Distribution of limit cycles in quadratic systems

André Zegeling

Guangxi Normal University 广西师范大学
Advances in Qualitative Theory of Differential Equations 2023

Introduction

What is a quadratic system QS?

$$
\begin{aligned}
& \frac{d x}{d t}=a_{00}+a_{10} x+a_{01} y+a_{20} x^{2}+a_{11} x y+a_{02} y^{2} \\
& \frac{d y}{d t}=b_{00}+b_{10} x+b_{01} y+b_{20} x^{2}+b_{11} x y+b_{02} y^{2}
\end{aligned}
$$

Part of Hilbert's $16^{\text {th }}$ problem asks for the upper bound on the number of limit cycles in a quadratic system: $H(2)$.

Currently: $H(2) \geq 4$.

What is a distribution of limit cycles?

What is a distribution of limit cycles?

What is a distribution of limit cycles?

QS4: 2 foci, 2 saddles

QS4: 2 foci, 1 saddle, 1 node

History of the problem for quadratic systems.

The first famous examples of a distribution in QS in the 70's were with ($p \geq 3, q \geq 1$) distribution.

- Chen Lan-sun and Wang Ming-Shu, Relative position and number of limit cycles of a quadratic differential system, Acta Math. Sinica 22 (1979), 751-758.
- Shi Song-ling, A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sinica 23 (1980), 153-158.

The result by Zhang Pingguang.

Zhang Pingguang proved in 2002 that the only possible distributions are $\left(p_{1}, 1\right)$ and $\left(p_{2}, 0\right)$, i.e. $H(2)=\max \left\{p_{1}+1, p_{2}\right\}$.

The collection of papers was summarized in:

On the Distribution and Number of Limit Cycles for Quadratic Systems with two Foci, Zhang Pingguang, Qualitative theory of dynamical systems 3, 437-463 (2002).

The aim of this talk is to simplify and fill gaps in his proof.

The result by Zhang Pingguang.

A calculation shows that

$$
\begin{aligned}
{\left[\int_{0}^{x} f(s) d s \cdot \frac{f(x)}{g(x)}\right]^{\prime} } & =\frac{f^{2}(x)}{g(x)}+\int_{0}^{x} f(s) d s \cdot\left[\frac{f(x)}{g(x)}\right]^{\prime} \\
& =y^{\prime}(x) /(-\lambda)\left(a \lambda^{2}+b \lambda\right) r_{1} r_{3}-\tilde{F}(0)\left[\frac{f(x)}{g(x)}\right]^{\prime}
\end{aligned}
$$

Thus, by (42) and $\int_{0}^{x} f(s) d s>0$ for $x \in\left(x_{02}, x_{20}\right)$ it is easy to show that

$$
\left[\int_{0}^{x} f(s) d s \cdot \frac{f(x)}{g(x)}\right]^{\prime}<0
$$

for $x \in\left(x_{02}, x_{20}\right)$, where x_{20} is defined as in Lemma 9. Therefore, system (13) satisfies condition $(i v)$ of Lemma 9 (the case $x_{0} \in\left(x_{02}, 0\right)$. This proves the theorem in subcase (a.22).

There are two questions:

1) is it easy?

2) is the inequality correct?

Structure of the proof

- Prove that in at least one of the two half planes separated by the line without contact there is at most one limit cycle.

Quadratic systems with 2 strong foci

First I will discuss the case of exactly two strong foci QS2.

- This is the case where $(3,1)$ distributions have been found.

Transformation to a Liénard system:

- Zhang Pingguang used class III in the Chinese classification of quadratic systems.
- It is more natural to use the Russian classification by Cherkas et al.

Quadratic systems with 2 strong foci

The Russian classification consists of two families:
Type I:

$$
\begin{gathered}
\frac{d x}{d t}=y+x^{2}, \\
\frac{d y}{d t}=b_{00}+b_{10} x+b_{01} y+b_{20} x^{2}+b_{11} x y+b_{02} y^{2} .
\end{gathered}
$$

Type II:

$$
\begin{gathered}
\frac{d x}{d t}=1+x y \\
\frac{d y}{d t}=b_{00}+b_{10} x+b_{01} y+b_{20} x^{2}+b_{11} x y+Q_{0} y^{2} .
\end{gathered}
$$

- QS2 cannot appear in type I.

Quadratic systems with 2 strong foci

Transformation into a Liénard system:

$$
\frac{d x}{d t}=y, \quad \frac{d y}{d t}=-g(x)-f(x) y
$$

- zeros of $g(x)$ correspond to singularities.
- zeros of $f(x)$ correspond to vertical lines in the phase plane where the divergence of the vector field changes sign: limit cycles must intersect at least one vertical line where $f(x)=0$.

Quadratic systems with 2 strong foci

Transformation to a Liénard system

$$
\frac{d x}{d t}=1+x y, \quad \frac{d y}{d t}=b_{00}+b_{10} x+b_{01} y+b_{20} x^{2}+b_{11} x y+Q_{0} y^{2}
$$

Transform $u=|x|^{-Q_{0}-1}(1+x y)$.
After scaling we assume $\boldsymbol{b}_{\mathbf{2 0}}=\mathbf{- 1}$ and the system becomes a Liénard system:

$$
\frac{d x}{d t}=u, \quad \frac{d u}{d t}=-g(x)-f(x) u
$$

with
$g(x)=\frac{|x|^{-2 Q_{0}-2}}{x}\left(x^{2}\left(-b_{00}-b_{10} x+x^{2}\right)+x\left(b_{01}+b_{11} x\right)-Q_{0}\right)$
$f(x)=\frac{|x|^{-Q_{0}-1}}{x}\left(-x\left(b_{01}+b_{11} x\right)+1+2 Q_{0}\right)$

In this system we want to prove that at most one limit cycle exists for either $x<0$ or $x>0$. The line $x>0$ is a line without contact and cannot be crossed by limit cycles.

Quadratic systems with 2 strong foci

The function $f(x)$ needs to have one positive zero $\boldsymbol{x}_{\boldsymbol{f}}{ }^{+}>\mathbf{0}$ and one negative zero $\boldsymbol{x}_{\boldsymbol{f}}{ }^{-}<\mathbf{0}$. This implies that $\boldsymbol{b}_{\mathbf{1 1}}>\mathbf{0}$.

We impose that an elementary saddle exists at infinity: $\mathbf{0}<\boldsymbol{Q}_{\mathbf{0}}<\mathbf{1}$.
The function $g(x)$ has two zeroes: $\boldsymbol{x}_{\boldsymbol{g}}{ }^{+}>\mathbf{0}, \boldsymbol{x}_{\boldsymbol{g}}{ }^{-}<\mathbf{0}$ corresponding to the two foci.
We will need the following related functions:
$F_{+}(x)=\int_{x_{g}{ }^{+}}^{x} f(\bar{x}) d \bar{x}=c_{+}+F_{0}(x)$ for $x>0$,
$F_{-}(x)=\int_{x_{g}}^{x} f(\bar{x}) d \bar{x}=c_{-}+F_{0}(x)$ for $x<0$,
where

$$
F_{0}(x)=\frac{|x|^{-Q_{0}}}{x} R(x)=\frac{|x|^{-Q_{0}}}{x}\left(\frac{b_{11}}{Q_{0}-1} x^{2}+\frac{b_{01}}{Q_{0}} x-\frac{1+2 Q_{0}}{1+Q_{0}}\right)
$$

Quadratic systems with 2 strong foci

Theorem (non-existence)
Suppose on the interval $a<x<b$
i. $\quad\left(x-x_{g}\right) g(x)>0$ for $x \neq x_{g}$,
ii. $\quad\left(x-x_{f}\right) f(x)<0$ for $x \neq x_{f}$,
iii. If the system of equations

$$
\frac{f}{g}\left(x_{1}\right)=\frac{f}{g}\left(x_{2}\right), \quad F\left(x_{1}\right)=F\left(x_{2}\right)
$$

has no solutions $a<x_{1}<x_{g}<x_{2}<b$, then no limit cycles exist in the strip $a<x<b$.

Quadratic systems with 2 strong foci

Corollary ("gap" theorem) : if there is a value c such that the graph of $y=\frac{f}{g}(x)$ does not intersect $y=c$ for $a<x<b$, then no limit cycles exist in the strip $a<x<b$.

Quadratic systems with 2 strong foci

Theorem (uniqueness, Coppel, Zeng, Zhang Zhifen, Zhou)
Suppose on the interval $a<x<b$
i. $\quad\left(x-x_{g}\right) g(x)>0$ for $x \neq x_{g}$,
ii. $\quad\left(x-x_{f}\right) f(x)<0$ for $x \neq x_{f}, x_{f}<x_{g}$
iii. the system of equations

$$
\frac{f}{g}\left(x_{1}\right)=\frac{f}{g}\left(x_{2}\right), \quad F\left(x_{1}\right)=F\left(x_{2}\right)
$$

has exactly one solution $\bar{x}_{1}<x_{g}<\bar{x}_{2}$,
iV. $\left(\frac{f F}{g}\right)^{\prime}(x)<0$ for $x<\bar{x}_{1}$ or $\left(\frac{f F}{g}\right)^{\prime}(x)>0$ for $x>\bar{x}_{2}$.
then the system has at most one limit cycle in the strip $a<x<b$.

Quadratic systems with 2 strong foci

$$
\begin{array}{rlll}
\frac{d}{d x}\left(\frac{f(x) F(x)}{g(x)}\right)<0 & \text { or } & \vdots \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \left.\frac{f(x) F(x)}{g(x)}\right)>0 \\
\hline \bar{x}_{1} & \bar{x}_{2} & x \rightarrow & \frac{f\left(\bar{x}_{1}\right)}{g\left(\bar{x}_{1}\right)}=\frac{f\left(\bar{x}_{2}\right)}{g\left(\bar{x}_{2}\right)} \\
& F\left(\bar{x}_{1}\right)=F\left(\bar{x}_{2}\right)
\end{array}
$$

Quadratic systems with 2 strong foci

The set of algebraic equations takes the form:

$$
\begin{gathered}
\frac{f}{g}\left(x_{1}\right)=\frac{f}{g}\left(x_{2}\right), F_{0}\left(x_{1}\right)=F_{0}\left(x_{2}\right) \\
\rightarrow \\
x_{1}^{2}\left(-b_{00}-b_{10} x_{1}+x_{1}^{2}\right)+x_{1}\left(b_{01}+b_{11} x_{1}\right)-Q_{0} \\
=\frac{-x_{1}\left(\left.b_{1}\right|^{Q_{0}+1}\right.}{x_{2}^{2}\left(-b_{00}-b_{10} x_{2}+x_{21}\right)+x_{2}\left(b_{01}+b_{11} x_{2}\right)-Q_{0}}\left|x_{2}\right|^{Q_{0}+1} \\
\left(\frac{b_{11}}{Q_{0}-1} x_{1}^{2}+\frac{b_{01}}{Q_{0}} x_{1}-\frac{1+2 Q_{0}}{1+Q_{0}}\right)\left|x_{1}\right|^{-Q_{0}-1} \\
=\left(\frac{b_{11}}{Q_{0}-1} x_{2}^{2}+\frac{b_{01}}{Q_{0}} x_{2}-\frac{1+2 Q_{0}}{1+Q_{0}}\right)\left|x_{2}\right|^{-Q_{0}-1}
\end{gathered}
$$

To prove: this system of equations has at most one non-trivial solution for either $\boldsymbol{x}<0$ or $\boldsymbol{x}>0$.

Quadratic systems with 2 strong foci

$F\left(x_{1}\right)=F\left(x_{2}\right)$ defines a curve γ_{F} which is a monotonically decreasing graph, because $\frac{d x_{2}}{d x_{1}}=\frac{f\left(x_{1}\right)}{f\left(x_{2}\right)}<0$.

Define $Z(x)=\frac{f F_{0}}{g}(x)$ which is a rational polynomial function.

$$
Z(x)=\frac{\left(-x\left(b_{01}+b_{11} x\right)+1+2 Q_{0}\right)\left(\frac{b_{11}}{Q_{0}-1} x^{2}+\frac{b_{01}}{Q_{0}} x-\frac{1+2 Q_{0}}{1+Q_{0}}\right)}{\left.x^{2}\left(-b_{00}-b_{10} x+x^{2}\right)+x\left(b_{01}+b_{11} x\right)-Q_{0}\right)}
$$

Then $Z\left(x_{1}\right)=Z\left(x_{2}\right)$ defines a curve γ_{Z} with slope $\frac{d x_{2}}{d x_{1}}=\frac{Z \prime\left(x_{1}\right)}{Z_{\prime}\left(x_{2}\right)}$.
If $Z^{\prime}(x)$ has the same sign on the relevant intervals then γ_{Z} is an increasing graph.
If γ_{F} is decreasing then the two graphs will have at most one intersection point.
Therefore to prove: for $\boldsymbol{x}<\mathbf{0}$ or $\boldsymbol{x}>0$ either $Z^{\prime}(x)$ has fixed sign or $y=Z(x)$ has a gap.

Quadratic systems with 2 strong foci

Important properties of the graph of $y=Z(x)$:

- It intersects every horizontal line $y=c$ in at most 4 points (counting multiplicity).
- It intersects $y=Z(0)=\frac{\left(1+2 Q_{0}\right)^{2}}{Q_{0}\left(1+Q_{0}\right)}>0$ for $x=0$. It is a double contact because $Z^{\prime}(0)=0$. Then $Z(x)=Z(0)$ needs to have two solutions $x^{-}<0$ and $x^{+}>0$.
- It intersects the horizontal asymptote $\lim _{x \rightarrow \pm \infty} Z(x)=Z_{\infty}=\frac{b_{11}{ }^{2}}{1-Q_{0}}>0$ in at most 3 points.

Quadratic systems with 2 strong foci

We distinguish the following combinations (writing $Z(0)=Z_{0}$):

$$
\begin{aligned}
& Z_{\infty}<Z_{0}, Z_{\infty}>Z_{0}, \\
& Z^{\prime \prime}(0)>0, Z^{\prime \prime}(0)<0, \\
& x^{-}<x_{g}{ }^{-}, x^{-}>x_{g}^{-}, \\
& x^{+}<x_{g}{ }^{+}, x^{+}>x_{g}{ }^{+},
\end{aligned}
$$

Quadratic systems with 2 strong foci

The distributions in these cases are as follows:

Case 1: $(n, 0)$
Case 2: $(n, 0)$
Case 3: $(n, 1)$

For the cases 1 and 2 we can find a "gap" to prove non-existence of limit cycles in the region $x>0$.

Quadratic systems with 2 strong foci

Case 3:

The function $Z(x)$ has the following restrictions:

- $x_{f}{ }^{-}>x_{g}{ }^{-}, x_{f}{ }^{+}<x_{g}{ }^{+}$,
- $Z(x)>0$ for $x<x_{g}{ }^{-}$and $x>x_{g}{ }^{+}$,
- In the strip $Z_{\infty}<y<Z_{0}$ there are exactly 4 intersections of the graph of $y=Z(x)$ with any horizontal line. It follows that $Z^{\prime}(x)<0(<0)$ in that strip.
case 3

Quadratic systems with 2 strong foci

The conclusion is: the curve γ_{Z} defined by the equation $Z\left(x_{1}\right)=Z\left(x_{2}\right)$ is either monotonically increasing for $x<0$ or $x>0$.

It follows that

$$
\frac{f}{g}\left(x_{1}\right)=\frac{f}{g}\left(x_{2}\right), \quad F\left(x_{1}\right)=F\left(x_{2}\right)
$$

has at most one non-trivial solution for either $x<0$ or $x>0$.

Quadratic systems with 2 strong foci

It remains to prove that $\left(\frac{f F}{g}\right)^{\prime}(x)$ has the correct sign in the region where the system of equations has a unique solution.

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{f(x) F(x)}{g(x)}\right)<0 ?
\end{aligned}
$$

$$
\begin{aligned}
& x=0
\end{aligned}
$$

Quadratic systems with 2 strong foci

This proves that at most one limit cycle exists for $x>0$.
In a similar way the case for $x<0$ can be done.

This completes the proof for the quadratic system with 2 real singularities QS2.

Quadratic systems with 4 real singularities

To prove the distribution property for QS4 we start by placing the other two real singularities on the y-axis: at the origin $(x=0, y=0)$, and at ($x=0, y=1$).

$$
\begin{aligned}
& \frac{d x}{d t}=a_{10} x+a_{01} y+a_{20} x^{2}+a_{11} x y-a_{01} y^{2} \\
& \frac{d y}{d t}=b_{10} x+b_{01} y+b_{20} x^{2}+b_{11} x y-b_{01} y^{2}
\end{aligned}
$$

Transform to a Liénard system according to $y=u x$, followed by $x=w(u) e^{z}$

$$
\frac{f}{g}(u)=\frac{c_{0}+c_{1} u+c_{2} u^{2}+c_{3} u^{3}}{d_{0}+d_{1} u+d_{2} u^{2}}
$$

Quadratic systems with 4 real singularities

Here f / g is cubic/quadratic.
Crucial observation: there are at most 3 intersections counting multiplicity of $y=f / g$ with horizontal lines $y=c$.
Example 1:

Quadratic systems with 4 real singularities

Example 2:

Current and future work

Is the following true?

Theorem (uniqueness)

Suppose on the interval $a<x<b$
i. $\quad\left(x-x_{g}\right) g(x)>0$ for $x \neq x_{g}$,
ii. $\quad\left(x-x_{f}\right) f(x)<0$ for $x \neq x_{f}, x_{f}<x_{g}$
iii. the system of equations

$$
\frac{f}{g}\left(x_{1}\right)=\frac{f}{g}\left(x_{2}\right), \quad F\left(x_{1}\right)=F\left(x_{2}\right)
$$

has exactly one solution $\bar{x}_{1}<x_{g}<\bar{x}_{2}$,
then the system has at most one limit cycle in the strip $a<x<b$.

$$
\frac{f}{g}\left(x_{1}\right)=\frac{f}{g}\left(x_{2}\right), \quad F\left(x_{1}\right)=F\left(x_{2}\right)
$$

iV. $\left(\frac{f F}{g}\right)^{\prime}(x)<0$ for $x<\bar{x}_{t}$ or $\left(\frac{f F}{g}\right)^{\prime}(x)>0 x>\bar{x}_{z}$.

Current and future work

Non-existence and uniqueness of limit cycles in quadratic systems

- QS with invariant line:
method 1: find a Cherkas-Dulac function
method 2: transformation to Liénard system.
- QS with a weak focus of order three:
method: find a Dulac-function.
- QS with a weak focus of order two:
method 1 : simplify the proof using a Liénard system.
method 2: find a Cherkas-Dulac function.
- QS with a weak singularity: there is at most one limit cycle surrounding other singularities.
method: simplify the proof by Zhang Pingguang.

Thank you!

