Geometry of certain foliations in the complex projective plane

Samir Bedrouni and David Marín¹ USTHB and UAB

AQTDE 2023, Port de Sóller, February 6-10, 2023

¹Supported by the grants PID2021-125625NB-I00 and 2021SGR01015.

Foliations of degree d on $\mathbb{P}^2_{\mathbb{C}}$

In homogeneous coordinates [x, y, z] they are given by a homogeneous polynomial vector field of degree d:

$X = A(x, y, z)\partial_x + B(x, y, z)\partial_y + C(x, y, z)\partial_z,$

with gcd(A, B, C) = 1. If $\mathcal{R} = x\partial_x + y\partial_y + z\partial_z$, the 2-dimensional distribution $\langle X, \mathcal{R} \rangle$ on \mathbb{C}^3 induces a line distribution on $\mathbb{P}^2_{\mathbb{C}}$ whose integral curves are the leaves of the foliation \mathcal{F} defined by X. Dually, \mathcal{F} is defined by ker $\Omega = \langle X, \mathcal{R} \rangle$, where

 $\Omega = \imath_X \imath_{\mathcal{R}} (dx \wedge dy \wedge dz) = \begin{vmatrix} dx & dy & dz \\ x & y & z \\ A & B & C \end{vmatrix} = Pdx + Qdy + Rdz.$

Foliations of degree d on $\mathbb{P}^2_{\mathbb{C}}$

In homogeneous coordinates [x, y, z] they are given by a homogeneous polynomial vector field of degree d:

$X = A(x, y, z)\partial_x + B(x, y, z)\partial_y + C(x, y, z)\partial_z,$

with gcd(A, B, C) = 1. If $\mathcal{R} = x\partial_x + y\partial_y + z\partial_z$, the 2-dimensional distribution $\langle X, \mathcal{R} \rangle$ on \mathbb{C}^3 induces a line distribution on $\mathbb{P}^2_{\mathbb{C}}$ whose integral curves are the leaves of the foliation \mathcal{F} defined by X. Dually, \mathcal{F} is defined by ker $\Omega = \langle X, \mathcal{R} \rangle$, where

$$\Omega = \imath_X \imath_{\mathcal{R}} (dx \wedge dy \wedge dz) = \begin{vmatrix} dx & dy & dz \\ x & y & z \\ A & B & C \end{vmatrix} = Pdx + Qdy + Rdz.$$

Notice that P, Q, R are homogeneous polynomials of degree d + 1. Pulling-back Ω to the affine chart $\iota : \mathbb{C}^2 \hookrightarrow \mathbb{P}^2_{\mathbb{C}}, \iota(x, y) = [x, y, 1]$, we obtain $\omega = \iota^*\Omega = P(x, y, 1)dx + Q(x, y, 1)dy$, which has degree $\leq d$ if and only if P(x, y, 0) = Q(x, y, 0) = 0, i.e. if the line at infinity z = 0 associated to the affine chart ι is invariant by \mathcal{F} .

The space $\mathbb{F}(d)$ of foliations of degree d

In the affine chart (x, y) the foliation $\mathcal{F} \in \mathbb{F}(d)$ is given by

$$\omega = \sum_{0 \le i,j \le d} p_{ij} x^i y^j dx + \sum_{0 \le i,j \le d} q_{ij} x^i y^j dy + \sum_{i+j=d} r_{ij} x^i y^j (xdy - ydx)$$

up to multiplication by a non-zero scalar, i.e. $\mathbb{F}(d)$ is an open dense subset of $\mathbb{P}^{N_d}_{\mathbb{C}}$, $N_d = 2\frac{(d+1)(d+2)}{2} + (d+1) - 1 = d^2 + 4d + 2$.

The space $\mathbb{F}(d)$ of foliations of degree d

In the affine chart (x, y) the foliation $\mathcal{F} \in \mathbb{F}(d)$ is given by

$$\omega = \sum_{0 \le i,j \le d} p_{ij} x^i y^j dx + \sum_{0 \le i,j \le d} q_{ij} x^i y^j dy + \sum_{i+j=d} r_{ij} x^i y^j (xdy - ydx)$$

up to multiplication by a non-zero scalar, i.e. $\mathbb{F}(d)$ is an open dense subset of $\mathbb{P}^{N_d}_{\mathbb{C}}$, $N_d = 2\frac{(d+1)(d+2)}{2} + (d+1) - 1 = d^2 + 4d + 2$.

The group $\operatorname{Aut}(\mathbb{P}^2_{\mathbb{C}}) = \operatorname{PGL}(3, \mathbb{C})$ acts naturally on $\mathbb{F}(d)$ by means of $(g, \mathcal{F}) \mapsto g^* \mathcal{F}$. If $\mathcal{F} \in \mathbb{F}(d)$ is defined by ker Ω and $g = [g_{ij}] \in \operatorname{PGL}(3, \mathbb{C})$ then $g^* \mathcal{F}$ is defined by the kernel of

$$g^*\Omega = \Omega \left| \begin{array}{c} x = g_{11}x + g_{12}y + g_{13}z \\ y = g_{21}x + g_{22}y + g_{23}z \\ z = g_{31}x + g_{32}y + g_{33}z \end{array} \right|$$

We define the orbit and the isotropy subgroup of $\mathcal{F} \in \mathbb{F}(d)$ by $\mathcal{O}(\mathcal{F}) = \{g^*\mathcal{F} \mid g \in \operatorname{Aut}(\mathbb{P}^2_{\mathbb{C}})\}, \operatorname{Aut}(\mathcal{F}) = \{g \in \operatorname{Aut}(\mathbb{P}^2_{\mathbb{C}}) \mid g^*\mathcal{F} = \mathcal{F}\}.$ We have that dim $\mathcal{O}(\mathcal{F})$ + dim Aut (\mathcal{F}) = dim PGL $(3, \mathbb{C})$ = 8.

Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]: If $d \ge 2$ and $\mathcal{F} \in \mathbb{F}(d)$ then dim $\operatorname{Aut}(\mathcal{F}) \le 2$. If in addition dim $\operatorname{Aut}(\mathcal{F}) = 2$ then the Lie algebra of $\operatorname{Aut}(\mathcal{F})$ is not abelian.

Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]: If $d \ge 2$ and $\mathcal{F} \in \mathbb{F}(d)$ then dim $\operatorname{Aut}(\mathcal{F}) \le 2$. If in addition dim $\operatorname{Aut}(\mathcal{F}) = 2$ then the Lie algebra of $\operatorname{Aut}(\mathcal{F})$ is not abelian.

Theorem A: If $d \ge 2$ and $\mathcal{F} \in \mathbb{F}(d)$ with dim $\operatorname{Aut}(\mathcal{F}) = 2$ then \mathcal{F} is conjugated either to $\mathcal{F}_1^d = [dx + y^d dy]$ or $\mathcal{F}_2^d = [y^d dx + dy]$. Moreover the orbits $\mathcal{O}(\mathcal{F}_1^d)$ and $\mathcal{O}(\mathcal{F}_2^d)$ are closed and different.

Generalizing the cases d = 2 by [C,D,GB,M, 2010] and d = 3 by [Alcántara, Ronzón-Lavie, 2016].

Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]: If $d \ge 2$ and $\mathcal{F} \in \mathbb{F}(d)$ then dim $\operatorname{Aut}(\mathcal{F}) \le 2$. If in addition dim $\operatorname{Aut}(\mathcal{F}) = 2$ then the Lie algebra of $\operatorname{Aut}(\mathcal{F})$ is not abelian.

Theorem A: If $d \ge 2$ and $\mathcal{F} \in \mathbb{F}(d)$ with dim $\operatorname{Aut}(\mathcal{F}) = 2$ then \mathcal{F} is conjugated either to $\mathcal{F}_1^d = [dx + y^d dy]$ or $\mathcal{F}_2^d = [y^d dx + dy]$. Moreover the orbits $\mathcal{O}(\mathcal{F}_1^d)$ and $\mathcal{O}(\mathcal{F}_2^d)$ are closed and different.

Idea of the proof: Classify all the affine 2-dimensional Lie subalgebras \mathfrak{a} of $\mathfrak{X}(\mathbb{P}^2_{\mathbb{C}}) \simeq \mathfrak{sl}(3,\mathbb{C}) = \{M \in M_{3\times 3}(\mathbb{C}) \mid \operatorname{Tr}(M) = 0\}$ up to conjugation and impose that $(L_A\Omega) \land \Omega = 0$ for each $A \in \mathfrak{a}$. In coordinates [x, y, z] the isomorphism $\mathfrak{sl}(3,\mathbb{C}) \xrightarrow{\sim} \mathfrak{X}(\mathbb{P}^2_{\mathbb{C}})$ writes as

$$M \mapsto A = (\partial_x, \partial_y, \partial_z) M \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

In the affine chart z = 1 we replace ∂_z by $-x\partial_x - y\partial_y$.

Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]: If $d \ge 2$ and $\mathcal{F} \in \mathbb{F}(d)$ then dim $\operatorname{Aut}(\mathcal{F}) \le 2$. If in addition dim $\operatorname{Aut}(\mathcal{F}) = 2$ then the Lie algebra of $\operatorname{Aut}(\mathcal{F})$ is not abelian.

Theorem A: If $d \ge 2$ and $\mathcal{F} \in \mathbb{F}(d)$ with dim $\operatorname{Aut}(\mathcal{F}) = 2$ then \mathcal{F} is conjugated either to $\mathcal{F}_1^d = [dx + y^d dy]$ or $\mathcal{F}_2^d = [y^d dx + dy]$. Moreover the orbits $\mathcal{O}(\mathcal{F}_1^d)$ and $\mathcal{O}(\mathcal{F}_2^d)$ are closed and different.

Remark: Loud's isochronous center $[(x - \frac{x^2}{2} + \frac{y^2}{2})dx - y(x - 1)dy]$ is conjugated (via PGL(3, C)) to the degree d = 2 Fermat foliation $\mathcal{F}_F^d = [x^d\partial_x + y^d\partial_y + z^d\partial_z] = [(y^d - y)dx - (x^d - x)dy] \in \mathbb{F}(d)$ having 3*d* different (complex) invariant lines:

$$xyz(x^{d-1}-y^{d-1})(x^{d-1}-z^{d-1})(y^{d-1}-z^{d-1})=0.$$

Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]: If $d \ge 2$ and $\mathcal{F} \in \mathbb{F}(d)$ then dim $\operatorname{Aut}(\mathcal{F}) \le 2$. If in addition dim $\operatorname{Aut}(\mathcal{F}) = 2$ then the Lie algebra of $\operatorname{Aut}(\mathcal{F})$ is not abelian.

Theorem A: If $d \ge 2$ and $\mathcal{F} \in \mathbb{F}(d)$ with dim $\operatorname{Aut}(\mathcal{F}) = 2$ then \mathcal{F} is conjugated either to $\mathcal{F}_1^d = [dx + y^d dy]$ or $\mathcal{F}_2^d = [y^d dx + dy]$. Moreover the orbits $\mathcal{O}(\mathcal{F}_1^d)$ and $\mathcal{O}(\mathcal{F}_2^d)$ are closed and different.

Remark: Loud's isochronous center $[(x - \frac{x^2}{2} + \frac{y^2}{2})dx - y(x - 1)dy]$ is conjugated (via PGL(3, C)) to the degree d = 2 Fermat foliation $\mathcal{F}_F^d = [x^d\partial_x + y^d\partial_y + z^d\partial_z] = [(y^d - y)dx - (x^d - x)dy] \in \mathbb{F}(d)$ having 3*d* different (complex) invariant lines. Indeed, if $g(x, y) = (1 + x - y, i(1 - x - y)) \in PGL(3, C)$ then

$$\frac{1}{2}g^*\left(y(1-x)dy + \left(x - \frac{x^2}{2} + \frac{y^2}{2}\right)dx\right) = (y^2 - y)dx - (x^2 - x)dy.$$

The orbit $\mathcal{O}(\mathcal{F}_F^d)$ has dimension 8 and its closure contains $\mathcal{O}(\mathcal{F}_2^d)$.

Inflection divisor and convex foliations

Definition [Pereira, 2001]: The inflection divisor of $\mathcal{F} \in \mathbb{F}(d)$ defined by $X = A\partial_x + B\partial_y + C\partial_z$ is the degree 3*d* algebraic curve

$$I_{\mathcal{F}}(x, y, z) = \begin{vmatrix} x & y & z \\ X(x) & X(y) & X(z) \\ X^{2}(x) & X^{2}(y) & X^{2}(z) \end{vmatrix} = 0.$$

consisting in the inflection points of the leaves of \mathcal{F} , including all its invariant lines. The foliation \mathcal{F} is convex when $I_{\mathcal{F}}$ is entirely composed by invariant lines.

Example: $\mathcal{F}_F^d = [x^d \partial_x + y^d \partial_y + z^d \partial_z]$ is convex but \mathcal{F}_1^d is not.

The subset $\mathbb{F}_{\mathcal{C}}(d) \subset \mathbb{F}(d)$ consisting in convex foliations is closed.

Inflection divisor and convex foliations

Definition [Pereira, 2001]: The inflection divisor of $\mathcal{F} \in \mathbb{F}(d)$ defined by $X = A\partial_x + B\partial_y + C\partial_z$ is the degree 3*d* algebraic curve

$$I_{\mathcal{F}}(x, y, z) = \begin{vmatrix} x & y & z \\ X(x) & X(y) & X(z) \\ X^{2}(x) & X^{2}(y) & X^{2}(z) \end{vmatrix} = 0,$$

consisting in the inflection points of the leaves of \mathcal{F} , including all its invariant lines. The foliation \mathcal{F} is convex when $I_{\mathcal{F}}$ is entirely composed by invariant lines.

Example: $\mathcal{F}_F^d = [x^d \partial_x + y^d \partial_y + z^d \partial_z]$ is convex but \mathcal{F}_1^d is not.

The subset $\mathbb{F}_{\mathcal{C}}(d) \subset \mathbb{F}(d)$ consisting in convex foliations is closed.

Theorem [Favre-Pereira, 2015, after Schlomiuk, Vulpe, 2004]: $\mathbb{F}_{C}(2) = \mathcal{O}(\mathcal{F}_{F}^{2}) \cup \mathcal{O}([x^{2}\partial_{x} + y^{2}\partial_{y}]) \cup \mathcal{O}(\mathcal{F}_{2}^{2}). \text{ Moreover,}$ $\mathbb{F}_{C}(2) = \overline{\mathcal{O}((x^{2} - x)\partial_{x} + (y^{2} - y)\partial_{y})} \supset \overline{\mathcal{O}(x^{2}\partial_{x} + y^{2}\partial_{y})} \supset \mathcal{O}(\mathcal{F}_{2}^{2}).$ In fact, as $t \to \infty$, $\frac{1}{t^{d+1}}(tx,ty)^{*}((x^{d}-x)dy-(y^{d}-y)dx) = (x^{d}-\frac{x}{t^{d-1}})dy-(y^{d}-\frac{y}{t^{d-1}})dx \rightarrow x^{d}dy-y^{d}dx.$

Basins of attraction

Definition: The basin of attraction of $\mathcal{F} \in \mathbb{F}(d)$ is

 $\mathbb{B}(\mathcal{F})=\{\mathcal{G}\in\mathbb{F}(d)\,|\,\mathcal{F}\in\overline{\mathcal{O}(\mathcal{G})}\}=\{\mathcal{G}\in\mathbb{F}(d)\,|\,\mathcal{O}(\mathcal{F})\subset\overline{\mathcal{O}(\mathcal{G})}\}.$

Remark: If $\mathcal{F} \notin \mathbb{F}_C(d)$ and $\mathcal{G} \in \mathbb{B}(\mathcal{F})$ then $\mathcal{G} \notin \mathbb{F}_C(d)$.

Theorem [C,D,G-B,M, 2010]: $\mathbb{B}(\mathcal{F}_1^2) = \mathbb{F}(2) \setminus \mathbb{F}_C(2)$ is open dense.

This means that for every degree 2 foliation \mathcal{F} which is not conjugated to $(x^2 - x)\partial_x + (y^2 - y)\partial_x$, nor $x^2\partial_x + y^2\partial_y$, nor $\partial_x + y^2\partial_y$, there exists $g \in \mathrm{PGL}(3,\mathbb{C})$ such that $g^*\mathcal{F}$ is arbitrarily close to $y^2\partial_x + \partial_y$ in $\mathbb{F}(2)$.

Basins of attraction

Definition: The basin of attraction of $\mathcal{F} \in \mathbb{F}(d)$ is

 $\mathbb{B}(\mathcal{F})=\{\mathcal{G}\in\mathbb{F}(d)\,|\,\mathcal{F}\in\overline{\mathcal{O}(\mathcal{G})}\}=\{\mathcal{G}\in\mathbb{F}(d)\,|\,\mathcal{O}(\mathcal{F})\subset\overline{\mathcal{O}(\mathcal{G})}\}.$

Remark: If $\mathcal{F} \notin \mathbb{F}_C(d)$ and $\mathcal{G} \in \mathbb{B}(\mathcal{F})$ then $\mathcal{G} \notin \mathbb{F}_C(d)$.

Theorem [C,D,G-B,M, 2010]: $\mathbb{B}(\mathcal{F}_1^2) = \mathbb{F}(2) \setminus \mathbb{F}_{\mathcal{C}}(2)$ is open dense.

This means that for every degree 2 foliation \mathcal{F} which is not conjugated to $(x^2 - x)\partial_x + (y^2 - y)\partial_x$, nor $x^2\partial_x + y^2\partial_y$, nor $\partial_x + y^2\partial_y$, there exists $g \in PGL(3, \mathbb{C})$ such that $g^*\mathcal{F}$ is arbitrarily close to $y^2\partial_x + \partial_y$ in $\mathbb{F}(2)$.

Recall that dim $\mathbb{F}(d) = d^2 + 4d + 2$. Assume $d \ge 2$.

Theorem B: dim $\mathbb{B}(\mathcal{F}_1^d) \ge \dim \mathbb{F}(d) - (d-3)$ if $d \ge 3$. In particular, $\mathbb{B}(\mathcal{F}_1^3)$ is open dense in $\mathbb{F}(3)$.

Theorem C: dim $\mathbb{B}(\mathcal{F}_2^d) \ge \dim \mathbb{F}(d) - (d-1)$.

Theorem D: dim($\mathbb{B}(\mathcal{F}_1^d) \cap \mathbb{B}(\mathcal{F}_2^d)$) \geq dim $\mathbb{F}(d) - 3d$.

Degeneracy and non-degeneracy criteria

Definition: A foliation \mathcal{F} degenerates onto \mathcal{G} if $\mathcal{G} \in \overline{\mathcal{O}(\mathcal{F})} \setminus \mathcal{O}(\mathcal{F})$. If $\mathbb{C} \ni t \mapsto g_t \in \mathrm{PGL}(3, \mathbb{C})$ is continuous and $\mathcal{G} = \lim_{t \to \infty} g_t^* \mathcal{F}$ is not conjugated to \mathcal{F} then \mathcal{F} degenerates onto \mathcal{G} (denoted by $\mathcal{F} \to \mathcal{G}$).

Remark: If $\mathcal{F} \to \mathcal{G}$ then dim $\mathcal{O}(\mathcal{F}) > \dim \mathcal{O}(\mathcal{G})$ and deg $l_{\mathcal{F}}^{\text{inv}} \leq \deg l_{\mathcal{G}}^{\text{inv}}$.

Degeneracy and non-degeneracy criteria

Definition: A foliation \mathcal{F} degenerates onto \mathcal{G} if $\mathcal{G} \in \overline{\mathcal{O}(\mathcal{F})} \setminus \mathcal{O}(\mathcal{F})$. If $\mathbb{C} \ni t \mapsto g_t \in \mathrm{PGL}(3, \mathbb{C})$ is continuous and $\mathcal{G} = \lim_{t \to \infty} g_t^* \mathcal{F}$ is not conjugated to \mathcal{F} then \mathcal{F} degenerates onto \mathcal{G} (denoted by $\mathcal{F} \to \mathcal{G}$).

 $\begin{array}{l} \mbox{Remark: If $\mathcal{F} \to \mathcal{G}$ then $\dim \mathcal{O}(\mathcal{F}) > \dim \mathcal{O}(\mathcal{G})$ and $\deg I^{\rm inv}_{\mathcal{F}} \leq \deg I^{\rm inv}_{\mathcal{G}}$.} \end{array}$

If C: f(x, y) = 0 is a non-invariant curve and $p = (x_0, y_0) \in C$ the tangency order $\operatorname{Tang}(\mathcal{F}, C, p) = \dim_{\mathbb{C}} \mathbb{C}\{x - x_0, y - y_0\}/(f, X(f))$, where X is a local vector field defining \mathcal{F} near p.

Degeneracy and non-degeneracy criteria

Definition: A foliation \mathcal{F} degenerates onto \mathcal{G} if $\mathcal{G} \in \overline{\mathcal{O}(\mathcal{F})} \setminus \mathcal{O}(\mathcal{F})$. If $\mathbb{C} \ni t \mapsto g_t \in \mathrm{PGL}(3, \mathbb{C})$ is continuous and $\mathcal{G} = \lim_{t \to \infty} g_t^* \mathcal{F}$ is not conjugated to \mathcal{F} then \mathcal{F} degenerates onto \mathcal{G} (denoted by $\mathcal{F} \to \mathcal{G}$).

 $\begin{array}{l} \mbox{Remark: If $\mathcal{F} \to \mathcal{G}$ then $\dim \mathcal{O}(\mathcal{F}) > \dim \mathcal{O}(\mathcal{G})$ and $\deg I^{\rm inv}_{\mathcal{F}} \leq \deg I^{\rm inv}_{\mathcal{G}}$.} \end{array}$

If C: f(x, y) = 0 is a non-invariant curve and $p = (x_0, y_0) \in C$ the tangency order $\operatorname{Tang}(\mathcal{F}, C, p) = \dim_{\mathbb{C}} \mathbb{C}\{x - x_0, y - y_0\}/(f, X(f))$, where X is a local vector field defining \mathcal{F} near p.

Proposition 1: (a) If $\mathcal{F} \to \mathcal{F}_1^d$ then deg $I_{\mathcal{F}}^{tr} \ge d-1$. (b) If there is p regular with $\operatorname{Tang}(\mathcal{F}, T_p^{\mathbb{P}}\mathcal{F}, p) = d$ then $\mathcal{F} \to \mathcal{F}_1^d$.

Proposition 2: (a) If $\mathcal{F} \to \mathcal{F}_2^d$ then \mathcal{F} possesses a singularity s whose linear part has equal non-zero eigenvalues (BB(\mathcal{F}, s) = 4). (b) If \mathcal{F} possesses a singularity s with equal non-zero eigenvalues and a non-invariant line $L \ni s$ with Tang(\mathcal{F}, L, s) = d then $\mathcal{F} \to \mathcal{F}_2^d$.

If $\omega = \sum_{(i,j) \in I_x} a_{ij} x^{i-1} y^j dx + \sum_{(i,j) \in I_y} b_{ij} x^i y^{j-1} dy$ with $a_{ij}, b_{ij} \neq 0$, the Newton's polygon $N(\omega)$ of ω is the convex hull of $I_x \cup I_y \subset \mathbb{R}^2$.

If $\omega = \sum_{(i,j)\in I_x} a_{ij}x^{i-1}y^j dx + \sum_{(i,j)\in I_y} b_{ij}x^i y^{j-1} dy$ with $a_{ij}, b_{ij} \neq 0$, the Newton's polygon $N(\omega)$ of ω is the convex hull of $I_x \cup I_y \subset \mathbb{R}^2$. If $L = \{ai + bj = c\} \subset \partial N(\omega)$ and $g_t(x, y) = (t^a x, t^b y)$ then

$$\lim_{t^{\pm 1} \to \infty} t^{-c} g_t^* \omega = \sum_{(i,j) \in I_x \cap L} a_{ij} x^{i-1} y^j dx + \sum_{(i,j) \in I_y \cap L} b_{ij} x^i y^{j-1} dy$$

which is invariant by $ax\partial_x + by\partial_y$.

Example: If $\omega = (1 + y^2)dx + (x^2 + y^2)dy$ then $N(\omega) =$

• $g_t(x,y) = (t^3x, ty) \Rightarrow t^{-3}g_t^*\omega = dx + y^2dy + t^2y^2dx + t^4x^2dy$ tends to $dx + y^2dy$ as $t \to 0$, which is invariant by $3x\partial_x + y\partial_y$.

If $\omega = \sum_{(i,j)\in I_x} a_{ij}x^{i-1}y^j dx + \sum_{(i,j)\in I_y} b_{ij}x^iy^{j-1}dy$ with $a_{ij}, b_{ij} \neq 0$, the Newton's polygon $N(\omega)$ of ω is the convex hull of $I_x \cup I_y \subset \mathbb{R}^2$. If $L = \{ai + bj = c\} \subset \partial N(\omega)$ and $g_t(x, y) = (t^a x, t^b y)$ then

$$\lim_{t^{\pm 1} \to \infty} t^{-c} g_t^* \omega = \sum_{(i,j) \in I_x \cap L} a_{ij} x^{i-1} y^j dx + \sum_{(i,j) \in I_y \cap L} b_{ij} x^i y^{j-1} dy$$

which is invariant by $a x \partial_x + b y \partial_y$.

Example: If $\omega = (1 + y^2)dx + (x^2 + y^2)dy$ then $N(\omega) =$

- $g_t(x, y) = (t^3x, ty) \Rightarrow t^{-3}g_t^*\omega = dx + y^2dy + t^2y^2dx + t^4x^2dy$ tends to $dx + y^2dy$ as $t \to 0$, which is invariant by $3x\partial_x + y\partial_y$.
- $g_t(x, y) = (tx, ty) \Rightarrow t^{-3}g_t^*\omega = y^2dx + (x^2 + y^2)dy + t^{-2}dx$ tends to $y^2dx + (x^2 + y^2)dy$ as $t \to \infty$, invariant by $x\partial_x + y\partial_y$.

If $\omega = \sum_{(i,j)\in I_x} a_{ij}x^{i-1}y^j dx + \sum_{(i,j)\in I_y} b_{ij}x^iy^{j-1}dy$ with $a_{ij}, b_{ij} \neq 0$, the Newton's polygon $N(\omega)$ of ω is the convex hull of $I_x \cup I_y \subset \mathbb{R}^2$. If $L = \{ai + bj = c\} \subset \partial N(\omega)$ and $g_t(x, y) = (t^a x, t^b y)$ then

$$\lim_{t^{\pm 1} \to \infty} t^{-c} g_t^* \omega = \sum_{(i,j) \in I_x \cap L} a_{ij} x^{i-1} y^j dx + \sum_{(i,j) \in I_y \cap L} b_{ij} x^i y^{j-1} dy$$

which is invariant by $ax\partial_x + by\partial_y$.

Example: If $\omega = (1 + y^2)dx + (x^2 + y^2)dy$ then $N(\omega) =$

- $g_t(x, y) = (t^3x, ty) \Rightarrow t^{-3}g_t^*\omega = dx + y^2dy + t^2y^2dx + t^4x^2dy$ tends to $dx + y^2dy$ as $t \to 0$, which is invariant by $3x\partial_x + y\partial_y$.
- $g_t(x, y) = (tx, ty) \Rightarrow t^{-3}g_t^*\omega = y^2dx + (x^2 + y^2)dy + t^{-2}dx$ tends to $y^2dx + (x^2 + y^2)dy$ as $t \to \infty$, invariant by $x\partial_x + y\partial_y$.
- $g_t(x,y) = (tx,y/t) \Rightarrow t^{-1}g_t^*\omega = dx + x^2dy + t^{-2}y^2dx + t^{-3}y^2dy$ tends to $dx + x^2dy$ as $t \to \infty$, invariant by $x\partial_x - y\partial_y$.

If $\omega = \sum_{(i,j)\in I_x} a_{ij}x^{i-1}y^j dx + \sum_{(i,j)\in I_y} b_{ij}x^iy^{j-1}dy$ with $a_{ij}, b_{ij} \neq 0$, the Newton's polygon $N(\omega)$ of ω is the convex hull of $I_x \cup I_y \subset \mathbb{R}^2$. If $L = \{ai + bj = c\} \subset \partial N(\omega)$ and $g_t(x, y) = (t^a x, t^b y)$ then

$$\lim_{t^{\pm 1} \to \infty} t^{-c} g_t^* \omega = \sum_{(i,j) \in I_x \cap L} a_{ij} x^{i-1} y^j dx + \sum_{(i,j) \in I_y \cap L} b_{ij} x^i y^{j-1} dy$$

which is invariant by $ax\partial_x + by\partial_y$.

Example: If $\omega = (1 + y^2)dx + (x^2 + y^2)dy$ then $N(\omega) =$

- $g_t(x, y) = (t^3x, ty) \Rightarrow t^{-3}g_t^*\omega = dx + y^2dy + t^2y^2dx + t^4x^2dy$ tends to $dx + y^2dy$ as $t \to 0$, which is invariant by $3x\partial_x + y\partial_y$.
- $g_t(x, y) = (tx, ty) \Rightarrow t^{-3}g_t^*\omega = y^2dx + (x^2 + y^2)dy + t^{-2}dx$ tends to $y^2dx + (x^2 + y^2)dy$ as $t \to \infty$, invariant by $x\partial_x + y\partial_y$.
- $g_t(x,y) = (tx, y/t) \Rightarrow t^{-1}g_t^*\omega = dx + x^2dy + t^{-2}y^2dx + t^{-3}y^2dy$ tends to $dx + x^2dy$ as $t \to \infty$, invariant by $x\partial_x - y\partial_y$.

 $\overline{\mathcal{O}(\mathcal{F})}\supset\overline{\mathcal{O}(\mathcal{H})}\supset\mathcal{O}(\mathcal{F}_1^2)\cup\mathcal{O}(\mathcal{F}_2^2).$

Degeneracy onto \mathcal{F}_1^d

Proof of Proposition 1: (a) follows from $I_{\mathcal{F}_1^d} = y^{d-1}z^{2d+1}$ noting that y = 0 is not invariant by $\mathcal{F}_1^d = [dx + y^d dy] = [y^d \partial_x - \partial_y].$

(b) Fix affine coordinates (x, y) with p = (0, 0) and $T_p^{\mathbb{P}}\mathcal{F} = \{x = 0\}$. Then \mathcal{F} is defined by $\omega = (1 + a(x, y))dx + (c(y) + xb(x, y))dy$ and $X = (c(y) + xb(x, y))\partial_x - (1 + a(x, y))\partial_y$ with a(0, 0) = 0and c(0) = 0. Since the ideal (x, X(x)) = (x, c(y)) and

 $\operatorname{Tang}(\mathcal{F}, \mathcal{T}_p^{\mathbb{P}} \mathcal{F}, p) = \dim_{\mathbb{C}} \mathbb{C}\{x, y\} / (x, c(y)) = d$

we deduce that $c(y) = cy^d$ with $c \neq 0$. Taking the family of automorphisms $g_t(x, y) = (\frac{cx}{t^{d+1}}, \frac{y}{t}) \in PGL(3, \mathbb{C})$ we obtain that

$$\frac{t^{d+1}}{c}g_t^*\omega = dx + y^d dy + \left[a\left(\frac{cx}{t^{d+1}}, \frac{y}{t}\right)dx + \frac{x}{t}b\left(\frac{cx}{t^{d+1}}, \frac{y}{t}\right)dy\right]$$

tends to $dx + y^d dy$ as $t \to \infty$.

Theorem B: Basin of attraction of \mathcal{F}_1^d , $d \geq 3$

It can be checked that the set $\Sigma \subset \mathbb{F}(d) \times \mathbb{P}^2_{\mathbb{C}}$ consisting in (\mathcal{F}, p) such that $p \notin \operatorname{Sing}(\mathcal{F})$ and $\operatorname{Tang}(\mathcal{F}, \mathcal{T}_p^{\mathbb{P}}\mathcal{F}, p) = d$ is defined by

$$\left(\begin{array}{c}X(x)\\X(y)\end{array}\right)(p)\neq \left(\begin{array}{c}0\\0\end{array}\right), \ \left|\begin{array}{c}X(x)&X^{j}(x)\\X(y)&X^{j}(y)\end{array}\right|(p)=0, \ j=2,\ldots,d,$$

where X is a polynomial vector field defining \mathcal{F} in an affine chart (x, y) containing the point p. Hence dim $\Sigma \ge \dim \mathbb{F}(d) + 2 - (d - 1)$.

By Chevalley's theorem the projection $\pi_1(\Sigma)$ of Σ into $\mathbb{F}(d)$ is a constructible set (it contains an open dense subset of its closure).

The set $U \subset \mathbb{F}(d)$ consisting in foliations with totally transverse and reduced inflection divisor is open dense and contains Jouanolou's foliation $\mathcal{J}^d = [y^d \partial_x + z^d \partial_y + x^d \partial_z] \in \pi_1(\Sigma)$. If $\pi_2 : \mathbb{F}(d) \times \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ and $\mathcal{F} \in U$ then $\pi_2(\pi_1^{-1}(\mathcal{F}) \cap \Sigma)$ is finite: If $I_X = \begin{vmatrix} x_{(y)} & x^{2}(x) \\ x_{(y)} & x^{2}(y) \end{vmatrix} = \kappa L$ and $x(I_X) = \begin{vmatrix} x_{(x)} & x^{3}(x) \\ x_{(y)} & x^{3}(y) \end{vmatrix} = x(\kappa)L + \kappa X(L) = \kappa L'$ then gcd(K, L) = 1, $X(K) = \kappa L''$ and $\{K = 0\} \subset I_{\mathcal{F}}$ is invariant!

Theorem B: Basin of attraction of \mathcal{F}_1^d , $d \geq 3$

It can be checked that the set $\Sigma \subset \mathbb{F}(d) \times \mathbb{P}^2_{\mathbb{C}}$ consisting in (\mathcal{F}, p) such that $p \notin \operatorname{Sing}(\mathcal{F})$ and $\operatorname{Tang}(\mathcal{F}, T_p^{\mathbb{P}}\mathcal{F}, p) = d$ is defined by

 $\left(\begin{array}{c}X(x)\\X(y)\end{array}\right)(p)\neq \left(\begin{array}{c}0\\0\end{array}\right), \ \left|\begin{array}{c}X(x)&X^{j}(x)\\X(y)&X^{j}(y)\end{array}\right|(p)=0, \ j=2,\ldots,d,$

where X is a polynomial vector field defining \mathcal{F} in an affine chart (x, y) containing the point p. Hence dim $\Sigma \ge \dim \mathbb{F}(d) + 2 - (d - 1)$.

By Chevalley's theorem the projection $\pi_1(\Sigma)$ of Σ into $\mathbb{F}(d)$ is a constructible set (it contains an open dense subset of its closure).

The set $U \subset \mathbb{F}(d)$ consisting in foliations with totally transverse and reduced inflection divisor is open dense and contains Jouanolou's foliation $\mathcal{J}^d = [y^d \partial_x + z^d \partial_y + x^d \partial_z] \in \pi_1(\Sigma)$.

If $\pi_2 : \mathbb{F}(d) \times \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ and $\mathcal{F} \in U$ then $\pi_2(\pi_1^{-1}(\mathcal{F}) \cap \Sigma)$ is finite. Hence $\mathcal{J}^d \in \Sigma_1 := \pi_1(\Sigma) \cap U \subset \mathbb{B}(\mathcal{F}^d_1)$ and $\dim \Sigma_1 = \dim \Sigma \ge \dim \mathbb{F}(d) - (d-3).$

Idea of the proof of Theorem C

If $s = (0,0) \in \operatorname{Sing}(\mathcal{F})$ has equal non-zero eigenvalues $(\operatorname{BB}(\mathcal{F},s) = 4)$ and $L = \{x = 0\}$ satisfies $\operatorname{Tang}(\mathcal{F}, L, s) = d$ then \mathcal{F} is defined by $\omega = (xdy - ydx) + y^d dy + a(x, y)dx + xb(x, y)dy$, with a(0,0) = b(0,0) = 0 and $\lim_{t \to 0} \frac{1}{t^{d+1}}((t^d x, ty)^*\omega) \to xdy - ydx + y^d dy \in \mathcal{O}(\mathcal{F}_2^d).$ $\Sigma_2 = \{\mathcal{F} \in \mathbb{F}(d) \mid \exists L \ni s, \operatorname{BB}(\mathcal{F}, s) = 4, \operatorname{Tang}(\mathcal{F}, L, s) = d\}$ has codimension $\leq d - 1$ and it is contained in $\mathbb{B}(\mathcal{F}_2^d)$.

Idea of the proof of Theorem C and Theorem D

If $s = (0,0) \in \text{Sing}(\mathcal{F})$ has equal non-zero eigenvalues $(\text{BB}(\mathcal{F}, s) = 4)$ and $L = \{x = 0\}$ satisfies $\text{Tang}(\mathcal{F}, L, s) = d$ then \mathcal{F} is defined by

 $\omega = (xdy - ydx) + y^{d}dy + a(x, y)dx + xb(x, y)dy,$

with a(0,0) = b(0,0) = 0 and

$$\lim_{t\to 0}\frac{1}{t^{d+1}}((t^dx,ty)^*\omega)\to xdy-ydx+y^ddy\in \mathcal{O}(\mathcal{F}_2^d).$$

 $\Sigma_2 = \{ \mathcal{F} \in \mathbb{F}(d) \, | \, \exists L \ni s, \text{ BB}(\mathcal{F}, s) = 4, \text{ Tang}(\mathcal{F}, L, s) = d \}$ has codimension $\leq d - 1$ and it is contained in $\mathbb{B}(\mathcal{F}_2^d)$.

The foliation $\mathcal{H}^d = [(x^d + y^d)dx + x^d dy] \in \Sigma_1 \cap \Sigma_2$ so that $\overline{\mathcal{O}(\mathcal{H}^d)} \supset \mathcal{O}(\mathcal{F}_1^d) \cup \mathcal{O}(\mathcal{F}_2^d)$, hence $\mathbb{B}(\mathcal{H}^d) \subset \mathbb{B}(\mathcal{F}_1^d) \cap \mathbb{B}(\mathcal{F}_2^d)$. The set of foliations defined by

 $(x^d + y^d + A_{d-1}(x, y))dx + (x^d + B_{d-1}(x, y))dy \rightarrow \mathcal{H}^d$

in some affine chart (x, y) of $\mathbb{P}^2_{\mathbb{C}}$ has codimension

 $(d^2 + 4d + 2) - (2(1 + \dots + d - 1) + 2) = 3d$ in $\mathbb{F}(d)$.

More details are avalaible in the preprint:

S. Bedrouni, D. Marín, Geometry of certain foliations on the complex projective plane, arXiv:2101.11509v4, to appear in The Annali della Scuola Normale Superiore di Pisa.

Thanks for your attention!