\star The research was funded by CSF grants UIP-2017-05-1020 and PZS-2019-02-3055.

Complex dimensions of orbits of dynamical systems

Maja Resman (with P. Mardešić, University of Burgundy, and G. Radunović, University of Zagreb)
08.02.2023, AQDTE Conference 2023, Port de Sóller, Mallorca

- The standard Hurwitz (Riemann) zeta function

$$
\zeta_{a}(s):=\sum_{j=0}^{\infty} \frac{1}{(j+a)^{s}}, a>0, \operatorname{Re}(s)>1
$$

- converges absolutely for $\operatorname{Re}(s)>1$
- meromorphically extendable to $\mathbb{C} \backslash\{1\}$
- single pole at 1 with residue $\operatorname{Res}\left(\zeta_{a}(s), s=1\right)=1$
- for $a=1$: the Riemann zeta function

'Geometric generalizations' - fractal zeta functions in the sense of Lapidus

- $\mathcal{L}:=\left\{\ell_{j}: j \in \mathbb{N}\right\}$
a disjoint union of intervals on the real line with lengths ℓ_{j}
(1) The geometric zeta function of a fractal string (Lapidus, Frankenhuijsen, 2000)

$$
\zeta_{\mathcal{L}}(s):=\sum_{j=1}^{\infty} \ell_{j}^{s}, s \in \mathbb{C} \text {, s.t. the sum converges absolutely }
$$

$\star \ell_{j}:=\frac{1}{j}$ standard zeta function
(2) The distance zeta function of a bounded set $A \subseteq \mathbb{R}^{N}$

$$
\zeta_{A}(s):=\int_{A_{\delta}} d(x, A)^{s-N} d x
$$

- $\delta>0$ inessential (up to a holomorphic function)
(3) The tube zeta function of a bounded set $A \subseteq \mathbb{R}^{N}$:
- the tube function of A :

$$
\varepsilon \mapsto V_{A}(\varepsilon):=\left|A_{\varepsilon}\right| \text { (the Lebesgue measure) }
$$

- $V_{A}(\varepsilon) \sim M \varepsilon^{N-s}, \varepsilon \rightarrow 0 \Rightarrow \operatorname{dim}_{B}(A)=s, \mathcal{M}^{s}(A)=M$.
$\tilde{\zeta}_{A}(s):=\int_{0}^{\delta} t^{s-N-1} V_{A}(t) d t$,
$\operatorname{Re}(s)>\operatorname{dim}_{B}(A), \delta>0$ inessential
(Lapidus, Frankenhuijsen 2000, 2006; Lapidus, Radunović, Žubrinić, 2017)

For fractal strings, all three equal up to a holomorphic function

$$
\mathcal{L} \Rightarrow A:=\left\{a_{j}: j \in \mathbb{N}_{0}\right\}, \ell_{j}:=a_{j-1}-a_{j}
$$

The functional equations on domains of definition (up to holomorphic functions):

- $\zeta_{A}(s)=\frac{2^{N-s}}{s} \zeta_{\mathcal{L}}(s)$,
- $\tilde{\zeta}_{A}(s)=\frac{2}{s}+\zeta_{A}(s), \operatorname{Re}(s)>\operatorname{dim}_{B}(A)$.

Definition

Let

- $A \subseteq \mathbb{R}^{N}$ bounded,
- $\zeta_{A}(s)$ admits the meromorphic extension to whole \mathbb{C}.

The set of all poles is called the set of complex dimensions of A, $\Omega(A)$.

- $\zeta_{A}(s)$ holomorphic for $\operatorname{Re}(s)>\operatorname{dim}_{B}(A)$,
- simple pole at $s=\operatorname{dim}_{B}(A)$.

Complex dimensions (and their residues i.e. principal parts) talk about the geometry of the set! Similarly as the tube function!
\star The box dimension of the set is the first complex dimension, with Minkowski content directly related to its residue!

One example of a self-similar set: the ternary Cantor set

Example 1 (The complex dimensions of the ternary Cantor set, LRŽ 2017)
\star viewed as a fractal string, the order of intervals not important
$\zeta_{\mathcal{L}_{\mathcal{C}}}(s)=\sum_{j=1}^{\infty} \ell_{j}^{s}=\sum_{k=0}^{\infty} 2^{k}\left(\frac{1}{3^{k+1}}\right)^{s}=\frac{1}{3^{s}-2},\left|\frac{2}{3^{s}}\right|<1$

- holomorphic for $\operatorname{Re}(s)>\log _{2} 3=\operatorname{dim}_{B} \mathcal{C}$
- unique meromorphic extension to \mathbb{C} by the above formula with poles:

$$
\Omega(\mathcal{C})=\left\{\omega_{k}:=\log _{3} 2+i \frac{2 k \pi}{\log 3}, k \in \mathbb{Z}\right\} .
$$

Example 2 (The tube function of the Cantor set (LRŽ 2017))

$$
\left.V_{\mathcal{C}}(\varepsilon)=\varepsilon^{1-\log _{3} 2}(G(-\log \varepsilon)+o(1))\right), \varepsilon \rightarrow 0
$$

G a nonconstant periodic function.

A conjecture (LRŽ):
Strong oscillations in the first term indication of self-similarity; non-real complex dimensions; possible definition of fractality of a set as possessing non-real complex dimensions?

Complex dimensions vs. asymptotics of the tube function

(formally proven in LRŽ, 2017)
$\star \tilde{\zeta}_{A}$ the tube zeta function of set $A \subseteq \mathbb{R}^{N}$, meromorphically extendable to \mathbb{C}.
$\star t \mapsto V_{A}(t)=\left|A_{t}\right|, t \in(0, \delta)$, the tube function of A

- $\tilde{\zeta}_{A}(s)=\mathcal{M}\left(\chi_{(0, \delta)} V_{A} / \mathrm{id}^{N}\right)(s)=\int_{0}^{\delta} V_{A}(t) t^{s-1-N} d t$
- Conversely,

$$
V_{A}(t)=\frac{t^{N}}{2 \pi i} \mathcal{M}^{-1}\left(\tilde{\zeta}_{A}\right)(t)=\frac{1}{2 \pi i} \int_{\Gamma_{c}} \zeta_{A}(s) t^{N-s} d s, t \in(0, d)
$$

$\Gamma \ldots$ a vertical line at around $s=c, c>\operatorname{dim}_{B} A$
\star the basis is the residue theorem: the complex dimensions and their residues correspond to asymptotic terms and their coefficients in an asymptotic expansion of the tube zeta function of the set

Important ingredient for relating

The k-th primitive tube function $V_{A}^{[k]}, k \in \mathbb{N}$: $V_{A}^{[1]}(t):=\int_{0}^{t} V_{A}(s) d s, t \in(0, \delta) \ldots$
Changing the order of integration, $N>\operatorname{Re}(s)>\operatorname{dim}_{B} A$:

$$
V_{A}^{[k]}(t)=\frac{1}{2 \pi i} \int_{\Gamma_{c}} \frac{t^{N-s+k}}{(N-s+1)_{k}} \tilde{\zeta}_{A}(s) d s, k \in \mathbb{N}_{0} .
$$

* Heuristically, the residue theorem 'gives' expansions of $t \mapsto V_{A}(t)$ or $t \mapsto V_{A}^{[k]}(t), k \in \mathbb{N}$, from poles and residues of ζ_{A} :
\star e.g. $\Omega_{A}=\left\{\omega_{n}, n \in \mathbb{N}\right\}$ only first-order poles

$$
\begin{aligned}
& (* *) \quad V_{A}(t)=\frac{1}{2 \pi i} \int_{\Gamma_{c}} t^{N-s} \tilde{\zeta}_{A}(s) d s= \\
= & \sum_{\omega \in \Omega_{A}, \operatorname{Re}(\omega)>-M} t^{N-\omega} \operatorname{Res}\left(\tilde{\zeta}_{A}, \omega\right)+O\left(t^{N+M}\right), t \rightarrow 0, M \in \mathbb{N} .
\end{aligned}
$$

(in case of higher-order poles logarithmic terms in the expansion)

Idea of proof of (**) (LRŽ)

- to get asymptotic remainder $O\left(t^{N+M}\right), M \in \mathbb{N}$, bounds needed on zeta function along vertical lines $\operatorname{Re}(s)=-M$, $M \rightarrow \infty$
- so-called languidity bounds of $\tilde{\zeta}_{A}(s)$ along vertical lines $s=\sigma+i \tau$, as $\tau \rightarrow \pm \infty$
- pointwise asymptotics as long as bounds rational

$$
\left|\tilde{\zeta}_{A}(\sigma+i \tau)\right| \sim \tau^{-\gamma}, \gamma>0, \tau \rightarrow \pm \infty
$$

- polynomial bounds $(\gamma<0) \Rightarrow$ only distributional asymptotics (there exists some primitive of tube function $t \mapsto V_{A}^{[k]}$) that expands pointwise up to this term, but differentiation of asymptotic expansions can be done just distributionally!
- $\frac{t^{N-s+k}}{(N-s+1)_{k}} \tilde{\zeta}_{A}(\sigma+i \tau)$, as $\tau \rightarrow \pm \infty$, becomes rational for k sufficiently big!

Relation to dynamical systems

Orbits of local diffeomorphisms (三 germs) on the real line

 \mathbb{R}_{+}- (attracting) parabolic germ

$$
\begin{gathered}
f(z)=z-a x^{k+1}+\ldots \in \operatorname{Diff}\left(\mathbb{R}_{+}, 0\right), a>0, k \in \mathbb{N} \\
a_{j} \sim j^{-1 / k}, \quad \ell_{j} \sim j^{-\frac{k+1}{k}}, j \rightarrow \infty
\end{gathered}
$$

- (attracting) hyperbolic germ $f(x)=\lambda x+\ldots, 0<\lambda<1$

$$
a_{j} \sim \lambda^{j}, \ell_{j} \sim \lambda^{j}, j \rightarrow \infty
$$

Orbit of f with initial point $x_{0} \in\left(\mathbb{R}_{+}, 0\right)$:

$$
\mathcal{O}_{f}\left(x_{0}\right):=\left\{x_{n}:=f^{\circ n}\left(x_{0}\right): n \in \mathbb{N}_{0}\right\}, g:=\operatorname{id}-f
$$

Box dimension and Minkowski content of orbits

Žubrinić, Županović 2005, MRŽ 2012

- a parabolic orbit of multiplicity k

$$
\begin{aligned}
& V_{\mathcal{O}^{f}\left(x_{0}\right)}(\varepsilon) \sim(2 / a)^{\frac{1}{k+1}} \frac{k+1}{k} \varepsilon^{\frac{1}{k+1}}+\ldots+c(\rho, a) \varepsilon(-\log \varepsilon)+ \\
& \quad+o(\varepsilon(-\log \varepsilon)), \varepsilon \rightarrow 0 \\
& \quad \operatorname{dim}_{B}\left(\mathcal{O}^{f}\left(x_{0}\right)\right)=1-\frac{1}{k+1}, \mathcal{M}\left(\mathcal{O}^{f}\left(x_{0}\right)\right)=(2 / a)^{\frac{1}{k+1}} \frac{k+1}{k}
\end{aligned}
$$

- a hyperbolic orbit

$$
\begin{aligned}
& V_{\mathcal{O}^{f}\left(x_{0}\right)}(\varepsilon) \sim a(\lambda) \cdot \varepsilon(-\log \varepsilon)+o(\varepsilon(-\log \varepsilon)), \varepsilon \rightarrow 0, \\
& \operatorname{dim}_{B}\left(\mathcal{O}^{f}\left(x_{0}\right)\right)=1-1=0, \mathcal{M}\left(\mathcal{O}^{f}\left(x_{0}\right)\right)=+\infty,
\end{aligned}
$$

Later: R [2013]

- formal class of f using asymptotic expansion of function $\varepsilon \mapsto V_{\mathcal{O}^{f}\left(x_{0}\right)}(\varepsilon)$, as $\varepsilon \rightarrow 0$
- further (finitely many!) complex dimensions needed

Orbits as fractal strings and complex dimensions: the parabolic case

$$
\zeta_{\mathcal{L}_{f}}(s) " \sim " \sum_{j \in \mathbb{N}} j^{-s \frac{k+1}{k}}
$$

* holomorphic for $\operatorname{Re}(s)>\frac{k}{k+1}=\operatorname{dim}_{B} \mathcal{O}^{f}\left(x_{0}\right)$
* however, too coarse approximations for meromorphic extensions - info on poles and residues lost
* notation: $\zeta_{\mathcal{L}_{f}}, \zeta_{f}, \tilde{\zeta}_{f}$

Precise computations tedious even in the simplest model case of germs, $k=1$, $\rho=0$ (MRR 2020)

* Model cases with residual invariant $\rho=0$ and multiplicity $k \in \mathbb{N}$ * time-one maps of simple vector fields $x^{\prime}=-x^{k+1}$:
$f_{k}(x):=\operatorname{Exp}\left(x^{k+1} \frac{d}{d x}\right)=\frac{x}{\left(1+k x^{k}\right)^{1 / k}}=x-x^{k+1}+o\left(x^{k+1}\right), k \in \mathbb{N}$.

Proposition (The complex dimensions of orbits, MRR 2020)

$\zeta_{f_{k}}(s), \operatorname{Re}(s)>\frac{k}{k+1}$, the distance zeta function of an orbit
$\mathcal{O}_{f_{k}}\left(x_{0}\right)$ of a model parabolic germ.
(1) $\zeta_{f_{k}}(s)$ can be meromorphically extended to \mathbb{C},
(2) the poles of $\zeta_{f_{k}}(s)$ located at $\frac{k}{k+1}$ and at (a subset of) the set of points $\frac{-m k}{k+1}, m \in \mathbb{N}_{0}$, all simple
(3) the Minkowski (box) dimension of $\mathcal{O}_{f_{k}}\left(x_{0}\right)$ is $D=\frac{k}{k+1}$, the only pole of $\zeta_{f_{k}}(s)$ with a positive real part

Putting $X:=x_{0}^{-1}$,

$$
\begin{aligned}
\ell_{j} & =\frac{1}{(j+X)(j+1+X)}=\frac{1}{(j+X)^{2}} \cdot\left(1+\frac{1}{j+X}\right)^{-1} \\
\ell_{j}^{s} & =\frac{1}{(j+X)^{2 s}} \cdot\left(1+\frac{1}{j+X}\right)^{-s}= \\
& =\sum_{m=0}\binom{-s}{m} \frac{1}{(j+X)^{2 s+m}}
\end{aligned}
$$

Heuristically (formal change of order of summation),

$$
\begin{equation*}
\zeta_{\mathcal{L}_{f_{1}}}(s)=\sum_{j=0} \ell_{j}^{s} " \sim " \sum_{m=0}\binom{-s}{m} \zeta_{X}(2 s+m) \tag{1}
\end{equation*}
$$

Complex dimensions: $\omega_{n}:=\frac{1-n}{2}, n \in \mathbb{N}_{0}$, with residues:
$\operatorname{Res}\left(\zeta_{\mathcal{L}_{f_{1}}}, \omega_{n}\right)=\left(\frac{n-1}{n}\right)$. Zero residue for n odd.

What to do in the case $\rho \neq 0$ or even non-model case?

Arbitrary parabolic germ

$$
f(x)=x-a x^{k+1}+o\left(x^{k+1}\right) \in \operatorname{Diff}\left(\mathbb{R}_{+}, 0\right)
$$

Theorem B (MRR 2020, Complex dimensions for arbitrary parabolic orbits)

$f \in \operatorname{Diff}\left(R_{+}, 0\right)$, of formal class $(k, \rho), k \in \mathbb{N}, \rho \in \mathbb{R}$.
(1) The distance zeta function $\zeta_{f}(s)$ can be meromorphically extended to \mathbb{C}.
(2) In any open right half-plane $W_{M}:=\left\{s>1-\frac{M}{k+1}\right\}$, where $M \in \mathbb{N}, M>k+2$, given as:

Theorem B

For $s \in W_{M}:=\left\{s>1-\frac{M}{k+1}\right\}$:

$$
\begin{aligned}
\zeta_{f}(s) & =(1-s) \sum_{m=1}^{k} \frac{a_{m}}{s-\left(1-\frac{m}{k+1}\right)}+(1-s)\left(\frac{b_{k+1}\left(x_{0}\right)}{s}+\frac{a_{k+1}}{s^{2}}\right)+ \\
& +(1-s) \sum_{m=k+2}^{M-1} \sum_{p=0}^{\left\lfloor\frac{m}{k}\right\rfloor+1} \frac{(-1)^{p} p!\cdot c_{m, p}\left(x_{0}\right)}{\left(s-\left(1-\frac{m}{k+1}\right)\right)^{p+1}}+g(s)
\end{aligned}
$$

$g(s)$ holomorphic in W_{M}.

* the coefficients in principal parts of poles real, with dependence on x_{0}, as noted!
* related to the coefficients of the asymptotic expansion of the tube function of the orbit!
* new wrt model: higher-order poles correspond to logarithmic terms
in the asymptotic expansion of the tube function due to $\rho \neq 0$
generalized asymptotic expansion of tube function-coefficients oscillatory functions

Proposition (MRR 2020)

A generalized asymptotic expansion of the tube function with full description of oscillatory coefficients:

$$
\begin{aligned}
& V_{f}(\varepsilon) \sim 2^{\frac{1}{k+1}} a^{-\frac{1}{k+1}} \frac{k+1}{k} \cdot \varepsilon^{\frac{1}{k+1}}+\sum_{m=2}^{k} a_{m} \cdot \varepsilon^{\frac{m}{k+1}}+2 \rho \frac{k-1}{k} \cdot \varepsilon \log \varepsilon+b_{k+1}\left(x_{0}\right) \varepsilon+ \\
& \quad+\sum_{m=k+2}^{2 k} \sum_{p=0}^{\left\lfloor\frac{m}{k}\right\rfloor+1} c_{m, p} \varepsilon^{\frac{m}{k+1}} \log ^{p} \varepsilon+\sum_{p=1}^{\left\lfloor\frac{2 k+1}{k}\right\rfloor+1} c_{2 k+1, p} \varepsilon^{\frac{2 k+1}{k+1}} \log ^{p} \varepsilon+ \\
& \quad+\tilde{P}_{2 k+1}\left(G\left(\tau_{\varepsilon}\right)\right) \cdot \varepsilon^{\frac{2 k+1}{k+1}}+\sum_{m=2 k+2}^{\infty} \sum_{p=0}^{\left\lfloor\frac{m}{k}\right\rfloor+1} \tilde{Q}_{m, p}\left(G\left(\tau_{\varepsilon}\right)\right) \cdot \varepsilon^{\frac{m}{k+1}} \log ^{p} \varepsilon, \varepsilon \rightarrow 0^{+} .
\end{aligned}
$$

(*) $\varepsilon \mapsto \tau_{\varepsilon}$ the so-called continuous critical time (MRRZ 2019), $\tau_{\varepsilon} \sim \varepsilon^{-\frac{k}{k+1}}$
$(*) G:[0,+\infty) \rightarrow \mathbb{R} 1$-periodic, $G(s)=1-s, s \in(0,1), G(0)=0$
(*) $\tilde{P}_{2 k+1}$ resp. $\tilde{Q}_{m, p}$, polynomials whose coefficients in general depend on coefficients of f and initial condition x_{0}.

The model hyperbolic case

$$
\begin{aligned}
& \star \mathcal{O}_{f}\left(x_{0}\right)=\left\{x_{0} \lambda^{n}: n \in \mathbb{N}_{0}\right\}, \\
& \star \mathcal{L}_{f}:=\left\{\ell_{j}:=f^{\circ j}\left(x_{0}\right)-f^{\circ(j+1)}\left(x_{0}\right)=x_{0}(1-\lambda) \lambda^{j}: j \in \mathbb{N}_{0}\right\}, \\
& \star \\
& \quad \zeta_{f}(s):=\frac{2^{1-s}}{s} \sum_{j=0}^{\infty} \ell_{j}^{s}=\frac{2^{1-s} x_{0}^{s} \cdot(1-\lambda)^{s}}{s} \frac{1}{1-\lambda^{s}},
\end{aligned}
$$

* extends meromorphically from $\{s \in \mathbb{C}: \Re(s)>0\}$ to \mathbb{C} : double pole $s_{0}=0$ and the simple poles:

$$
s_{k}:=\frac{2 k \pi}{\log \lambda} i, k \in \mathbb{Z}
$$

\star

$$
V_{f}(\varepsilon)=-\frac{2}{\log \lambda} \varepsilon(-\log \varepsilon)+H\left(\log _{\lambda} \frac{2 \varepsilon}{x_{0}(1-\lambda)}\right) \cdot \varepsilon
$$

$H:[0,+\infty) \rightarrow \mathbb{R}$ a 1-periodic bounded function.

- the hyperbolic case: poles of zeta function as non-real complex dimensions, similarly as for Cantor sets (LF 2013, LRZ 2017), but in further terms
- the parabolic case: no non-real complex dimensions
- indication of self-similarity of hyperbolic orbits?

The bibliography

(MRR 2020) Mardešić, Radunovic, Resman, Fractal zeta functions of orbits of parabolic diffeomorphisms, accepted for publication in Analys. Math. Phy. (2022), https://arxiv.org/abs/2010.05955v2
KMRR 2022) Klimes, M., Mardesic, P., Radunovic, G., Resman, M., Analytic invariants of a parabolic diffeomorphism from its orbit, submitted (2021), https://arxiv.org/pdf/2112.14324v2.pdf
(LF 2000) M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions, Birkhäuser, Boston, 2000.
(LF 2013) M. L. Lapidus and M. van Frankenhuijsen, Fractality, Complex Dimensions, and Zeta Functions: Geometry and Spectra of Fractal Strings, second revised and enlarged edition (of the 2006 edn.), Springer Monographs in Mathematics, Springer, New York, 2013.
(LRZ 2017) M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions, Springer Monographs in Mathematics, Springer, New York, 2017.
(R 2014) M. Resman, Epsilon-neighborhoods of orbits of parabolic diffeomorphisms and cohomological equations, Nonlinearity 27 (2014), 3005-3029
MRRZ 2019) P. Mardešić, M. Resman, J. P. Rolin, V. Županović, Tubular neighborhoods of orbits of Dulac maps, Journal of Dynamics and Differential Equations 1 (2019), 1-49.

Maja Resman (with P. Mardešić, University of Burgundy, and G.

