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Foliations of degree d on P2
C

In homogeneous coordinates [x , y , z ] they are given by a
homogeneous polynomial vector field of degree d :

X = A(x , y , z)∂x + B(x , y , z)∂y + C (x , y , z)∂z ,

with gcd(A,B,C ) = 1. If R = x∂x + y∂y + z∂z , the 2-dimensional
distribution 〈X ,R〉 on C3 induces a line distribution on P2

C whose
integral curves are the leaves of the foliation F defined by X .
Dually, F is defined by ker Ω = 〈X ,R〉, where

Ω = ıX ıR(dx ∧ dy ∧ dz) =

∣∣∣∣∣∣
dx dy dz
x y z
A B C

∣∣∣∣∣∣ = Pdx + Qdy + Rdz .

Notice that P,Q,R are homogeneous polynomials of degree d + 1.
Pulling-back Ω to the affine chart ι : C2 ↪→ P2

C, ι(x , y) = [x , y , 1],
we obtain ω = ι∗Ω = P(x , y , 1)dx + Q(x , y , 1)dy , which has
degree ≤ d if and only if P(x , y , 0) = Q(x , y , 0) = 0, i.e. if the line
at infinity z = 0 associated to the affine chart ι is invariant by F .

2 / 12



Foliations of degree d on P2
C

In homogeneous coordinates [x , y , z ] they are given by a
homogeneous polynomial vector field of degree d :

X = A(x , y , z)∂x + B(x , y , z)∂y + C (x , y , z)∂z ,

with gcd(A,B,C ) = 1. If R = x∂x + y∂y + z∂z , the 2-dimensional
distribution 〈X ,R〉 on C3 induces a line distribution on P2

C whose
integral curves are the leaves of the foliation F defined by X .
Dually, F is defined by ker Ω = 〈X ,R〉, where

Ω = ıX ıR(dx ∧ dy ∧ dz) =

∣∣∣∣∣∣
dx dy dz
x y z
A B C

∣∣∣∣∣∣ = Pdx + Qdy + Rdz .

Notice that P,Q,R are homogeneous polynomials of degree d + 1.
Pulling-back Ω to the affine chart ι : C2 ↪→ P2

C, ι(x , y) = [x , y , 1],
we obtain ω = ι∗Ω = P(x , y , 1)dx + Q(x , y , 1)dy , which has
degree ≤ d if and only if P(x , y , 0) = Q(x , y , 0) = 0, i.e. if the line
at infinity z = 0 associated to the affine chart ι is invariant by F .

2 / 12



The space F(d) of foliations of degree d

In the affine chart (x , y) the foliation F ∈ F(d) is given by

ω =
∑

0≤i ,j≤d
pijx

iy jdx +
∑

0≤i ,j≤d
qijx

iy jdy +
∑

i+j=d

rijx
iy j(xdy − ydx)

up to multiplication by a non-zero scalar, i.e. F(d) is an open dense

subset of PNd
C , Nd = 2 (d+1)(d+2)

2 + (d + 1)− 1 = d2 + 4d + 2.

The group Aut(P2
C) = PGL(3,C) acts naturally on F(d) by means

of (g ,F) 7→ g∗F . If F ∈ F(d) is defined by ker Ω and
g = [gij ] ∈ PGL(3,C) then g∗F is defined by the kernel of

g∗Ω = Ω∣∣∣∣∣∣∣∣
x = g11x + g12y + g13z
y = g21x + g22y + g23z
z = g31x + g32y + g33z

We define the orbit and the isotropy subgroup of F ∈ F(d) by

O(F) = {g∗F | g ∈ Aut(P2
C)}, Aut(F) = {g ∈ Aut(P2

C) | g∗F = F}.
We have that dimO(F) + dimAut(F) = dimPGL(3,C) = 8.
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Small closed orbits
Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]:
If d ≥ 2 and F ∈ F(d) then dimAut(F) ≤ 2. If in addition
dimAut(F) = 2 then the Lie algebra of Aut(F) is not abelian.

Theorem A: If d ≥ 2 and F ∈ F(d) with dimAut(F) = 2 then F
is conjugated either to Fd

1 = [dx + yddy ] or Fd
2 = [yddx + dy ].

Moreover the orbits O(Fd
1 ) and O(Fd

2 ) are closed and different.

Remark: Loud’s isochronous center [(x − x2

2 + y2

2 )dx − y(x − 1)dy ]
is conjugated (via PGL(3,C)) to the degree d = 2 Fermat foliation
Fd
F = [xd∂x + yd∂y + zd∂z ] = [(yd − y)dx − (xd − x)dy ] ∈ F(d)

having 3d different (complex) invariant lines.
Indeed, if g(x , y) = (1 + x − y , i(1− x − y)) ∈ PGL(3,C) then

1

2
g∗
(
y(1− x)dy +

(
x − x2

2
+

y2

2

)
dx

)
= (y2 − y)dx − (x2 − x)dy .

The orbit O(Fd
F ) has dimension 8 and its closure contains O(Fd

2 ).
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Inflection divisor and convex foliations

Definition [Pereira, 2001]: The inflection divisor of F ∈ F(d)
defined by X = A∂x + B∂y + C∂z is the degree 3d algebraic curve

IF (x , y , z) =

∣∣∣∣∣∣
x y z

X (x) X (y) X (z)
X 2(x) X 2(y) X 2(z)

∣∣∣∣∣∣ = 0,

consisting in the inflection points of the leaves of F , including all
its invariant lines. The foliation F is convex when IF is entirely
composed by invariant lines.

Example: Fd
F = [xd∂x + yd∂y + zd∂z ] is convex but Fd

1 is not.

The subset FC (d) ⊂ F(d) consisting in convex foliations is closed.

Theorem [Favre-Pereira, 2015, after Schlomiuk, Vulpe, 2004]:
FC (2) = O(F2

F ) ∪ O([x2∂x + y2∂y ]) ∪ O(F2
2 ). Moreover,

FC (2) = O((x2 − x)∂x + (y2 − y)∂y ) ⊃ O(x2∂x + y2∂y ) ⊃ O(F2
2 ).

In fact, as t →∞,
1

td+1 (tx ,ty)
∗((xd−x)dy−(yd−y)dx)=(xd− x

td−1 )dy−(y
d− y

td−1 )dx→xddy−yddx.
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Basins of attraction

Definition: The basin of attraction of F ∈ F(d) is

B(F) = {G ∈ F(d) | F ∈ O(G)} = {G ∈ F(d) | O(F) ⊂ O(G)}.

Remark: If F /∈ FC (d) and G ∈ B(F) then G /∈ FC (d).

Theorem [C,D,G-B,M, 2010]: B(F2
1 ) = F(2) \ FC (2) is open dense.

This means that for every degree 2 foliation F which is not
conjugated to (x2 − x)∂x + (y2 − y)∂x , nor x2∂x + y2∂y , nor
∂x + y2∂y , there exists g ∈ PGL(3,C) such that g∗F is arbitrarily
close to y2∂x + ∂y in F(2).

Recall that dimF(d) = d2 + 4d + 2. Assume d ≥ 2.

Theorem B: dimB(Fd
1 ) ≥ dimF(d)− (d − 3) if d ≥ 3.

In particular, B(F3
1 ) is open dense in F(3).

Theorem C: dimB(Fd
2 ) ≥ dimF(d)− (d − 1).

Theorem D: dim(B(Fd
1 ) ∩ B(Fd

2 )) ≥ dimF(d)− 3d .
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Degeneracy and non-degeneracy criteria

Definition: A foliation F degenerates onto G if G ∈ O(F) \ O(F).
If C 3 t 7→ gt ∈ PGL(3,C) is continuous and G = lim

t→∞
g∗t F is not

conjugated to F then F degenerates onto G (denoted by F → G).

Remark: If F → G then dimO(F) > dimO(G) and deg I invF ≤ deg I invG .

If C : f (x , y) = 0 is a non-invariant curve and p = (x0, y0) ∈ C the
tangency order Tang(F ,C , p) = dimCC{x − x0, y − y0}/(f ,X (f )),
where X is a local vector field defining F near p.

Proposition 1: (a) If F → Fd
1 then deg I trF ≥ d − 1.

(b) If there is p regular with Tang(F ,TP
p F , p) = d then F → Fd

1 .

Proposition 2: (a) If F → Fd
2 then F possesses a singularity s

whose linear part has equal non-zero eigenvalues (BB(F , s) = 4).

(b) If F possesses a singularity s with equal non-zero eigenvalues
and a non-invariant line L 3 s with Tang(F , L, s) = d then F → Fd

2 .
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Quasi-homogeneous degeneracies via Newton’s polygon

If ω =
∑

(i ,j)∈Ix aijx
i−1y jdx +

∑
(i ,j)∈Iy bijx

iy j−1dy with aij , bij 6= 0,

the Newton’s polygon N(ω) of ω is the convex hull of Ix ∪ Iy ⊂ R2.
If L = {ai + bj = c} ⊂ ∂N(ω) and gt(x , y) = (tax , tby) then

lim
t±1→∞

t−cg∗t ω =
∑

(i ,j)∈Ix∩L

aijx
i−1y jdx +

∑
(i ,j)∈Iy∩L

bijx
iy j−1dy

which is invariant by ax∂x + by∂y .

Example: If ω = (1 + y2)dx + (x2 + y2)dy then N(ω) = •

• gt(x , y) = (t3x , ty)⇒ t−3g∗t ω = dx + y2dy + t2y2dx + t4x2dy
• tends to dx + y2dy as t → 0, which is invariant by 3x∂x + y∂y .

• gt(x , y) = (tx , ty)⇒ t−3g∗t ω = y2dx + (x2 + y2)dy + t−2dx
• tends to y2dx + (x2 + y2)dy as t →∞, invariant by x∂x + y∂y .

• gt(x , y) = (tx , y/t)⇒ t−1g∗t ω = dx + x2dy + t−2y2dx + t−3y2dy
• tends to dx + x2dy as t →∞, invariant by x∂x − y∂y .

O(F) ⊃ O(H) ⊃ O(F2
1 ) ∪ O(F2

2 ).
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Degeneracy onto Fd
1

Proof of Proposition 1: (a) follows from IFd
1

= yd−1z2d+1 noting

that y = 0 is not invariant by Fd
1 = [dx + yddy ] = [yd∂x − ∂y ].

(b) Fix affine coordinates (x , y) with p = (0, 0) and TP
p F = {x = 0}.

Then F is defined by ω = (1 + a(x , y))dx + (c(y) + xb(x , y))dy
and X = (c(y) + xb(x , y))∂x − (1 + a(x , y))∂y with a(0, 0) = 0
and c(0) = 0. Since the ideal (x ,X (x)) = (x , c(y)) and

Tang(F ,TP
p F , p) = dimCC{x , y}/(x , c(y)) = d

we deduce that c(y) = cyd with c 6= 0. Taking the family of
automorphisms gt(x , y) = ( cx

td+1 ,
y
t ) ∈ PGL(3,C) we obtain that

td+1

c
g∗t ω = dx + yddy +

[
a
( cx

td+1
,
y

t

)
dx +

x

t
b
( cx

td+1
,
y

t

)
dy
]

tends to dx + yddy as t →∞.
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Theorem B: Basin of attraction of Fd
1 , d ≥ 3

It can be checked that the set Σ ⊂ F(d)× P2
C consisting in (F , p)

such that p /∈ Sing(F) and Tang(F ,TP
p F , p) = d is defined by(

X (x)
X (y)

)
(p) 6=

(
0
0

)
,

∣∣∣∣ X (x) X j(x)
X (y) X j(y)

∣∣∣∣ (p) = 0, j = 2, . . . , d ,

where X is a polynomial vector field defining F in an affine chart
(x , y) containing the point p. Hence dim Σ ≥ dimF(d) + 2− (d − 1).

By Chevalley’s theorem the projection π1(Σ) of Σ into F(d) is a
constructible set (it contains an open dense subset of its closure).

The set U ⊂ F(d) consisting in foliations with totally transverse
and reduced inflection divisor is open dense and contains
Jouanolou’s foliation J d = [yd∂x + zd∂y + xd∂z ] ∈ π1(Σ).

If π2 : F(d)× P2
C → P2

C and F ∈ U then π2(π−11 (F) ∩ Σ) is finite:

If IX=
∣∣∣ X (x) X 2(x)

X (y) X 2(y)

∣∣∣=KL and X (IX )=
∣∣∣ X (x) X 3(x)

X (y) X 3(y)

∣∣∣=X (K)L+KX (L)=KL′

then gcd(K , L) = 1, X (K ) = KL′′ and {K = 0} ⊂ IF is invariant!
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Idea of the proof of Theorem C

If s = (0, 0) ∈ Sing(F) has equal non-zero eigenvalues (BB(F , s) = 4)
and L = {x = 0} satisfies Tang(F , L, s) = d then F is defined by

ω = (xdy − ydx) + yddy + a(x , y)dx + xb(x , y)dy ,

with a(0, 0) = b(0, 0) = 0 and

lim
t→0

1

td+1

(
(tdx , ty)∗ω

)
→ xdy − ydx + yddy ∈ O(Fd

2 ).

Σ2 = {F ∈ F(d) | ∃L 3 s, BB(F , s) = 4, Tang(F , L, s) = d}
has codimension ≤ d − 1 and it is contained in B(Fd

2 ).

The foliation Hd = [(xd + yd)dx + xddy ] ∈ Σ1 ∩ Σ2 so that

O(Hd) ⊃ O(Fd
1 ) ∪ O(Fd

2 ), hence B(Hd) ⊂ B(Fd
1 ) ∩ B(Fd

2 ).
The set of foliations defined by

(xd + yd + Ad−1(x , y))dx + (xd + Bd−1(x , y))dy → Hd

in some affine chart (x , y) of P2
C has codimension

(d2 + 4d + 2)− (2(1 + · · ·+ d − 1) + 2) = 3d in F(d).
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More details are avalaible in the preprint:

S. Bedrouni, D. Maŕın, Geometry of certain foliations on the
complex projective plane, arXiv:2101.11509v4, to appear in
The Annali della Scuola Normale Superiore di Pisa.

Thanks for your attention!
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