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The standard Hurwitz (Riemann) zeta function

ζa(s) :=

∞∑
j=0

1

(j + a)s
, a > 0, Re(s) > 1

converges absolutely for Re(s) > 1
meromorphically extendable to C \ {1}
single pole at 1 with residue Res(ζa(s), s = 1) = 1
for a = 1: the Riemann zeta function
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’Geometric generalizations’ - fractal zeta functions in
the sense of Lapidus

L := {`j : j ∈ N}
a disjoint union of intervals on the real line with lengths `j

(1) The geometric zeta function of a fractal string (Lapidus,
Frankenhuijsen, 2000)

ζL(s) :=

∞∑
j=1

`sj , s ∈ C, s.t. the sum converges absolutely

? `j := 1
j standard zeta function
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(2) The distance zeta function of a bounded set A ⊆ RN

ζA(s) :=

∫
Aδ

d(x,A)s−N dx

δ > 0 inessential (up to a holomorphic function)

(3) The tube zeta function of a bounded set A ⊆ RN :
the tube function of A:

ε 7→ VA(ε) := |Aε| (the Lebesgue measure)

VA(ε) ∼MεN−s, ε→ 0 ⇒ dimB(A) = s, Ms(A) = M .

ζ̃A(s) :=

∫ δ

0
ts−N−1VA(t) dt,

Re(s) > dimB(A), δ > 0 inessential

(Lapidus, Frankenhuijsen 2000, 2006; Lapidus, Radunović,
Žubrinić, 2017)
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For fractal strings, all three equal up to a holomorphic
function

L ⇒ A := {aj : j ∈ N0}, `j := aj−1 − aj

The functional equations on domains of definition (up to
holomorphic functions):

ζA(s) = 2N−s

s ζL(s),

ζ̃A(s) = 2
s + ζA(s), Re(s) > dimB(A).
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Definition

Let

A ⊆ RN bounded,

ζA(s) admits the meromorphic extension to whole C.

The set of all poles is called the set of complex dimensions of A,
Ω(A).

ζA(s) holomorphic for Re(s) > dimB(A),

simple pole at s = dimB(A).

Complex dimensions (and their residues i.e. principal parts) talk
about the geometry of the set! Similarly as the tube function!

? The box dimension of the set is the first complex dimension, with
Minkowski content directly related to its residue!
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One example of a self-similar set: the ternary Cantor set

Example 1 (The complex dimensions of the ternary Cantor set,
LRŽ 2017)

? viewed as a fractal string, the order of intervals not important

ζLC(s) =
∑∞

j=1 `
s
j =

∑∞
k=0 2k

(
1

3k+1

)s
= 1

3s−2 , |
2
3s | < 1

holomorphic for Re(s) > log2 3 = dimB C
unique meromorphic extension to C by the above formula
with poles:

Ω(C) = {ωk := log3 2 + i
2kπ

log 3
, k ∈ Z}.

Example 2 (The tube function of the Cantor set (LRŽ 2017))

VC(ε) = ε1−log3 2
(
G(− log ε) + o(1))

)
, ε→ 0,

G a nonconstant periodic function.
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A conjecture (LRŽ):
Strong oscillations in the first term indication of self-similarity;
non-real complex dimensions;
possible definition of fractality of a set as possessing non-real
complex dimensions?
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Complex dimensions vs. asymptotics of the tube function

(formally proven in LRŽ, 2017)

? ζ̃A the tube zeta function of set A ⊆ RN , meromorphically
extendable to C.
? t 7→ VA(t) = |At|, t ∈ (0, δ), the tube function of A

ζ̃A(s) =M(χ(0,δ)VA/id
N )(s) =

∫ δ
0 VA(t)ts−1−N dt

Conversely,

VA(t) =
tN

2πi
M−1(ζ̃A)(t) =

1

2πi

∫
Γc

ζA(s)tN−s ds, t ∈ (0, d).

Γ... a vertical line at around s = c, c > dimB A

? the basis is the residue theorem: the complex dimensions and
their residues correspond to asymptotic terms and their
coefficients in an asymptotic expansion of the tube zeta
function of the set
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Important ingredient for relating

The k-th primitive tube function V
[k]
A , k ∈ N:

V
[1]
A (t) :=

∫ t
0 VA(s) ds, t ∈ (0, δ) . . .

Changing the order of integration, N > Re(s) > dimB A:

V
[k]
A (t) =

1

2πi

∫
Γc

tN−s+k

(N − s+ 1)k
ζ̃A(s) ds, k ∈ N0.
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∗ Heuristically, the residue theorem ’gives’ expansions of t 7→ VA(t)

or t 7→ V
[k]
A (t), k ∈ N, from poles and residues of ζA:

? e.g. ΩA = {ωn, n ∈ N} only first-order poles

(∗∗) VA(t) =
1

2πi

∫
Γc

tN−sζ̃A(s) ds =

=
∑

ω∈ΩA, Re(ω)>−M

tN−ωRes(ζ̃A, ω) +O(tN+M ), t→ 0, M ∈ N.

(in case of higher-order poles logarithmic terms in the expansion)
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Idea of proof of (**) (LRŽ)

to get asymptotic remainder O(tN+M ), M ∈ N, bounds
needed on zeta function along vertical lines Re(s) = −M,
M →∞
so-called languidity bounds of ζ̃A(s) along vertical lines
s = σ + iτ , as τ → ±∞
pointwise asymptotics as long as bounds rational

|ζ̃A(σ + iτ)| ∼ τ−γ , γ > 0, τ → ±∞

polynomial bounds (γ < 0) ⇒ only distributional
asymptotics (there exists some primitive of tube function

t 7→ V
[k]
A ) that expands pointwise up to this term, but

differentiation of asymptotic expansions can be done just
distributionally!
tN−s+k

(N−s+1)k
ζ̃A(σ + iτ), as τ → ±∞, becomes rational for k

sufficiently big!
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Relation to dynamical systems
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Orbits of local diffeomorphisms (≡ germs) on the real line
R+

(attracting) parabolic germ
f(z) = z − axk+1 + . . . ∈ Diff(R+, 0), a > 0, k ∈ N

aj ∼ j−1/k, `j ∼ j−
k+1
k , j →∞,

(attracting) hyperbolic germ f(x) = λx+ . . ., 0 < λ < 1

aj ∼ λj , `j ∼ λj , j →∞.

Orbit of f with initial point x0 ∈ (R+, 0):

Of (x0) := {xn := f◦n(x0) : n ∈ N0}, g := id− f
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Box dimension and Minkowski content of orbits

Žubrinić, Županović 2005, MRŽ 2012

a parabolic orbit of multiplicity k

VOf (x0)(ε) ∼ (2/a)
1
k+1

k + 1

k
ε

1
k+1 + . . .+ c(ρ, a)ε(− log ε)+

+ o (ε(− log ε)) , ε→ 0,

dimB(Of (x0)) = 1− 1

k + 1
, M(Of (x0)) = (2/a)

1
k+1

k + 1

k
,

a hyperbolic orbit

VOf (x0)(ε) ∼ a(λ) · ε(− log ε) + o(ε(− log ε)), ε→ 0,

dimB(Of (x0)) = 1− 1 = 0, M(Of (x0)) = +∞,

Later: R [2013]

formal class of f using asymptotic expansion of function
ε 7→ VOf (x0)(ε), as ε→ 0

further (finitely many!) complex dimensions needed
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Orbits as fractal strings and complex dimensions: the
parabolic case

ζLf (s)” ∼ ”
∑
j∈N

j−s
k+1
k

∗ holomorphic for Re(s) > k
k+1 = dimB Of (x0)

∗ however, too coarse approximations for meromorphic
extensions - info on poles and residues lost

∗ notation: ζLf , ζf , ζ̃f
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Precise computations tedious even in the simplest model
case of germs, k = 1, ρ = 0 (MRR 2020)

∗ Model cases with residual invariant ρ = 0 and multiplicity k ∈ N
∗ time-one maps of simple vector fields x′ = −xk+1:

fk(x) := Exp(xk+1 d

dx
) =

x

(1 + kxk)1/k
= x−xk+1+o(xk+1), k ∈ N.

Proposition (The complex dimensions of orbits, MRR 2020)

ζfk(s), Re(s) > k
k+1 , the distance zeta function of an orbit

Ofk(x0) of a model parabolic germ.

1 ζfk(s) can be meromorphically extended to C,

2 the poles of ζfk(s) located at k
k+1 and at (a subset of ) the set

of points −mkk+1 , m ∈ N0, all simple

3 the Minkowski (box) dimension of Ofk(x0) is D = k
k+1 , the

only pole of ζfk(s) with a positive real part
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Heuristical proof in the simplest model case k = 1, ρ = 0

Putting X := x−1
0 ,

`j =
1

(j +X)(j + 1 +X)
=

1

(j +X)2
·
(

1 +
1

j +X

)−1

,

`sj =
1

(j +X)2s
·
(

1 +
1

j +X

)−s
=

=
∑
m=0

(
−s
m

)
1

(j +X)2s+m
.

Heuristically (formal change of order of summation),

ζLf1 (s) =
∑
j=0

`sj ” ∼ ”
∑
m=0

(
−s
m

)
ζX(2s+m). (1)

Complex dimensions: ωn := 1−n
2 , n ∈ N0, with residues:

Res(ζLf1 , ωn) =
(n−1

2
n

)
. Zero residue for n odd.
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What to do in the case ρ 6= 0 or even non-model case?

Arbitrary parabolic germ

f(x) = x− axk+1 + o(xk+1) ∈ Diff(R+, 0)

Theorem B (MRR 2020, Complex dimensions for arbitrary
parabolic orbits)

f ∈ Diff(R+, 0), of formal class (k, ρ), k ∈ N, ρ ∈ R.

1 The distance zeta function ζf (s) can be meromorphically
extended to C.

2 In any open right half-plane WM := {s > 1− M
k+1}, where

M ∈ N, M > k + 2, given as:
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Theorem B

For s ∈WM := {s > 1− M
k+1}:

ζf (s) =(1− s)
k∑

m=1

am

s−
(

1− m
k+1

) + (1− s)
(bk+1(x0)

s
+
ak+1

s2

)
+

+(1− s)
M−1∑
m=k+2

bm
k
c+1∑

p=0

(−1)pp! · cm,p(x0)(
s−

(
1− m

k+1

))p+1 + g(s),

g(s) holomorphic in WM .

∗ the coefficients in principal parts of poles real, with dependence on x0,
as noted!
∗ related to the coefficients of the asymptotic expansion of the tube
function of the orbit!

∗ new wrt model: higher-order poles correspond to logarithmic terms

in the asymptotic expansion of the tube function due to ρ 6= 0
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generalized asymptotic expansion of tube
function-coefficients oscillatory functions

Proposition (MRR 2020)

A generalized asymptotic expansion of the tube function with
full description of oscillatory coefficients:

Vf (ε) ∼ 2
1

k+1 a
− 1

k+1
k + 1

k
· ε

1
k+1 +

k∑
m=2

am · ε
m

k+1 + 2ρ
k − 1

k
· ε log ε+ bk+1(x0)ε+

+
2k∑

m=k+2

bm
k
c+1∑

p=0

cm,pε
m

k+1 logp ε+

b 2k+1
k
c+1∑

p=1

c2k+1,pε
2k+1
k+1 logp ε+

+ P̃2k+1(G(τε)) · ε
2k+1
k+1 +

∞∑
m=2k+2

bm
k
c+1∑

p=0

Q̃m,p(G(τε)) · ε
m

k+1 logp ε, ε→ 0+.

(∗) ε 7→ τε the so-called continuous critical time (MRRZ 2019), τε ∼ ε−
k

k+1

(∗) G : [0,+∞)→ R 1-periodic, G(s) = 1− s, s ∈ (0, 1), G(0) = 0

(∗) P̃2k+1 resp. Q̃m,p, polynomials whose coefficients in general depend on

coefficients of f and initial condition x0.
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The model hyperbolic case

? Of (x0) = {x0λ
n : n ∈ N0},

? Lf := {`j := f◦j(x0)− f◦(j+1)(x0) = x0(1− λ)λj : j ∈ N0},
?

ζf (s) :=
21−s

s

∞∑
j=0

`sj =
21−sxs0 · (1− λ)s

s

1

1− λs
,

? extends meromorphically from {s ∈ C : <(s) > 0} to C:
double pole s0 = 0 and the simple poles:

sk :=
2kπ

log λ
i, k ∈ Z.

?

Vf (ε) = − 2

log λ
ε(− log ε) +H(logλ

2ε

x0(1− λ)
) · ε,

H : [0,+∞)→ R a 1-periodic bounded function.
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Parabolic orbits vs. hyperbolic orbits and fractality

the hyperbolic case: poles of zeta function as non-real
complex dimensions, similarly as for Cantor sets (LF 2013,
LRZ 2017), but in further terms

the parabolic case: no non-real complex dimensions

indication of self-similarity of hyperbolic orbits?
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(MRR 2020) Mardešić, Radunovic, Resman, Fractal zeta functions of orbits of parabolic
diffeomorphisms, accepted for publication in Analys. Math. Phy. (2022),
https://arxiv.org/abs/2010.05955v2

(KMRR 2022) Klimes, M., Mardesic, P., Radunovic, G., Resman, M., Analytic invariants of a
parabolic diffeomorphism from its orbit, submitted (2021),
https://arxiv.org/pdf/2112.14324v2.pdf

(LF 2000) M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry and Number
Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions,
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