}=0.01$

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Classification of Hopf-Hopf singularities:

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Classification of Hopf-Hopf singularities:

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Classification of Hopf-Hopf singularities:

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Classification of Hopf-Hopf singularities:

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Continuation of a periodic orbit ($\alpha_{2}=0.01$):

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

Modulus of eigenvalues (maximum) $\left(\alpha_{2}=0.01\right)$:

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

$$
a=0.7, \alpha_{1}=0.072926, \mathrm{PO}
$$

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

$$
a=0.7, \alpha_{1}=0.065822,2 \text {-Torus }
$$

A Coupled Neuron System

The Coupled Fitzhugh-Nagumo Oscillators

$a=0.7, \alpha_{1}=0.062702$, Chaotic Attractor?

Open Questions

- Is the case Vla associated with Hopf-Hopf singularities also feasible?
- What other cases can be obtained from resonance?
- Can all Hopf-Hopf types of codimension 2 be obtained?
- Can a classification of the Hopf-Pitchfork be provided?

Acknowledgements:

Universidad de Oviedo

Universidad de Oviedo

National research funds:
Grant PID2020-113052GB-I00 Grant PID2021-122961NB-I00 funded by

INVESTIGACIÓN

Thank you for your attention!

