Geometry of certain foliations in the complex projective plane

Samir Bedrouni and David Marín ${ }^{1}$

USTHB and UAB

AQTDE 2023, Port de Sóller, February 6-10, 2023

[^0]
Foliations of degree d on $\mathbb{P}_{\mathbb{C}}^{2}$

In homogeneous coordinates $[x, y, z]$ they are given by a homogeneous polynomial vector field of degree d :

$$
X=A(x, y, z) \partial_{x}+B(x, y, z) \partial_{y}+C(x, y, z) \partial_{z}
$$

with $\operatorname{gcd}(A, B, C)=1$. If $\mathcal{R}=x \partial_{x}+y \partial_{y}+z \partial_{z}$, the 2-dimensional distribution $\langle X, \mathcal{R}\rangle$ on \mathbb{C}^{3} induces a line distribution on $\mathbb{P}_{\mathbb{C}}^{2}$ whose integral curves are the leaves of the foliation \mathcal{F} defined by X.
Dually, \mathcal{F} is defined by $\operatorname{ker} \Omega=\langle X, \mathcal{R}\rangle$, where

$$
\Omega=\imath^{\prime} \imath_{\mathcal{R}}(d x \wedge d y \wedge d z)=\left|\begin{array}{ccc}
d x & d y & d z \\
x & y & z \\
A & B & C
\end{array}\right|=P d x+Q d y+R d z
$$

Foliations of degree d on $\mathbb{P}_{\mathbb{C}}^{2}$

In homogeneous coordinates $[x, y, z$] they are given by a homogeneous polynomial vector field of degree d :

$$
X=A(x, y, z) \partial_{x}+B(x, y, z) \partial_{y}+C(x, y, z) \partial_{z}
$$

with $\operatorname{gcd}(A, B, C)=1$. If $\mathcal{R}=x \partial_{x}+y \partial_{y}+z \partial_{z}$, the 2-dimensional distribution $\langle X, \mathcal{R}\rangle$ on \mathbb{C}^{3} induces a line distribution on $\mathbb{P}_{\mathbb{C}}^{2}$ whose integral curves are the leaves of the foliation \mathcal{F} defined by X.
Dually, \mathcal{F} is defined by $\operatorname{ker} \Omega=\langle X, \mathcal{R}\rangle$, where

$$
\Omega=\imath_{X} \imath \mathcal{R}(d x \wedge d y \wedge d z)=\left|\begin{array}{ccc}
d x & d y & d z \\
x & y & z \\
A & B & C
\end{array}\right|=P d x+Q d y+R d z
$$

Notice that P, Q, R are homogeneous polynomials of degree $d+1$. Pulling-back Ω to the affine chart $\iota: \mathbb{C}^{2} \hookrightarrow \mathbb{P}_{\mathbb{C}}^{2}, \iota(x, y)=[x, y, 1]$, we obtain $\omega=\iota^{*} \Omega=P(x, y, 1) d x+Q(x, y, 1) d y$, which has degree $\leq d$ if and only if $P(x, y, 0)=Q(x, y, 0)=0$, i.e. if the line at infinity $z=0$ associated to the affine chart ι is invariant by \mathcal{F}.

The space $\mathbb{F}(d)$ of foliations of degree d

In the affine chart (x, y) the foliation $\mathcal{F} \in \mathbb{F}(d)$ is given by
$\omega=\sum_{0 \leq i, j \leq d} p_{i j} x^{i} y^{j} d x+\sum_{0 \leq i, j \leq d} q_{i j} x^{i} y^{j} d y+\sum_{i+j=d} r_{i j} x^{i} y^{j}(x d y-y d x)$
up to multiplication by a non-zero scalar, i.e. $\mathbb{F}(d)$ is an open dense subset of $\mathbb{P}_{\mathbb{C}}^{N_{d}}, N_{d}=2 \frac{(d+1)(d+2)}{2}+(d+1)-1=d^{2}+4 d+2$.

The space $\mathbb{F}(d)$ of foliations of degree d

In the affine chart (x, y) the foliation $\mathcal{F} \in \mathbb{F}(d)$ is given by
$\omega=\sum_{0 \leq i, j \leq d} p_{i j} x^{i} y^{j} d x+\sum_{0 \leq i, j \leq d} q_{i j} x^{i} y^{j} d y+\sum_{i+j=d} r_{i j} x^{i} y^{j}(x d y-y d x)$
up to multiplication by a non-zero scalar, i.e. $\mathbb{F}(d)$ is an open dense subset of $\mathbb{P}_{\mathbb{C}}^{N_{d}}, N_{d}=2 \frac{(d+1)(d+2)}{2}+(d+1)-1=d^{2}+4 d+2$.

The group $\operatorname{Aut}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)=\operatorname{PGL}(3, \mathbb{C})$ acts naturally on $\mathbb{F}(d)$ by means of $(g, \mathcal{F}) \mapsto g^{*} \mathcal{F}$. If $\mathcal{F} \in \mathbb{F}(d)$ is defined by $\operatorname{ker} \Omega$ and $g=\left[g_{i j}\right] \in \operatorname{PGL}(3, \mathbb{C})$ then $g^{*} \mathcal{F}$ is defined by the kernel of

$$
g^{*} \Omega=\Omega \left\lvert\, \begin{aligned}
& x=g_{11} x+g_{12} y+g_{13} z \\
& y=g_{21} x+g_{22} y+g_{23} z \\
& z=g_{31} x+g_{32} y+g_{33} z
\end{aligned}\right.
$$

We define the orbit and the isotropy subgroup of $\mathcal{F} \in \mathbb{F}(d)$ by $\mathcal{O}(\mathcal{F})=\left\{g^{*} \mathcal{F} \mid g \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)\right\}, \operatorname{Aut}(\mathcal{F})=\left\{g \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{C}}^{2}\right) \mid g^{*} \mathcal{F}=\mathcal{F}\right\}$.
We have that $\operatorname{dim} \mathcal{O}(\mathcal{F})+\operatorname{dim} \operatorname{Aut}(\mathcal{F})=\operatorname{dim} \operatorname{PGL}(3, \mathbb{C})=8$.

Small closed orbits

Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]: If $d \geq 2$ and $\mathcal{F} \in \mathbb{F}(d)$ then $\operatorname{dim} \operatorname{Aut}(\mathcal{F}) \leq 2$. If in addition $\operatorname{dim} \operatorname{Aut}(\mathcal{F})=2$ then the Lie algebra of $\operatorname{Aut}(\mathcal{F})$ is not abelian.

Small closed orbits

Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]: If $d \geq 2$ and $\mathcal{F} \in \mathbb{F}(d)$ then $\operatorname{dim} \operatorname{Aut}(\mathcal{F}) \leq 2$. If in addition $\operatorname{dim} \operatorname{Aut}(\mathcal{F})=2$ then the Lie algebra of $\operatorname{Aut}(\mathcal{F})$ is not abelian.

Theorem A: If $d \geq 2$ and $\mathcal{F} \in \mathbb{F}(d)$ with $\operatorname{dim} \operatorname{Aut}(\mathcal{F})=2$ then \mathcal{F} is conjugated either to $\mathcal{F}_{1}^{d}=\left[d x+y^{d} d y\right]$ or $\mathcal{F}_{2}^{d}=\left[y^{d} d x+d y\right]$. Moreover the orbits $\mathcal{O}\left(\mathcal{F}_{1}^{d}\right)$ and $\mathcal{O}\left(\mathcal{F}_{2}^{d}\right)$ are closed and different.
Generalizing the cases $d=2$ by [C,D,GB,M, 2010] and $d=3$ by [Alcántara, Ronzón-Lavie, 2016].

Small closed orbits

Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]:
If $d \geq 2$ and $\mathcal{F} \in \mathbb{F}(d)$ then $\operatorname{dim} \operatorname{Aut}(\mathcal{F}) \leq 2$. If in addition $\operatorname{dim} \operatorname{Aut}(\mathcal{F})=2$ then the Lie algebra of $\operatorname{Aut}(\mathcal{F})$ is not abelian.

Theorem A: If $d \geq 2$ and $\mathcal{F} \in \mathbb{F}(d)$ with $\operatorname{dim} \operatorname{Aut}(\mathcal{F})=2$ then \mathcal{F} is conjugated either to $\mathcal{F}_{1}^{d}=\left[d x+y^{d} d y\right]$ or $\mathcal{F}_{2}^{d}=\left[y^{d} d x+d y\right]$. Moreover the orbits $\mathcal{O}\left(\mathcal{F}_{1}^{d}\right)$ and $\mathcal{O}\left(\mathcal{F}_{2}^{d}\right)$ are closed and different.
Idea of the proof: Classify all the affine 2-dimensional Lie subalgebras \mathfrak{a} of $\mathfrak{X}\left(\mathbb{P}_{\mathbb{C}}^{2}\right) \simeq \mathfrak{s l}(3, \mathbb{C})=\left\{M \in \mathrm{M}_{3 \times 3}(\mathbb{C}) \mid \operatorname{Tr}(M)=0\right\}$ up to conjugation and impose that $\left(L_{A} \Omega\right) \wedge \Omega=0$ for each $A \in \mathfrak{a}$. In coordinates $[x, y, z]$ the isomorphism $\mathfrak{s l}(3, \mathbb{C}) \xrightarrow{\sim} \mathfrak{X}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ writes as

$$
M \mapsto A=\left(\partial_{x}, \partial_{y}, \partial_{z}\right) M\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

In the affine chart $z=1$ we replace ∂_{z} by $-x \partial_{x}-y \partial_{y}$.

Small closed orbits

Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]:
If $d \geq 2$ and $\mathcal{F} \in \mathbb{F}(d)$ then $\operatorname{dim} \operatorname{Aut}(\mathcal{F}) \leq 2$. If in addition $\operatorname{dim} \operatorname{Aut}(\mathcal{F})=2$ then the Lie algebra of $\operatorname{Aut}(\mathcal{F})$ is not abelian.

Theorem A: If $d \geq 2$ and $\mathcal{F} \in \mathbb{F}(d)$ with $\operatorname{dim} \operatorname{Aut}(\mathcal{F})=2$ then \mathcal{F} is conjugated either to $\mathcal{F}_{1}^{d}=\left[d x+y^{d} d y\right]$ or $\mathcal{F}_{2}^{d}=\left[y^{d} d x+d y\right]$. Moreover the orbits $\mathcal{O}\left(\mathcal{F}_{1}^{d}\right)$ and $\mathcal{O}\left(\mathcal{F}_{2}^{d}\right)$ are closed and different.
Remark: Loud's isochronous center $\left[\left(x-\frac{x^{2}}{2}+\frac{y^{2}}{2}\right) d x-y(x-1) d y\right.$] is conjugated (via $\operatorname{PGL}(3, \mathbb{C})$) to the degree $d=2$ Fermat foliation $\mathcal{F}_{F}^{d}=\left[x^{d} \partial_{x}+y^{d} \partial_{y}+z^{d} \partial_{z}\right]=\left[\left(y^{d}-y\right) d x-\left(x^{d}-x\right) d y\right] \in \mathbb{F}(d)$ having $3 d$ different (complex) invariant lines:

$$
x y z\left(x^{d-1}-y^{d-1}\right)\left(x^{d-1}-z^{d-1}\right)\left(y^{d-1}-z^{d-1}\right)=0 .
$$

Small closed orbits

Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]:
If $d \geq 2$ and $\mathcal{F} \in \mathbb{F}(d)$ then $\operatorname{dim} \operatorname{Aut}(\mathcal{F}) \leq 2$. If in addition $\operatorname{dim} \operatorname{Aut}(\mathcal{F})=2$ then the Lie algebra of $\operatorname{Aut}(\mathcal{F})$ is not abelian.
Theorem A: If $d \geq 2$ and $\mathcal{F} \in \mathbb{F}(d)$ with $\operatorname{dim} \operatorname{Aut}(\mathcal{F})=2$ then \mathcal{F} is conjugated either to $\mathcal{F}_{1}^{d}=\left[d x+y^{d} d y\right]$ or $\mathcal{F}_{2}^{d}=\left[y^{d} d x+d y\right]$. Moreover the orbits $\mathcal{O}\left(\mathcal{F}_{1}^{d}\right)$ and $\mathcal{O}\left(\mathcal{F}_{2}^{d}\right)$ are closed and different.
Remark: Loud's isochronous center $\left[\left(x-\frac{x^{2}}{2}+\frac{y^{2}}{2}\right) d x-y(x-1) d y\right.$] is conjugated (via $\operatorname{PGL}(3, \mathbb{C})$) to the degree $d=2$ Fermat foliation $\mathcal{F}_{F}^{d}=\left[x^{d} \partial_{x}+y^{d} \partial_{y}+z^{d} \partial_{z}\right]=\left[\left(y^{d}-y\right) d x-\left(x^{d}-x\right) d y\right] \in \mathbb{F}(d)$ having $3 d$ different (complex) invariant lines.
Indeed, if $g(x, y)=(1+x-y, i(1-x-y)) \in \operatorname{PGL}(3, \mathbb{C})$ then

$$
\frac{1}{2} g^{*}\left(y(1-x) d y+\left(x-\frac{x^{2}}{2}+\frac{y^{2}}{2}\right) d x\right)=\left(y^{2}-y\right) d x-\left(x^{2}-x\right) d y
$$

The orbit $\mathcal{O}\left(\mathcal{F}_{F}^{d}\right)$ has dimension 8 and its closure contains $\mathcal{O}\left(\mathcal{F}_{2}^{d}\right)$.

Inflection divisor and convex foliations

Definition [Pereira, 2001]: The inflection divisor of $\mathcal{F} \in \mathbb{F}(d)$ defined by $X=A \partial_{x}+B \partial_{y}+C \partial_{z}$ is the degree $3 d$ algebraic curve

$$
I_{\mathcal{F}}(x, y, z)=\left|\begin{array}{ccc}
x & y & z \\
X(x) & X(y) & X(z) \\
X^{2}(x) & X^{2}(y) & X^{2}(z)
\end{array}\right|=0
$$

consisting in the inflection points of the leaves of \mathcal{F}, including all its invariant lines. The foliation \mathcal{F} is convex when $I_{\mathcal{F}}$ is entirely composed by invariant lines.
Example: $\mathcal{F}_{F}^{d}=\left[x^{d} \partial_{x}+y^{d} \partial_{y}+z^{d} \partial_{z}\right]$ is convex but \mathcal{F}_{1}^{d} is not.
The subset $\mathbb{F}_{C}(d) \subset \mathbb{F}(d)$ consisting in convex foliations is closed.

Inflection divisor and convex foliations

Definition [Pereira, 2001]: The inflection divisor of $\mathcal{F} \in \mathbb{F}(d)$ defined by $X=A \partial_{x}+B \partial_{y}+C \partial_{z}$ is the degree $3 d$ algebraic curve

$$
I_{\mathcal{F}}(x, y, z)=\left|\begin{array}{ccc}
x & y & z \\
X(x) & X(y) & X(z) \\
X^{2}(x) & X^{2}(y) & X^{2}(z)
\end{array}\right|=0
$$

consisting in the inflection points of the leaves of \mathcal{F}, including all its invariant lines. The foliation \mathcal{F} is convex when $I_{\mathcal{F}}$ is entirely composed by invariant lines.
Example: $\mathcal{F}_{F}^{d}=\left[x^{d} \partial_{x}+y^{d} \partial_{y}+z^{d} \partial_{z}\right]$ is convex but \mathcal{F}_{1}^{d} is not.
The subset $\mathbb{F}_{C}(d) \subset \mathbb{F}(d)$ consisting in convex foliations is closed.
Theorem [Favre-Pereira, 2015, after Schlomiuk, Vulpe, 2004]:
$\mathbb{F}_{C}(2)=\mathcal{O}\left(\mathcal{F}_{F}^{2}\right) \cup \mathcal{O}\left(\left[x^{2} \partial_{x}+y^{2} \partial_{y}\right]\right) \cup \mathcal{O}\left(\mathcal{F}_{2}^{2}\right)$. Moreover,
$\mathbb{F}_{C}(2)=\overline{\mathcal{O}\left(\left(x^{2}-x\right) \partial_{x}+\left(y^{2}-y\right) \partial_{y}\right)} \supset \overline{\mathcal{O}\left(x^{2} \partial_{x}+y^{2} \partial_{y}\right)} \supset \mathcal{O}\left(\mathcal{F}_{2}^{2}\right)$.
In fact, as $t \rightarrow \infty$,
$\frac{1}{t^{d+1}}(t x, t y)^{*}\left(\left(x^{d}-x\right) d y-\left(y^{d}-y\right) d x\right)=\left(x^{d}-\frac{x}{t^{d-1}}\right) d y-\left(y^{d}-\frac{y}{t^{d-1}}\right) d x \rightarrow x^{d} d y-y^{d} d x$.

Basins of attraction

Definition: The basin of attraction of $\mathcal{F} \in \mathbb{F}(d)$ is

$$
\mathbb{B}(\mathcal{F})=\{\mathcal{G} \in \mathbb{F}(d) \mid \mathcal{F} \in \overline{\mathcal{O}(\mathcal{G})}\}=\{\mathcal{G} \in \mathbb{F}(d) \mid \mathcal{O}(\mathcal{F}) \subset \overline{\mathcal{O}(\mathcal{G})}\}
$$

Remark: If $\mathcal{F} \notin \mathbb{F}_{C}(d)$ and $\mathcal{G} \in \mathbb{B}(\mathcal{F})$ then $\mathcal{G} \notin \mathbb{F}_{C}(d)$.
Theorem [C,D,G-B,M, 2010]: $\mathbb{B}\left(\mathcal{F}_{1}^{2}\right)=\mathbb{F}(2) \backslash \mathbb{F} C(2)$ is open dense.
This means that for every degree 2 foliation \mathcal{F} which is not conjugated to $\left(x^{2}-x\right) \partial_{x}+\left(y^{2}-y\right) \partial_{x}$, nor $x^{2} \partial_{x}+y^{2} \partial_{y}$, nor $\partial_{x}+y^{2} \partial_{y}$, there exists $g \in \operatorname{PGL}(3, \mathbb{C})$ such that $g^{*} \mathcal{F}$ is arbitrarily close to $y^{2} \partial_{x}+\partial_{y}$ in $\mathbb{F}(2)$.

Basins of attraction

Definition: The basin of attraction of $\mathcal{F} \in \mathbb{F}(d)$ is

$$
\mathbb{B}(\mathcal{F})=\{\mathcal{G} \in \mathbb{F}(d) \mid \mathcal{F} \in \overline{\mathcal{O}(\mathcal{G})}\}=\{\mathcal{G} \in \mathbb{F}(d) \mid \mathcal{O}(\mathcal{F}) \subset \overline{\mathcal{O}(\mathcal{G})}\}
$$

Remark: If $\mathcal{F} \notin \mathbb{F}_{C}(d)$ and $\mathcal{G} \in \mathbb{B}(\mathcal{F})$ then $\mathcal{G} \notin \mathbb{F}_{C}(d)$.
Theorem [C,D,G-B,M, 2010]: $\mathbb{B}\left(\mathcal{F}_{1}^{2}\right)=\mathbb{F}(2) \backslash \mathbb{F}_{C}(2)$ is open dense.
This means that for every degree 2 foliation \mathcal{F} which is not conjugated to $\left(x^{2}-x\right) \partial_{x}+\left(y^{2}-y\right) \partial_{x}$, nor $x^{2} \partial_{x}+y^{2} \partial_{y}$, nor $\partial_{x}+y^{2} \partial_{y}$, there exists $g \in \operatorname{PGL}(3, \mathbb{C})$ such that $g^{*} \mathcal{F}$ is arbitrarily close to $y^{2} \partial_{x}+\partial_{y}$ in $\mathbb{F}(2)$.
Recall that $\operatorname{dim} \mathbb{F}(d)=d^{2}+4 d+2$. Assume $d \geq 2$.
Theorem B: $\operatorname{dim} \mathbb{B}\left(\mathcal{F}_{1}^{d}\right) \geq \operatorname{dim} \mathbb{F}(d)-(d-3)$ if $d \geq 3$.
In particular, $\mathbb{B}\left(\mathcal{F}_{1}^{3}\right)$ is open dense in $\mathbb{F}(3)$.
Theorem $\mathrm{C}: \operatorname{dim} \mathbb{B}\left(\mathcal{F}_{2}^{d}\right) \geq \operatorname{dim} \mathbb{F}(d)-(d-1)$.
Theorem $\mathrm{D}: \operatorname{dim}\left(\mathbb{B}\left(\mathcal{F}_{1}^{d}\right) \cap \mathbb{B}\left(\mathcal{F}_{2}^{d}\right)\right) \geq \operatorname{dim} \mathbb{F}(d)-3 d$.

Degeneracy and non-degeneracy criteria

Definition: A foliation \mathcal{F} degenerates onto \mathcal{G} if $\mathcal{G} \in \overline{\mathcal{O}(\mathcal{F})} \backslash \mathcal{O}(\mathcal{F})$. If $\mathbb{C} \ni t \mapsto g_{t} \in \operatorname{PGL}(3, \mathbb{C})$ is continuous and $\mathcal{G}=\lim _{t \rightarrow \infty} g_{t}^{* \mathcal{F}}$ is not conjugated to \mathcal{F} then \mathcal{F} degenerates onto \mathcal{G} (denoted by $\mathcal{F} \rightarrow \mathcal{G}$).
Remark: If $\mathcal{F} \rightarrow \mathcal{G}$ then $\operatorname{dim} \mathcal{O}(\mathcal{F})>\operatorname{dim} \mathcal{O}(\mathcal{G})$ and $\operatorname{deg} \rho_{\mathcal{F}}^{\text {inv }} \leq \operatorname{deg} \operatorname{lig}_{\mathcal{G}}^{\text {inv }}$.

Degeneracy and non-degeneracy criteria

Definition: A foliation \mathcal{F} degenerates onto \mathcal{G} if $\mathcal{G} \in \overline{\mathcal{O}(\mathcal{F})} \backslash \mathcal{O}(\mathcal{F})$. If $\mathbb{C} \ni t \mapsto g_{t} \in \operatorname{PGL}(3, \mathbb{C})$ is continuous and $\mathcal{G}=\lim _{t \rightarrow \infty} g_{t}^{*} \mathcal{F}$ is not conjugated to \mathcal{F} then \mathcal{F} degenerates onto \mathcal{G} (denoted by $\mathcal{F} \rightarrow \mathcal{G}$). Remark: If $\mathcal{F} \rightarrow \mathcal{G}$ then $\operatorname{dim} \mathcal{O}(\mathcal{F})>\operatorname{dim} \mathcal{O}(\mathcal{G})$ and $\operatorname{deg} \rho_{\mathcal{F}}^{\text {inv }} \leq \operatorname{deg} \rho_{\mathcal{G}}^{\text {inv }}$. If $C: f(x, y)=0$ is a non-invariant curve and $p=\left(x_{0}, y_{0}\right) \in C$ the tangency order $\operatorname{Tang}(\mathcal{F}, C, p)=\operatorname{dim}_{\mathbb{C}} \mathbb{C}\left\{x-x_{0}, y-y_{0}\right\} /(f, X(f))$, where X is a local vector field defining \mathcal{F} near p.

Degeneracy and non-degeneracy criteria

Definition: A foliation \mathcal{F} degenerates onto \mathcal{G} if $\mathcal{G} \in \overline{\mathcal{O}(\mathcal{F})} \backslash \mathcal{O}(\mathcal{F})$. If $\mathbb{C} \ni t \mapsto g_{t} \in \operatorname{PGL}(3, \mathbb{C})$ is continuous and $\mathcal{G}=\lim _{t \rightarrow \infty} g_{t}^{* \mathcal{F}}$ is not conjugated to \mathcal{F} then \mathcal{F} degenerates onto \mathcal{G} (denoted by $\mathcal{F} \rightarrow \mathcal{G}$).
Remark: If $\mathcal{F} \rightarrow \mathcal{G}$ then $\operatorname{dim} \mathcal{O}(\mathcal{F})>\operatorname{dim} \mathcal{O}(\mathcal{G})$ and $\operatorname{deg} \rho_{\mathcal{F}}^{\text {inv }} \leq \operatorname{deg} \rho_{\mathcal{G}}^{\text {inv }}$.
If $C: f(x, y)=0$ is a non-invariant curve and $p=\left(x_{0}, y_{0}\right) \in C$ the tangency order $\operatorname{Tang}(\mathcal{F}, C, p)=\operatorname{dim}_{\mathbb{C}} \mathbb{C}\left\{x-x_{0}, y-y_{0}\right\} /(f, X(f))$, where X is a local vector field defining \mathcal{F} near p.

Proposition 1: (a) If $\mathcal{F} \rightarrow \mathcal{F}_{1}^{d}$ then $\operatorname{deg} \operatorname{Itr}_{\mathcal{F}} \geq d-1$.
(b) If there is p regular with $\operatorname{Tang}\left(\mathcal{F}, T_{p}^{\mathbb{P} \mathcal{F}}, p\right)=d$ then $\mathcal{F} \rightarrow \mathcal{F}_{1}^{d}$.

Proposition 2: (a) If $\mathcal{F} \rightarrow \mathcal{F}_{2}^{d}$ then \mathcal{F} possesses a singularity s whose linear part has equal non-zero eigenvalues $(\mathrm{BB}(\mathcal{F}, s)=4)$.
(b) If \mathcal{F} possesses a singularity s with equal non-zero eigenvalues and a non-invariant line $L \ni s$ with $\operatorname{Tang}(\mathcal{F}, L, s)=d$ then $\mathcal{F} \rightarrow \mathcal{F}_{2}^{d}$.

Quasi-homogeneous degeneracies via Newton's polygon
If $\omega=\sum_{(i, j) \in I_{x}} a_{i j} x^{i-1} y^{j} d x+\sum_{(i, j) \in I_{y}} b_{i j} x^{i} y^{j-1} d y$ with $a_{i j}, b_{i j} \neq 0$, the Newton's polygon $N(\omega)$ of ω is the convex hull of $I_{x} \cup I_{y} \subset \mathbb{R}^{2}$.

Example: If $\omega=\left(1+y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ then $N(\omega)=$

Quasi-homogeneous degeneracies via Newton's polygon
If $\omega=\sum_{(i, j) \in I_{x}} a_{i j} x^{i-1} y^{j} d x+\sum_{(i, j) \in I_{y}} b_{i j} x^{i} y^{j-1} d y$ with $a_{i j}, b_{i j} \neq 0$, the Newton's polygon $N(\omega)$ of ω is the convex hull of $I_{x} \cup I_{y} \subset \mathbb{R}^{2}$. If $L=\{a i+b j=c\} \subset \partial N(\omega)$ and $g_{t}(x, y)=\left(t^{a} x, t^{b} y\right)$ then

$$
\begin{aligned}
& \qquad \lim _{t^{ \pm 1} \rightarrow \infty} t^{-c} g_{t}^{*} \omega=\sum_{(i, j) \in I_{x} \cap L} a_{i j} x^{i-1} y^{j} d x+\sum_{(i, j) \in I_{y} \cap L} b_{i j} x^{i} y^{j-1} d y \\
& \text { nich is invariant by } a x \partial_{x}+b y \partial_{y} \\
& \text { kample: If } \omega=\left(1+y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y \text { then } N(\omega)=
\end{aligned}
$$

- $g_{t}(x, y)=\left(t^{3} x, t y\right) \Rightarrow t^{-3} g_{t}^{*} \omega=d x+y^{2} d y+t^{2} y^{2} d x+t^{4} x^{2} d y$ tends to $d x+y^{2} d y$ as $t \rightarrow 0$, which is invariant by $3 x \partial_{x}+y \partial_{y}$.

Quasi-homogeneous degeneracies via Newton's polygon
If $\omega=\sum_{(i, j) \in I_{x}} a_{i j} x^{i-1} y^{j} d x+\sum_{(i, j) \in I_{y}} b_{i j} x^{i} y^{j-1} d y$ with $a_{i j}, b_{i j} \neq 0$, the Newton's polygon $N(\omega)$ of ω is the convex hull of $I_{x} \cup I_{y} \subset \mathbb{R}^{2}$. If $L=\{a i+b j=c\} \subset \partial N(\omega)$ and $g_{t}(x, y)=\left(t^{a} x, t^{b} y\right)$ then

$$
\begin{aligned}
& \lim _{t^{ \pm 1} \rightarrow \infty} t^{-c} g_{t}^{*} \omega=\sum_{(i, j) \in I_{x} \cap L} a_{i j} x^{i-1} y^{j} d x+\sum_{(i, j) \in I_{y} \cap L} b_{i j} x^{i} y^{j-1} d y \\
& \text { iich is invariant by } a x \partial_{x}+b y \partial_{y} \\
& \text { ample: If } \omega=\left(1+y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y \text { then } N(\omega)=
\end{aligned}
$$

- $g_{t}(x, y)=\left(t^{3} x, t y\right) \Rightarrow t^{-3} g_{t}^{*} \omega=d x+y^{2} d y+t^{2} y^{2} d x+t^{4} x^{2} d y$ tends to $d x+y^{2} d y$ as $t \rightarrow 0$, which is invariant by $3 x \partial_{x}+y \partial_{y}$.
- $g_{t}(x, y)=(t x, t y) \Rightarrow t^{-3} g_{t}^{*} \omega=y^{2} d x+\left(x^{2}+y^{2}\right) d y+t^{-2} d x$ tends to $y^{2} d x+\left(x^{2}+y^{2}\right) d y$ as $t \rightarrow \infty$, invariant by $x \partial_{x}+y \partial_{y}$.

Quasi-homogeneous degeneracies via Newton's polygon
If $\omega=\sum_{(i, j) \in I_{x}} a_{i j} x^{i-1} y^{j} d x+\sum_{(i, j) \in I_{y}} b_{i j} x^{i} y^{j-1} d y$ with $a_{i j}, b_{i j} \neq 0$, the Newton's polygon $N(\omega)$ of ω is the convex hull of $I_{x} \cup I_{y} \subset \mathbb{R}^{2}$. If $L=\{a i+b j=c\} \subset \partial N(\omega)$ and $g_{t}(x, y)=\left(t^{a} x, t^{b} y\right)$ then

$$
\begin{aligned}
& \lim _{t^{ \pm 1} \rightarrow \infty} t^{-c} g_{t}^{*} \omega=\sum_{(i, j) \in I_{x} \cap L} a_{i j} x^{i-1} y^{j} d x+\sum_{(i, j) \in I_{y} \cap L} b_{i j} x^{i} y^{j-1} d y \\
& \text { hich is invariant by } a x \partial_{x}+\text { by } \partial_{y} \\
& \text { ample: If } \omega=\left(1+y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y \text { then } N(\omega)=
\end{aligned}
$$

- $g_{t}(x, y)=\left(t^{3} x, t y\right) \Rightarrow t^{-3} g_{t}^{*} \omega=d x+y^{2} d y+t^{2} y^{2} d x+t^{4} x^{2} d y$ tends to $d x+y^{2} d y$ as $t \rightarrow 0$, which is invariant by $3 x \partial_{x}+y \partial_{y}$.
- $g_{t}(x, y)=(t x, t y) \Rightarrow t^{-3} g_{t}^{*} \omega=y^{2} d x+\left(x^{2}+y^{2}\right) d y+t^{-2} d x$ tends to $y^{2} d x+\left(x^{2}+y^{2}\right) d y$ as $t \rightarrow \infty$, invariant by $x \partial_{x}+y \partial_{y}$.
- $g_{t}(x, y)=(t x, y / t) \Rightarrow t^{-1} g_{t}^{*} \omega=d x+x^{2} d y+t^{-2} y^{2} d x+t^{-3} y^{2} d y$ tends to $d x+x^{2} d y$ as $t \rightarrow \infty$, invariant by $x \partial_{x}-y \partial_{y}$.

Quasi-homogeneous degeneracies via Newton's polygon
If $\omega=\sum_{(i, j) \in I_{x}} a_{i j} x^{i-1} y^{j} d x+\sum_{(i, j) \in I_{y}} b_{i j} x^{i} y^{j-1} d y$ with $a_{i j}, b_{i j} \neq 0$, the Newton's polygon $N(\omega)$ of ω is the convex hull of $I_{x} \cup I_{y} \subset \mathbb{R}^{2}$. If $L=\{a i+b j=c\} \subset \partial N(\omega)$ and $g_{t}(x, y)=\left(t^{a} x, t^{b} y\right)$ then

$$
\begin{aligned}
& \lim _{t^{ \pm 1} \rightarrow \infty} t^{-c} g_{t}^{*} \omega=\sum_{(i, j) \in I_{x} \cap L} a_{i j} x^{i-1} y^{j} d x+\sum_{(i, j) \in I_{y} \cap L} b_{i j} x^{i} y^{j-1} d y \\
& \text { hich is invariant by } a x \partial_{x}+\text { by } \partial_{y} \\
& \text { ample: If } \omega=\left(1+y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y \text { then } N(\omega)=
\end{aligned}
$$

- $g_{t}(x, y)=\left(t^{3} x, t y\right) \Rightarrow t^{-3} g_{t}^{*} \omega=d x+y^{2} d y+t^{2} y^{2} d x+t^{4} x^{2} d y$ tends to $d x+y^{2} d y$ as $t \rightarrow 0$, which is invariant by $3 x \partial_{x}+y \partial_{y}$.
- $g_{t}(x, y)=(t x, t y) \Rightarrow t^{-3} g_{t}^{*} \omega=y^{2} d x+\left(x^{2}+y^{2}\right) d y+t^{-2} d x$ tends to $y^{2} d x+\left(x^{2}+y^{2}\right) d y$ as $t \rightarrow \infty$, invariant by $x \partial_{x}+y \partial_{y}$.
- $g_{t}(x, y)=(t x, y / t) \Rightarrow t^{-1} g_{t}^{*} \omega=d x+x^{2} d y+t^{-2} y^{2} d x+t^{-3} y^{2} d y$ tends to $d x+x^{2} d y$ as $t \rightarrow \infty$, invariant by $x \partial_{x}-y \partial_{y}$.

$$
\overline{\mathcal{O}(\mathcal{F})} \supset \overline{\mathcal{O}(\mathcal{H})} \supset \mathcal{O}\left(\mathcal{F}_{1}^{2}\right) \cup \mathcal{O}\left(\mathcal{F}_{2}^{2}\right) .
$$

Degeneracy onto \mathcal{F}_{1}^{d}

Proof of Proposition 1: (a) follows from $I_{\mathcal{F}_{1}^{d}}=y^{d-1} z^{2 d+1}$ noting that $y=0$ is not invariant by $\mathcal{F}_{1}^{d}=\left[d x+y^{d} d y\right]=\left[y^{d} \partial_{x}-\partial_{y}\right]$.
(b) Fix affine coordinates (x, y) with $p=(0,0)$ and $T_{p}^{\mathbb{P}} \mathcal{F}=\{x=0\}$.

Then \mathcal{F} is defined by $\omega=(1+a(x, y)) d x+(c(y)+x b(x, y)) d y$ and $X=(c(y)+x b(x, y)) \partial_{x}-(1+a(x, y)) \partial_{y}$ with $a(0,0)=0$ and $c(0)=0$. Since the ideal $(x, X(x))=(x, c(y))$ and

$$
\operatorname{Tang}\left(\mathcal{F}, T_{p}^{\mathbb{P} \mathcal{F}}, p\right)=\operatorname{dim}_{\mathbb{C}} \mathbb{C}\{x, y\} /(x, c(y))=d
$$

we deduce that $c(y)=c y^{d}$ with $c \neq 0$. Taking the family of automorphisms $g_{t}(x, y)=\left(\frac{c x}{t^{d+1}}, \frac{y}{t}\right) \in \operatorname{PGL}(3, \mathbb{C})$ we obtain that

$$
\frac{t^{d+1}}{c} g_{t}^{*} \omega=d x+y^{d} d y+\left[a\left(\frac{c x}{t^{d+1}}, \frac{y}{t}\right) d x+\frac{x}{t} b\left(\frac{c x}{t^{d+1}}, \frac{y}{t}\right) d y\right]
$$

tends to $d x+y^{d} d y$ as $t \rightarrow \infty$.

Theorem B: Basin of attraction of $\mathcal{F}_{1}^{d}, d \geq 3$

It can be checked that the set $\Sigma \subset \mathbb{F}(d) \times \mathbb{P}_{\mathbb{C}}^{2}$ consisting in (\mathcal{F}, p) such that $p \notin \operatorname{Sing}(\mathcal{F})$ and $\operatorname{Tang}\left(\mathcal{F}, T_{p}^{\mathbb{P}} \mathcal{F}, p\right)=d$ is defined by

$$
\binom{X(x)}{X(y)}(p) \neq\binom{ 0}{0},\left|\begin{array}{cc}
X(x) & X^{j}(x) \\
X(y) & X^{j}(y)
\end{array}\right|(p)=0, j=2, \ldots, d
$$

where X is a polynomial vector field defining \mathcal{F} in an affine chart (x, y) containing the point p. Hence $\operatorname{dim} \Sigma \geq \operatorname{dim} \mathbb{F}(d)+2-(d-1)$.
By Chevalley's theorem the projection $\pi_{1}(\Sigma)$ of Σ into $\mathbb{F}(d)$ is a constructible set (it contains an open dense subset of its closure).

The set $U \subset \mathbb{F}(d)$ consisting in foliations with totally transverse and reduced inflection divisor is open dense and contains Jouanolou's foliation $\mathcal{J}^{d}=\left[y^{d} \partial_{x}+z^{d} \partial_{y}+x^{d} \partial_{z}\right] \in \pi_{1}(\Sigma)$.
If $\pi_{2}: \mathbb{F}(d) \times \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ and $\mathcal{F} \in U$ then $\pi_{2}\left(\pi_{1}^{-1}(\mathcal{F}) \cap \Sigma\right)$ is finite:
If $I_{X}=\left|\begin{array}{ll}x(x) & x^{2}(x) \\ x(y) & x^{2}(y)\end{array}\right|=K L$ and $x(I x)=\left|\begin{array}{ll}x(x) & x^{3}(x) \\ x(y) & x^{3}(y)\end{array}\right|=X(K) L+K X(L)=K L^{\prime}$ then $\operatorname{gcd}(K, L)=1, X(K)=K L^{\prime \prime}$ and $\{K=0\} \subset I_{\mathcal{F}}$ is invariant!

Theorem B: Basin of attraction of $\mathcal{F}_{1}^{d}, d \geq 3$

It can be checked that the set $\Sigma \subset \mathbb{F}(d) \times \mathbb{P}_{\mathbb{C}}^{2}$ consisting in (\mathcal{F}, p) such that $p \notin \operatorname{Sing}(\mathcal{F})$ and $\operatorname{Tang}\left(\mathcal{F}, T_{p}^{\mathbb{P}} \mathcal{F}, p\right)=d$ is defined by

$$
\binom{X(x)}{X(y)}(p) \neq\binom{ 0}{0},\left|\begin{array}{ll}
X(x) & X^{j}(x) \\
X(y) & X^{j}(y)
\end{array}\right|(p)=0, j=2, \ldots, d,
$$

where X is a polynomial vector field defining \mathcal{F} in an affine chart (x, y) containing the point p. Hence $\operatorname{dim} \Sigma \geq \operatorname{dim} \mathbb{F}(d)+2-(d-1)$.

By Chevalley's theorem the projection $\pi_{1}(\Sigma)$ of Σ into $\mathbb{F}(d)$ is a constructible set (it contains an open dense subset of its closure).
The set $U \subset \mathbb{F}(d)$ consisting in foliations with totally transverse and reduced inflection divisor is open dense and contains Jouanolou's foliation $\mathcal{J}^{d}=\left[y^{d} \partial_{x}+z^{d} \partial_{y}+x^{d} \partial_{z}\right] \in \pi_{1}(\Sigma)$.
If $\pi_{2}: \mathbb{F}(d) \times \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ and $\mathcal{F} \in U$ then $\pi_{2}\left(\pi_{1}^{-1}(\mathcal{F}) \cap \Sigma\right)$ is finite.
Hence $\mathcal{J}^{d} \in \Sigma_{1}:=\pi_{1}(\Sigma) \cap U \subset \mathbb{B}\left(\mathcal{F}_{1}^{d}\right)$ and

$$
\operatorname{dim} \Sigma_{1}=\operatorname{dim} \Sigma \geq \operatorname{dim} \mathbb{F}(d)-(d-3)
$$

Idea of the proof of Theorem C

If $s=(0,0) \in \operatorname{Sing}(\mathcal{F})$ has equal non-zero eigenvalues $(\operatorname{BB}(\mathcal{F}, s)=4)$ and $L=\{x=0\}$ satisfies $\operatorname{Tang}(\mathcal{F}, L, s)=d$ then \mathcal{F} is defined by

$$
\omega=(x d y-y d x)+y^{d} d y+a(x, y) d x+x b(x, y) d y
$$

with $a(0,0)=b(0,0)=0$ and

$$
\begin{aligned}
& \quad \lim _{t \rightarrow 0} \frac{1}{t^{d+1}}\left(\left(t^{d} x, t y\right)^{*} \omega\right) \rightarrow x d y-y d x+y^{d} d y \in \mathcal{O}\left(\mathcal{F}_{2}^{d}\right) . \\
& \Sigma_{2}=\{\mathcal{F} \in \mathbb{F}(d) \mid \exists L \ni s, \operatorname{BB}(\mathcal{F}, s)=4, \operatorname{Tang}(\mathcal{F}, L, s)=d\} \\
& \text { has codimension } \leq d-1 \text { and it is contained in } \mathbb{B}\left(\mathcal{F}_{2}^{d}\right) .
\end{aligned}
$$

Idea of the proof of Theorem C and Theorem D

If $s=(0,0) \in \operatorname{Sing}(\mathcal{F})$ has equal non-zero eigenvalues $(\operatorname{BB}(\mathcal{F}, s)=4)$ and $L=\{x=0\}$ satisfies $\operatorname{Tang}(\mathcal{F}, L, s)=d$ then \mathcal{F} is defined by

$$
\omega=(x d y-y d x)+y^{d} d y+a(x, y) d x+x b(x, y) d y
$$

with $a(0,0)=b(0,0)=0$ and

$$
\lim _{t \rightarrow 0} \frac{1}{t^{d+1}}\left(\left(t^{d} x, t y\right)^{*} \omega\right) \rightarrow x d y-y d x+y^{d} d y \in \mathcal{O}\left(\mathcal{F}_{2}^{d}\right)
$$

$\Sigma_{2}=\{\mathcal{F} \in \mathbb{F}(d) \mid \exists L \ni s, \operatorname{BB}(\mathcal{F}, s)=4, \operatorname{Tang}(\mathcal{F}, L, s)=d\}$ has codimension $\leq d-1$ and it is contained in $\mathbb{B}\left(\mathcal{F}_{2}^{d}\right)$.
The foliation $\mathcal{H}^{d}=\left[\left(x^{d}+y^{d}\right) d x+x^{d} d y\right] \in \Sigma_{1} \cap \Sigma_{2}$ so that $\overline{\mathcal{O}\left(\mathcal{H}^{d}\right)} \supset \mathcal{O}\left(\mathcal{F}_{1}^{d}\right) \cup \mathcal{O}\left(\mathcal{F}_{2}^{d}\right)$, hence $\mathbb{B}\left(\mathcal{H}^{d}\right) \subset \mathbb{B}\left(\mathcal{F}_{1}^{d}\right) \cap \mathbb{B}\left(\mathcal{F}_{2}^{d}\right)$.
The set of foliations defined by

$$
\left(x^{d}+y^{d}+A_{d-1}(x, y)\right) d x+\left(x^{d}+B_{d-1}(x, y)\right) d y \rightarrow \mathcal{H}^{d}
$$

in some affine chart (x, y) of $\mathbb{P}_{\mathbb{C}}^{2}$ has codimension

$$
\left(d^{2}+4 d+2\right)-(2(1+\cdots+d-1)+2)=3 d \quad \text { in } \mathbb{F}(d)
$$

More details are avalaible in the preprint:
S. Bedrouni, D. Marín, Geometry of certain foliations on the complex projective plane, arXiv:2101.11509v4, to appear in The Annali della Scuola Normale Superiore di Pisa.

Thanks for your attention!

[^0]: ${ }^{1}$ Supported by the grants PID2021-125625NB-I00 and 2021SGR01015.

