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Foliations of degree d on P4

In homogeneous coordinates [x, y, z] they are given by a
homogeneous polynomial vector field of degree d:

X =A(x,y,2)0« + B(x,y,2)0, + C(x,y, z)0,

with gcd(A, B, C) = 1. If R = x0x + y0, + 20, the 2-dimensional
distribution (X,R) on C3 induces a line distribution on PZ whose
integral curves are the leaves of the foliation F defined by X.
Dually, F is defined by ker Q = (X, R), where

dx dy dz
Q=wxigr(dxANdyANdz)=| x y z |=Pdx+ Qdy+ Rdz.
A B C
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X =A(x,y,2)0« + B(x,y,2)0, + C(x,y, z)0,

with gcd(A, B, C) = 1. If R = x0x + y0, + z0,, the 2-dimensional
distribution (X,R) on C3 induces a line distribution on PZ whose
integral curves are the leaves of the foliation F defined by X.
Dually, F is defined by ker Q = (X, R), where

dx dy dz
Q=wxigr(dxANdyANdz)=| x y z |=Pdx+ Qdy+ Rdz.
A B C

Notice that P, @, R are homogeneous polynomials of degree d + 1.
Pulling-back Q to the affine chart ¢« : C? < P2, u(x,y) = [x,y, 1],
we obtain w = t*Q = P(x, y, 1)dx + Q(x,y, 1)dy, which has
degree < d if and only if P(x,y,0) = Q(x,y,0) =0, i.e. if the line
at infinity z = 0 associated to the affine chart ¢ is invariant by F.
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The space [F(d) of foliations of degree d
In the affine chart (x, y) the foliation F € F(d) is given by
w = Z p,-J-xiyjdx+ Z q,-jx"yjdy+ Z rgxiyj(xdy—ydx)
0<i,j<d 0<ij<d i+j=d

up to multiplication by a non-zero scalar, i.e. F(d) is an open dense
subset of P¢, Ny = 2(HI2) 4 (g 4 1) — 1= d? 1 4d + 2.
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The space [F(d) of foliations of degree d
In the affine chart (x, y) the foliation F € F(d) is given by
w = Z p,-J-xiyjdx+ Z q,-jx"yjdy+ Z rgxiyj(xdy—ydx)
0<i,j<d 0<ij<d i+j=d

up to multiplication by a non-zero scalar, i.e. F(d) is an open dense
subset of P¢, Ny = 2(HI2) 4 (g 4 1) — 1= d? 1 4d + 2.

The group Aut(P2) = PGL(3,C) acts naturally on F(d) by means
of (g, F) — g"F. If F € F(d) is defined by ker Q and

g = [gij] € PGL(3,C) then g*F is defined by the kernel of
g=9a X = g11X + g2y + 8132
y = 81X+ 8y + 8232
Z = g31X + 832y + 8332

We define the orbit and the isotropy subgroup of F € F(d) by
O(F) = {g"F | g € Aut(PR)}, Aut(F) = {g € Aut(PR)|g"F = F}.
We have that dim O(F) + dim Aut(F) = dim PGL(3,C) = 8.
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Small closed orbits
Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]:
If d > 2 and F € F(d) then dim Aut(F) < 2. If in addition
dim Aut(F) = 2 then the Lie algebra of Aut(F) is not abelian.
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Small closed orbits
Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]:
If d > 2 and F € F(d) then dim Aut(F) < 2. If in addition
dim Aut(F) = 2 then the Lie algebra of Aut(F) is not abelian.

Theorem A: If d > 2 and F € F(d) with dim Aut(F) = 2 then F
is conjugated either to F¢ = [dx + y9dy] or F§ = [y7dx + dy].
Moreover the orbits O(F¢) and O(F¢) are closed and different.

Generalizing the cases d = 2 by [C,D,GB,M, 2010] and d = 3 by
[Alcantara, Ronzén-Lavie, 2016].
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Small closed orbits

Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]:
If d > 2 and F € F(d) then dim Aut(F) < 2. If in addition
dim Aut(F) = 2 then the Lie algebra of Aut(F) is not abelian.

Theorem A: If d > 2 and F € F(d) with dim Aut(F) = 2 then F
is conjugated either to F¢ = [dx + y9dy] or F§ = [y7dx + dy].
Moreover the orbits O(F¢) and O(F¢) are closed and different.
Idea of the proof: Classify all the affine 2-dimensional Lie
subalgebras a of X(P2) ~ sl(3,C) = {M € M3,3(C) | Tr(M) = 0}
up to conjugation and impose that (LaQ) A Q = 0 for each A € a.
In coordinates [x, y, z] the isomorphism s[(3,C) = X(IP2) writes as
X
M — A= (0x,0y,0. )M | y
z

In the affine chart z = 1 we replace 0, by —xd, — y0,.
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Small closed orbits

Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]:
If d > 2 and F € F(d) then dim Aut(F) < 2. If in addition
dim Aut(F) = 2 then the Lie algebra of Aut(F) is not abelian.

Theorem A: If d > 2 and F € F(d) with dim Aut(F) = 2 then F
is conjugated either to F¢ = [dx + y9dy] or F§ = [y7dx + dy].
Moreover the orbits O(F¢) and O(F¢) are closed and different.

Remark: Loud's isochronous center [(x — %2 + y;)dx —y(x —1)dy]
is conjugated (via PGL(3,C)) to the degree d = 2 Fermat foliation
FE=[x90c+y90, + 290, = [(y¥ — y)dx — (x? = x)dy] € F(d)

having 3d different (complex) invariant lines: i

XyZ(Xdil . ydfl)(xdfl . del)(ydfl . del) —0.




Small closed orbits
Theorem [Cerveau, Deserti, Garba-Belko, Meziani, 2010]:
If d > 2 and F € F(d) then dim Aut(F) < 2. If in addition
dim Aut(F) = 2 then the Lie algebra of Aut(F) is not abelian.

Theorem A: If d > 2 and F € F(d) with dim Aut(F) = 2 then F
is conjugated either to F¢ = [dx + y9dy] or F§ = [y7dx + dy].
Moreover the orbits O(F¢) and O(F¢) are closed and different.

Remark: Loud's isochronous center [(x — %2 + V;)dx —y(x —1)dy]
is conjugated (via PGL(3, C)) to the degree d = 2 Fermat foliation
Fd = [x90, + y90, + 290,] = [(y? — y)dx — (x¢ — x)dy] € F(d)
having 3d different (complex) invariant lines.

Indeed, if g(x,y) =(1+x—y,i(1 —x—y)) € PGL(3,C) then

1 2 2

-8 (y(l ~ X)dy + <x - % + y2) dx> — (y2 — y)dx — (x% — x)dy.

The orbit O(F¢) has dimension 8 and its closure contains O(F¥).



Inflection divisor and convex foliations

Definition [Pereira, 2001]: The inflection divisor of F € F(d)
defined by X = A0, + B9, + CO, is the degree 3d algebraic curve

X y z
/f(Xv.yvz): X(X) X(_)/) X(Z) :0’
X2(x) X3(y) X3(2)
consisting in the inflection points of the leaves of F, including all
its invariant lines. The foliation F is convex when /r is entirely
composed by invariant lines.
Example: .7-",‘_-’ = [x90, + yday + z90,] is convex but J—"ld is not.

The subset F¢(d) C F(d) consisting in convex foliations is closed.
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Inflection divisor and convex foliations

Definition [Pereira, 2001]: The inflection divisor of F € F(d)
defined by X = A0, + B9, + CO, is the degree 3d algebraic curve

X y z
/f(Xv.yvz): X(X) X(_)/) X(Z) :0’
X2(x) X3(y) X3(2)
consisting in the inflection points of the leaves of F, including all

its invariant lines. The foliation F is convex when /r is entirely
composed by invariant lines.

Example: .7-",‘_-’ = [x90, + yd(?y + z90,] is convex but J—"f is not.
The subset F¢(d) C F(d) consisting in convex foliations is closed.

Theorem [Favre-Pereira, 2015, after Schlomiuk, Vulpe, 2004]:
Fc(2) = O(F2) U O([x%0x + y?0,]) U O(F3). Moreover,

Fc(2) = O((x2 — x)0x + (y2 — ¥)9y) D O(x20x + y29,) D O(F3).
In fact, as t — oo,

s ()" (< =x)dy—(y /=y ) dx)=(x9 — 757 )dy — (v — gy ) dx—x?dy —y x.
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Basins of attraction
Definition: The basin of attraction of F € F(d) is

B(F) ={G € F(d)| F € O(G)} = {G € F(d) | O(F) c O(9)}.
Remark: If 7 ¢ Fc(d) and G € B(F) then G ¢ Fc(d).

Theorem [C,D,G-B,M, 2010]: B(F2) = F(2) \ Fc(2) is open dense.

This means that for every degree 2 foliation F which is not
conjugated to (x% — x)dx + (y? — y)0x, nor x20 + y2d,, nor

Ox + y20y, there exists g € PGL(3,C) such that g*F is arbitrarily
close to y20y + 0, in F(2).
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Basins of attraction

Definition: The basin of attraction of F € F(d) is

B(F) ={G € F(d)| F € O(G)} = {G € F(d) | O(F) c O(9)}.
Remark: If 7 ¢ Fc(d) and G € B(F) then G ¢ Fc(d).

Theorem [C,D,G-B,M, 2010]: B(F2) = F(2) \ Fc(2) is open dense.

This means that for every degree 2 foliation F which is not
conjugated to (x% — x)dx + (y? — y)0x, nor x20 + y2d,, nor

Ox + y20y, there exists g € PGL(3,C) such that g*F is arbitrarily
close to y20y + 0, in F(2).

Recall that dimF(d) = d? + 4d + 2. Assume d > 2.

Theorem B: dimB(F{) > dimF(d) — (d — 3) if d > 3.
In particular, B(F3) is open dense in F(3).

Theorem C: dim B(F¢) > dimF(d) — (d — 1).
Theorem D: dim(B(F¢) NB(FY)) > dimF(d) —
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Degeneracy and non-degeneracy criteria

Definition: A foliation F degenerates onto G if G € O(F) \ O(F).
If C>t— g € PGL(3,C) is continuous and G = tILm gi F is not

conjugated to F then F degenerates onto G (denoted by F — G).

Remark: If 7 — G then dim O(F) > dim O(G) and deg /1*V < deg ,énv_
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Degeneracy and non-degeneracy criteria

Definition: A foliation F degenerates onto G if G € O(F) \ O(F).
If C>t— g € PGL(3,C) is continuous and G = tILm gi F is not

conjugated to F then F degenerates onto G (denoted by F — G).

Remark: If 7 — G then dim O(F) > dim O(G) and deg /1*V < deg ,énv_

If C: f(x,y)=0is a non-invariant curve and p = (xo, yo0) € C the
tangency order Tang(F, C, p) = dimc C{x — x0, y — yo}/(f, X(f)),
where X is a local vector field defining F near p.
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Degeneracy and non-degeneracy criteria

Definition: A foliation F degenerates onto G if G € O(F) \ O(F).
If C>t— g € PGL(3,C) is continuous and G = tILm gi F is not

conjugated to F then F degenerates onto G (denoted by F — G).
Remark: If 7 — G then dim O(F) > dim O(G) and deg /1*V < deg ,énv_

If C: f(x,y)=0is a non-invariant curve and p = (xo, yo0) € C the
tangency order Tang(F, C, p) = dimc C{x — x0, y — yo}/(f, X(f)),
where X is a local vector field defining F near p.

Proposition 1: (a) If F — F{ then deg /¥ > d — 1.

(b) If there is p regular with Tang(F, T, F, p) = d then F — F{.

Proposition 2: (a) If F — F§ then F possesses a singularity s
whose linear part has equal non-zero eigenvalues (BB(F,s) = 4).

(b) If F possesses a singularity s with equal non-zero eigenvalues
and a non-invariant line L > s with Tang(F, L,s) = d then F — F¥.



Quasi-homogeneous degeneracies via Newton's polygon

If w= Z(iJ)elx ajx " tyldx + Z(ig)ely bix'y/~tdy with ajj, bj # 0,
the Newton's polygon N(w) of w is the convex hull of I, U/, C R?.

Example: If w = (14 y?)dx + (x* + y?)dy then N(w) =

/12



Quasi-homogeneous degeneracies via Newton's polygon

If w= Z(iJ)elx ajx " tyldx + Z(ig)ely bix'y/~tdy with ajj, bj # 0,
the Newton's polygon N(w) of w is the convex hull of I, U/, C R?.
If L={ai+ bj = c} C ON(w) and g:(x,y) = (t°x, tPy) then

lim t “giw= Z a,-jx"_lyjdx+ Z b,-J-xiyj_ldy

tH o0 (igj)elknL (ij)el,nL
which is invariant by axdy + byd,. \
Example: If w = (1 + y?)dx + (x* + y?)dy then N(w) =

o gi(x,y) = (t3x, ty) = t3gfw = dx + y?dy + t2y?dx + t*x*dy
tends to dx + y?dy as t — 0, which is invariant by 3x9x + yd, .
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If L={ai+ bj = c} C ON(w) and g:(x,y) = (t°x, tPy) then

lim t “giw= Z a,-jx"_lyjdx+ Z b,-J-xiyj_ldy

t+l o0

(igj)elknL (ij)el,NL
which is invariant by axdy + byd,. \
Example: If w = (1 + y?)dx + (x* + y?)dy then N(w) =

e gi(x,y) = (t3x, ty) = t3gfw = dx + y?dy + t2y?dx + t4x°dy
tends to dx + y?dy as t — O, which is invariant by 3xdx + yd, .

o gi(x,y) = (tx, ty) = t3gfw = y?dx + (x° + y?)dy + t2dx
tends to yZdx + (x? + y?)dy as t — oo, invariant by x0, + yOy.
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Quasi-homogeneous degeneracies via Newton's polygon

If w= Z(iJ)elx ajx " tyldx + Z(ig)ely bix'y/~tdy with ajj, bj # 0,
the Newton's polygon N(w) of w is the convex hull of I, U/, C R?.
If L={ai+ bj = c} C ON(w) and g:(x,y) = (t°x, tPy) then

lim t “giw= Z a,-jx"_lyjdx+ Z b,-J-xiyj_ldy

tH o0 (igj)elknL (ij)el,nL
which is invariant by axdy + byd,. \
Example: If w = (1 + y?)dx + (x* + y?)dy then N(w) =

o gi(x,y) = (t3x, ty) = t3gfw = dx + y?dy + t2y?dx + t*x*dy
tends to dx + y?dy as t — 0, which is invariant by 3x9x + yd, .

o gi(x,y) = (tx, ty) = t3gfw = y2dx + (" + y?)dy + t2dx
tends to y’dx + (x? + y?)dy as t — oo, invariant by xdx + yd,.

o gi(x,y) = (tx,y/t) = t lgiw = dx + x*dy + t2y2%dx + t3y?dy
tends to dx + x?dy as t — oo, invariant by xdx — yd,.

O(F) > O(H) > O(F7) U O(F3).



Degeneracy onto JF{

Proof of Proposition 1: (a) follows from /ff = y9=122d%1 noting

that y = 0 is not invariant by F¢ = [dx + y9dy] = [y90x — 0, ].

(b) Fix affine coordinates (x, y) with p = (0,0) and TE]—" = {x =0}.

Then F is defined by w = (1 + a(x, y))dx + (c(y) + xb(x, y))dy
and X = (c(y) + xb(x,y))0x — (1 + a(x, y))d, with a(0,0) =0
and ¢(0) = 0. Since the ideal (x, X(x)) = (x, c(y)) and

Tang(F, T, F, p) = dime C{x,y}/(x, c(y)) = d

we deduce that c(y) = cy9 with ¢ # 0. Taking the family of
automorphisms g:(x,y) = (:&7, ¥) € PGL(3, C) we obtain that

td+l d Xy X Xy
— giw=dx+y dy+[a(—tdﬂ,?)dx%—?b(tdﬂ,—)dy}

tends to dx 4 y9dy as t — co.
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Theorem B: Basin of attraction of }"f’, d>3

It can be checked that the set ¥ C F(d) x P2 consisting in (F, p)
such that p ¢ Sing(F) and Tang(F, T, F,p) = d is defined by

(363 )@# (o)

where X is a polynomial vector field defining F in an affine chart
(x,y) containing the point p. Hence dimX¥ > dimF(d) +2 — (d — 1).

X(x) X/(x) o
X(y) Xf(y)'(P)—O,J—z,...,d,

By Chevalley’s theorem the projection 71(X) of X into F(d) is a
constructible set (it contains an open dense subset of its closure).

The set U C F(d) consisting in foliations with
and reduced inflection divisor is open dense and contains
Jouanolou's foliation 79 = [y90y + 290, + x?0,] € m1(X).

If 5 : F(d) x P2 — P2 and F € U then mo(m; }(F) N X) is finite:

If =] X% )X;E;; =KL and X(ix)=| ) iié;g =X(K)L+KX(L)=KL'
then gcd(K, L) =1, X(K) = KL” and {K =0} C Ir is !
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Theorem B: Basin of attraction of }"f’, d>3

It can be checked that the set ¥ C F(d) x P2 consisting in (F, p)
such that p ¢ Sing(F) and Tang(F, T, F,p) = d is defined by

(§E§§ >(p)7é < 8 > §E;§ ﬁg; '(P)Zo,j:2,...,d,

where X is a polynomial vector field defining F in an affine chart
(x, y) containing the point p. Hence dim% > dimF(d) +2 — (d — 1).

By Chevalley’s theorem the projection 71(X) of ¥ into F(d) is a
constructible set (it contains an open dense subset of its closure).

The set U C F(d) consisting in foliations with
and reduced inflection divisor is open dense and contains
Jouanolou's foliation 79 = [y90, + 290, + x90,] € m1 ().

If 5 : F(d) x P2 — P2 and F € U then mo(m; }(F) N X) is finite.
Hence 79 € &1 := m(X) N U C B(FY) and
dimX¥; =dimX > dimF(d) — (d — 3).
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Idea of the proof of Theorem C
If s =(0,0) € Sing(F) has equal non-zero eigenvalues (BB(F,s) = 4)
and L = {x = 0} satisfies Tang(F, L,s) = d then F is defined by
w = (xdy — ydx) + ydy + a(x, y)dx + xb(x, y)dy,

with a(0,0) = b(0,0) = 0 and
: 1 d * d d
tlmm((t x, ty) w) — xdy — ydx + y9dy € O(F3).

Y, ={F e€F(d)|3L>s, BB(F,s) =4, Tang(F,L,s)=d}
has codimension < d — 1 and it is contained in B(FY).
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Idea of the proof of Theorem C and Theorem D
If s =(0,0) € Sing(F) has equal non-zero eigenvalues (BB(F,s) = 4)
and L = {x = 0} satisfies Tang(F, L,s) = d then F is defined by
w = (xdy — ydx) + ydy + a(x, y)dx + xb(x, y)dy,
with a(0,0) = b(0,0) = 0 and

- 1 d * d d
tlmm((t x, ty) w) — xdy — ydx + y9dy € O(F3).

Y, ={F e€F(d)|3L>s, BB(F,s) =4, Tang(F,L,s)=d}
has codimension < d — 1 and it is contained in B(FY).

The foliation HY = [(x? + y9)dx + x9dy] € 1 N L, so that
O(H?) D O(F¢) U O(F§), hence B(H?) C B(F{) NB(FS).
The set of foliations defined by

(x? 4y + Ag-1(x,y))dx + (x? + By-1(x, y))dy — H9
in some affine chart (x, y) of P2 has codimension

(d*>+4d+2)—(2(1+---+d—1)+2)=3d inF(d).
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More details are avalaible in the preprint:
S. Bedrouni, D. Marin, Geometry of certain foliations on the

complex projective plane, arXiv:2101.11509v4, to appear in
The Annali della Scuola Normale Superiore di Pisa.

Thanks for your attention!



