
A bifurcation analysis of
a contact-based epidemic spreading

Jordi Villadelprat

Joint work with A. Arenas, A. Garijo and S. Gómez
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Setting of the problem

We study a discrete dynamical system that is a mathematical model for
the well-known susceptible-infected-susceptible (SIS) epidemic spread-
ing model.

The space:

‚ We consider a connected undirected network Nn made up of n
nodes, whose weights rij P r0, 1s represent the contact probability
between the nodes i and j.

‚ The nˆ n contacts matrix R “ prijq is symmetric and
irreductible. We also assume the absence of self-loops, thus
rii “ 0.

‚ The nodes may stand for persons, cities, countries, airports, train
stations, ...
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Setting of the problem

First example

Clique network C5

R “

¨

˚

˚

˚

˚

˝

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

˛

‹

‹

‹

‹

‚
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Setting of the problem

Second example

Star network S5

R “

¨

˚

˚

˚

˚

˝

0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

˛

‹

‹

‹

‹

‚
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Setting of the problem

We define a discrete dynamical system based on the infection process
on the network. In the SIS model on networks each node may be in
one of two different states: susceptible (healthy) or infected.

The discrete-time dynamic of the SIS makes that, at each time step,

‚ susceptible nodes may get infected with probability β by
contacts with their infected neighbours, while

‚ infected nodes may recover with probability µ.

We consider that, at each time step, all nodes contact to all their neigh-
bours, known as reactive process.

We also add the possibility of one-step reinfections, which means that
an infected node that has recovered may become infected by its neigh-
bours within the same time step.
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Setting of the problem

Denoting by pki the probability that the node i is infected at the time
step k, its evolution is given by the equation

pk`1
i “ p1´ qki qp1´ p

k
i q ` p1´ µqp

k
i ` µp1´ q

k
i qp

k
i (1)

where qki :“
śk
j“1p1´ βrijp

k
j q is the probability that the node i is not

infected by any neighbour at time step k

The summands account for the three different ways that a node may
be infected at time k ` 1:

1. Being susceptible at time k and getting infected at time k ` 1.

2. Being infected and not recovering.

3. Being infected, recover and becoming infected again
(one-step reinfection).
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Setting of the problem

Setting p “ pp1, p2, . . . , pnq P Rn, this discrete dynamical system is
governed by the iteration of the map

F : Rn Ñ Rn

p ÞÑ F ppq

where the i-th component of F is given by

Fippq “ 1´
`

1´ p1´ µqpi
˘

qippq

with qippq :“
śn
j“1p1´ βrijpjq.

In other words, if pp01, . . . , p
0
nq is the vector of initial conditions then

ppk1 , . . . .p
k
nq “ F kpp01, . . . , p

0
nq where F k “ F ˝ F k´1.

F maps r0, 1sn to r0, 1sn and we restrict the study of the dynamical
system generated by F on the compact set Ω “ r0, 1sn.
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Setting of the problem

Numerical simulations show that these kind of systems, governed by
the map F , converge to an asymptotic distribution

lim
kÑ8

F kppq “ p8 “ pp81 , . . . , p
8
n q

independently on the initial condition p P Ω. Hence it seems that there
exists a fixed point that is a global attractor for the discrete dynamical
system under consideration.

The numerical simulations also show that the location of this global
attractor p8 undergoes a bifurcation at β0 :“ µ

ρpRq , where ρpRq is the

spectral radius of the matrix R.

S. Gómez, J. Gómez-Gardenes, Y. Moreno and A. Arenas,
Nonperturbative heterogeneous mean-field approach to epidemic
spreading in complex networks, Phys Rev E (2011).
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Setting of the problem

0 0,2 0,4 0,6 0,8 1
0

0,2

0,4

0,6

0,8

1

β ββ0

ψψ

Expected fraction of infected nodes, ψ :“ 1
n

řn
i“1 p

8
i , as a function of

the infection probability β.

On the left, numerical results by using two different simulation methods
and several contact matrices. On the right, sketch showing the epidemic
threshold β0
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Main result

The origin 0 “ p0, . . . , 0q is a fixed point of F for any β, µ P r0, 1s. We
prove that for each µ P p0, 1q this fixed point undergoes a transcritical
bifurcation at the epidemic threshold β0 :“ µ

ρpRq . Indeed, the origin is

a stable fixed point for β ă β0 and, as β tends to β0, it collides with
an unstable fixed point z0 coming from outside Ω. Then, for β ą β0,
the origin is unstable while z0 is stable and inside Ω.

β ă β0 β “ β0 β ą β0

Ω Ω Ω
z0

z0

For β « β0 the fixed point in red is unstable and the one in blue stable.
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Main result

Main Theorem

Let us consider a connected undirected network Nn with associated
matrix R and parameters β, µ P p0, 1q. Then the following holds:

paq The origin 0 is a fixed point of F for all parameter value and, for
each µ, it undergoes a transcritical bifurcation as the β varies
through the bifurcation value β0 :“ µ

ρpRq .

pbq If β ă β0 then 0 is a stable hyperbolic fixed point of F and
limkÑ8 F

kpxq “ 0 for all x P r0, 1sn.

pcq If β ą β0 then there exists a fixed point z0 of F in the interior of
r0, 1sn that is stable and verifying limkÑ8 F

kpxq “ z0 for all
x P r0, 1snzt0u. Moreover the map β ÞÑ }z0}2 is monotonous
increasing.
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Sketch of the proof of paq

Theorem (Sotomayor) (1/2)

Let f :Rn ˆ RÑ Rn be a C 2 map verifying the following:

paq x0 is a fixed point for all ν, i.e., fpx0; νq “ x0 for all ν.

pbq The Jacobian matrix of fp ¨ ; ν0q evaluated at x “ x0, that is
Dxfpx0; ν0q, has a simple eigenvalue λ “ 1 and all the other
eigenvalues have modulus strictly smaller than one.

pcq

C. Robinson, “Dynamical systems. Stability, symbolic dynamics,
and chaos”, Second edition. Studies in Advanced Mathematics.
CRC Press, Boca Raton, FL, 1999.
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Sketch of the proof of paq

Theorem (Sotomayor) (2/2)

pcq The derivatives

w rDxxfpx0; ν0qpv,vqs “
n
ÿ

i,j,k“1

wkvivj
B2fkpx0; ν0q

BxiBxj

w rDxνfpx0; ν0qvs “
n
ÿ

i,k“1

wkvi
B2fkpx0; ν0q

BxiBν

are different from zero, where v and w are respectively the right
pcolumnq and left prowq eigenvectors for λ “ 1 of Dxfpx0; ν0q.

Then the discrete dynamical system that yields the iteration of the
map x ÞÑ fpx; νq undergoes a transcritical bifurcation at the fixed
point x0 as ν varies through the bifurcation value ν “ ν0.
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Sketch of the proof of pbq

Lemma 1

Let D be a convex subset of Rn and consider a C 1 mapping
G :D Ñ Rn such that }DGx}p ď κ for all x P D. Then
}Gpxq ´Gpyq}p ď κ}x´ y}p for all x, y P D.

Lemma 2

paq If A and B are nonnegative square matrices with A ĺ B then
ρpAq ď ρpBq and }A}2 ď }B}2.

pbq If A is a nonnegative square matrix then ρpId`Aq “ 1` ρpAq.

pcq If A is a symmetric matrix then }A}2 “ ρpAq.

pdq If A is a nonnegative square matrix then ρpAq is an eigenvalue of
A and there is a nonnegative vector u ‰ 0 such that
Au “ ρpAqu. Moreover the algebraic multiplicity of the
eigenvalue ρpAq is 1 in case that A is an irreductible matrix.
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Sketch of the proof of pbq

We have

BFipxq

Bxi
“ p1´ µqqipxq

BFipxq

Bxj
“ βrij

`

1´ p1´ µqxi
˘

n
ź

k“1
k‰j

p1´ βrikxkq.

Hence 0 ă BFipxq
Bxi

ď 1´ µ and 0 ď BFipxq
Bxj

ď βrij . So, for all x P r0, 1sn,

DF pxq ĺ p1´ µqId` βR. By Lemma 2,

}DF pxq}2 ď }p1´ µqId` βR}2 “ ρ
`

p1´ µqId` βR
˘

“ 1´ µ` βρpRq.

Thus, by applying Lemma 1, F is a contraction on r0, 1sn provided that
β ă β0 :“ µ

ρpRq . Then pbq follows by the Contraction Mapping Theorem.
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Sketch of the proof of pcq

‚ DF p0q “ p1´ µqId` βRñ ρ
`

DF p0q
˘

“ 1´ µ` βρpRq

‚ β ą β0 ñ r :“ ρ
`

DF p0q
˘

ą 1

‚ D nonnegative vector v ‰ 0 such that DF p0qv “ rv

‚ F pεvq ľ εv for ε ą 0 small enough

‚ xε ĺ F pxεq ă F p1q ă 1, where xε :“ εv

‚ F pyq ´ F pxq “

ż 1

0

`

DF
˘

ty`p1´tqx
py ´ xqdt

‚ x ĺ yñ F pxq ĺ F pyq

‚ xε ă z ă 1ñ xε ĺ F pxεq ĺ F pzq ĺ F p1q ĺ 1
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Sketch of the proof of pcq

‚ Given a,b P r0, 1sn with a ĺ b we define the hypercube

Ωpa,bq :“ tz P r0, 1sn : a ĺ z ĺ bu

‚ Then F k
´

Ωpxε,1q
¯

Ă Ω
`

F kpxεq, F
kp1q

˘

for all k P N

‚ tF kpxεqukPN converges to a fixed point z0 of F because each one
of the entries is a monotonous increasing sequence of real
numbers smaller than 1

‚ tF kp1qukPN converges to a fixed point z1 of F
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Sketch of the proof of pcq

Part pcq will follow if we show that z0 “ z1. To this end we appeal to

H. Amann, Fixed points equations and nonlinear eigenvalue
problems in ordered Banach spaces, SIAM Review (1976)

Theorem 24.3

If E is an ordered Banach space whose positive cone P has nonempty
interior, D is a convex subset of E and f :D Ñ E is a strongly
increasing and strongly order concave map with a fixed point x0 P D,
then f has at most one fixed point x̄ with x̄ ą x0.
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Thanks very much!!

Have a safe trip back home


