\star The research was funded by CSF grants UIP-2017-05-1020 and PZS-2019-02-3055.

Complex dimensions of orbits of dynamical systems

Maja Resman (with P. Mardešić, University of Burgundy, and G. Radunović, University of Zagreb)

08.02.2023, AQDTE Conference 2023, Port de Sóller, Mallorca

• The standard Hurwitz (Riemann) zeta function

$$\zeta_a(s) := \sum_{j=0}^{\infty} \frac{1}{(j+a)^s}, \ a > 0, \ \mathsf{Re}(s) > 1$$

- converges absolutely for $\operatorname{Re}(s) > 1$
- meromorphically extendable to $\mathbb{C}\setminus\{1\}$
- single pole at 1 with residue $\operatorname{Res}(\zeta_a(s), s = 1) = 1$
- for a = 1: the Riemann zeta function

'Geometric generalizations' - **fractal zeta functions** in the sense of *Lapidus*

• $\mathcal{L} := \{\ell_j : j \in \mathbb{N}\}$

a disjoint union of intervals on the real line with lengths ℓ_j

(1) The *geometric zeta function* of a *fractal string* (Lapidus, Frankenhuijsen, 2000)

$$\zeta_{\mathcal{L}}(s):=\sum_{j=1}^\infty \ell_j^s, \; s\in\mathbb{C}\text{, s.t. the sum converges absolutely}$$

$$\star \ \ell_j := rac{1}{j}$$
 standard zeta function

(2) The distance zeta function of a bounded set $A \subseteq \mathbb{R}^N$

$$\zeta_A(s) := \int_{A_\delta} d(x, A)^{s-N} \, dx$$

• $\delta > 0$ inessential (up to a holomorphic function)

(3) The tube zeta function of a bounded set A ⊆ ℝ^N:
• the tube function of A:

 $\varepsilon \mapsto V_A(\varepsilon) := |A_{\varepsilon}|$ (the Lebesgue measure)

•
$$V_A(\varepsilon) \sim M \varepsilon^{N-s}, \ \varepsilon \to 0 \Rightarrow \dim_B(A) = s, \ \mathcal{M}^s(A) = M.$$

$$\begin{split} \tilde{\zeta}_A(s) &:= \int_0^{\delta} t^{s-N-1} V_A(t) \, dt, \\ \operatorname{Re}(s) &> \dim_B(A), \ \delta > 0 \text{ inessential} \end{split}$$

(Lapidus, Frankenhuijsen 2000, 2006; Lapidus, Radunović, Žubrinić, 2017)

For fractal strings, all three equal up to a holomorphic function

$$\mathcal{L} \Rightarrow A := \{a_j : j \in \mathbb{N}_0\}, \ \ell_j := a_{j-1} - a_j$$

The functional equations on domains of definition (up to holomorphic functions):

•
$$\zeta_A(s) = \frac{2^{N-s}}{s} \zeta_{\mathcal{L}}(s)$$
,

•
$$\tilde{\zeta}_A(s) = \frac{2}{s} + \zeta_A(s)$$
, $\operatorname{Re}(s) > \dim_B(A)$.

Definition

Let

• $A \subseteq \mathbb{R}^N$ bounded,

• $\zeta_A(s)$ admits the meromorphic extension to whole \mathbb{C} . The set of all poles is called the set of complex dimensions of A, $\Omega(A)$.

- $\zeta_A(s)$ holomorphic for $\operatorname{Re}(s) > \dim_B(A)$,
- simple pole at $s = \dim_B(A)$.

Complex dimensions (and their residues i.e. principal parts) *talk* about the geometry of the set! Similarly as the tube function!

 \star The box dimension of the set is the *first complex dimension*, with Minkowski content directly related to its residue!

One example of a self-similar set: the ternary Cantor set

Example 1 (The complex dimensions of the ternary Cantor set, LRŽ 2017)

 \star viewed as a fractal string, the order of intervals not important

$$\zeta_{\mathcal{LC}}(s) = \sum_{j=1}^{\infty} \ell_j^s = \sum_{k=0}^{\infty} 2^k \left(\frac{1}{3^{k+1}}\right)^s = \frac{1}{3^s - 2}, \ |\frac{2}{3^s}| < 1$$

- holomorphic for $\operatorname{Re}(s) > \log_2 3 = \dim_B \mathcal{C}$
- \bullet unique meromorphic extension to ${\mathbb C}$ by the above formula with poles:

$$\Omega(\mathcal{C}) = \{ \omega_k := \log_3 2 + i \frac{2k\pi}{\log 3}, \ k \in \mathbb{Z} \}.$$

Example 2 (The tube function of the Cantor set (LRŽ 2017))

$$V_{\mathcal{C}}(\varepsilon) = \varepsilon^{1 - \log_3 2} \big(G(-\log \varepsilon) + o(1)) \big), \ \varepsilon \to 0,$$

 ${\boldsymbol{G}}$ a nonconstant periodic function.

A conjecture (LRŽ):

Strong oscillations in the first term indication of self-similarity; non-real complex dimensions;

possible definition of *fractality* of a set as possessing non-real complex dimensions?

(formally proven in LRŽ, 2017)

 $\star\ \tilde{\zeta}_A$ the tube zeta function of set $A\subseteq\mathbb{R}^N,$ meromorphically extendable to $\mathbb{C}.$

 $\star t \mapsto V_A(t) = |A_t|$, $t \in (0, \delta)$, the tube function of A

• $\tilde{\zeta}_A(s) = \mathcal{M}(\chi_{(0,\delta)}V_A/\mathrm{id}^N)(s) = \int_0^\delta V_A(t)t^{s-1-N} dt$

Conversely,

$$V_A(t) = \frac{t^N}{2\pi i} \mathcal{M}^{-1}(\tilde{\zeta}_A)(t) = \frac{1}{2\pi i} \int_{\Gamma_c} \zeta_A(s) t^{N-s} \, ds, \ t \in (0,d).$$

 Γ ... a vertical line at around s = c, $c > \dim_B A$ * the basis is the residue theorem: the complex dimensions and their residues correspond to asymptotic terms and their coefficients in an asymptotic expansion of the tube zeta function of the set

Important ingredient for relating

The *k*-th primitive tube function $V_A^{[k]}$, $k \in \mathbb{N}$: $V_A^{[1]}(t) := \int_0^t V_A(s) \, ds, \ t \in (0, \delta) \dots$

Changing the order of integration, $N > \operatorname{Re}(s) > \dim_B A$:

$$V_A^{[k]}(t) = \frac{1}{2\pi i} \int_{\Gamma_c} \frac{t^{N-s+k}}{(N-s+1)_k} \tilde{\zeta}_A(s) \, ds, \ k \in \mathbb{N}_0.$$

* Heuristically, the residue theorem 'gives' expansions of $t \mapsto V_A(t)$ or $t \mapsto V_A^{[k]}(t)$, $k \in \mathbb{N}$, from poles and residues of ζ_A :

 \star e.g. $\Omega_A = \{\omega_n, \ n \in \mathbb{N}\}$ only first-order poles

$$(**) \quad V_A(t) = \frac{1}{2\pi i} \int_{\Gamma_c} t^{N-s} \tilde{\zeta}_A(s) \, ds =$$
$$= \sum_{\omega \in \Omega_A, \ \operatorname{Re}(\omega) > -M} t^{N-\omega} \operatorname{Res}(\tilde{\zeta}_A, \omega) + O(t^{N+M}), \ t \to 0, \ M \in \mathbb{N}.$$

(in case of higher-order poles logarithmic terms in the expansion)

Idea of proof of (**) (LRŽ)

- to get asymptotic remainder $O(t^{N+M})$, $M \in \mathbb{N}$, bounds needed on zeta function along vertical lines $\operatorname{Re}(s) = -M$, $M \to \infty$
- so-called *languidity bounds* of $\tilde{\zeta}_A(s)$ along vertical lines $s = \sigma + i\tau$, as $\tau \to \pm \infty$
- pointwise asymptotics as long as bounds rational

$$|\tilde{\zeta}_A(\sigma+i\tau)| \sim \tau^{-\gamma}, \ \gamma > 0, \tau \to \pm \infty$$

- polynomial bounds $(\gamma < 0) \Rightarrow$ only distributional asymptotics (there exists some primitive of tube function $t \mapsto V_A^{[k]}$) that expands pointwise up to this term, but differentiation of asymptotic expansions can be done just distributionally!
- $\frac{t^{N-s+k}}{(N-s+1)_k}\tilde{\zeta}_A(\sigma+i\tau)$, as $\tau\to\pm\infty$, becomes rational for k sufficiently big!

Relation to dynamical systems

э

Orbits of local diffeomorphisms (\equiv germs) on the real line \mathbb{R}_+

• (attracting) parabolic germ

$$f(z) = z - ax^{k+1} + \ldots \in \text{Diff}(\mathbb{R}_+, 0), a > 0, k \in \mathbb{N}$$

$$a_j \sim j^{-1/k}, \ \ell_j \sim j^{-\frac{k+1}{k}}, \ j \to \infty,$$

• (attracting) hyperbolic germ $f(x) = \lambda x + \dots, 0 < \lambda < 1$

$$a_j \sim \lambda^j, \ \ell_j \sim \lambda^j, \ j \to \infty.$$

Orbit of f with initial point $x_0 \in (\mathbb{R}_+, 0)$:

 $\mathcal{O}_f(x_0) := \{x_n := f^{\circ n}(x_0) : n \in \mathbb{N}_0\}, g := \mathrm{id} - f$

t	* * × * *
C X	, X, X.
0	P. C.
	ez e1

Maja Resman (with P. Mardešić, University of Burgundy, and G.

Box dimension and Minkowski content of orbits

Žubrinić, Županović 2005, MRŽ 2012 • a parabolic orbit of *multiplicity k*

$$V_{\mathcal{O}^{f}(x_{0})}(\varepsilon) \sim (2/a)^{\frac{1}{k+1}} \frac{k+1}{k} \varepsilon^{\frac{1}{k+1}} + \ldots + c(\rho, a)\varepsilon(-\log\varepsilon) + o(\varepsilon(-\log\varepsilon)), \ \varepsilon \to 0,$$

$$\dim_{B}(\mathcal{O}^{f}(x_{0})) = 1 - \frac{1}{k+1}, \ \mathcal{M}(\mathcal{O}^{f}(x_{0})) = (2/a)^{\frac{1}{k+1}} \frac{k+1}{k},$$

a hyperbolic orbit

$$V_{\mathcal{O}^f(x_0)}(\varepsilon) \sim a(\lambda) \cdot \varepsilon(-\log \varepsilon) + o(\varepsilon(-\log \varepsilon)), \ \varepsilon \to 0,$$

$$\dim_B(\mathcal{O}^f(x_0)) = 1 - 1 = 0, \ \mathcal{M}(\mathcal{O}^f(x_0)) = +\infty,$$

Later: R [2013]

- formal class of f using asymptotic expansion of function $\varepsilon\mapsto V_{\mathcal{O}^f(x_0)}(\varepsilon),$ as $\varepsilon\to 0$
- further (finitely many!) complex dimensions needed

Orbits as fractal strings and complex dimensions: the parabolic case

$$\zeta_{\mathcal{L}_f}(s)$$
" ~ " $\sum_{j \in \mathbb{N}} j^{-s\frac{k+1}{k}}$

- * holomorphic for $\operatorname{Re}(s) > \frac{k}{k+1} = \dim_B \mathcal{O}^f(x_0)$
- however, too coarse approximations for meromorphic extensions - info on poles and residues lost
- * notation: $\zeta_{\mathcal{L}_f}, \, \zeta_f, \, \tilde{\zeta}_f$

Precise computations tedious even in the simplest model case of germs, k = 1, $\rho = 0$ (MRR 2020)

* Model cases with residual invariant $\rho = 0$ and multiplicity $k \in \mathbb{N}$ * time-one maps of simple vector fields $x' = -x^{k+1}$:

$$f_k(x) := \operatorname{Exp}(x^{k+1}\frac{d}{dx}) = \frac{x}{(1+kx^k)^{1/k}} = x - x^{k+1} + o(x^{k+1}), \ k \in \mathbb{N}.$$

Proposition (The complex dimensions of orbits, MRR 2020)

 $\zeta_{f_k}(s)$, $\operatorname{Re}(s) > \frac{k}{k+1}$, the distance zeta function of an orbit $\mathcal{O}_{f_k}(x_0)$ of a model parabolic germ.

- $\zeta_{f_k}(s)$ can be meromorphically extended to \mathbb{C} ,
- ② the poles of $\zeta_{f_k}(s)$ located at $\frac{k}{k+1}$ and at (a subset of) the set of points $\frac{-mk}{k+1}$, $m \in \mathbb{N}_0$, all simple
- So the Minkowski (box) dimension of $\mathcal{O}_{f_k}(x_0)$ is $D = \frac{k}{k+1}$, the only pole of $\zeta_{f_k}(s)$ with a positive real part

Heuristical proof in the simplest model case $k = 1, \ \rho = 0$

Putting $X := x_0^{-1}$,

$$\ell_j = \frac{1}{(j+X)(j+1+X)} = \frac{1}{(j+X)^2} \cdot \left(1 + \frac{1}{j+X}\right)^{-1},$$

$$\ell_j^s = \frac{1}{(j+X)^{2s}} \cdot \left(1 + \frac{1}{j+X}\right)^{-s} =$$

$$= \sum_{m=0} \binom{-s}{m} \frac{1}{(j+X)^{2s+m}}.$$

Heuristically (formal change of order of summation),

$$\zeta_{\mathcal{L}_{f_1}}(s) = \sum_{j=0}^{\infty} \ell_j^s \, " \sim " \, \sum_{m=0}^{\infty} \binom{-s}{m} \zeta_X(2s+m). \tag{1}$$

Complex dimensions: $\omega_n := \frac{1-n}{2}, n \in \mathbb{N}_0$, with residues: $\operatorname{Res}(\zeta_{\mathcal{L}_{f_1}}, \omega_n) = \binom{\frac{n-1}{2}}{n}$. Zero residue for n odd.

What to do in the case $\rho \neq 0$ or even non-model case?

Arbitrary parabolic germ

$$f(x) = x - ax^{k+1} + o(x^{k+1}) \in \text{Diff}(\mathbb{R}_+, 0)$$

Theorem B (MRR 2020, Complex dimensions for arbitrary parabolic orbits)

 $f \in \text{Diff}(R_+, 0)$, of formal class (k, ρ) , $k \in \mathbb{N}$, $\rho \in \mathbb{R}$.

- The distance zeta function ζ_f(s) can be meromorphically extended to C.
- 2 In any open right half-plane $W_M := \{s > 1 \frac{M}{k+1}\}$, where $M \in \mathbb{N}$, M > k+2, given as:

Theorem B

For
$$s \in W_M := \{s > 1 - \frac{M}{k+1}\}$$
:

$$\zeta_f(s) = (1-s) \sum_{m=1}^k \frac{a_m}{s - \left(1 - \frac{m}{k+1}\right)} + (1-s) \left(\frac{b_{k+1}(x_0)}{s} + \frac{a_{k+1}}{s^2}\right) + (1-s) \sum_{m=k+2}^{M-1} \sum_{p=0}^{\lfloor \frac{m}{k} \rfloor + 1} \frac{(-1)^p p! \cdot c_{m,p}(x_0)}{\left(s - \left(1 - \frac{m}{k+1}\right)\right)^{p+1}} + g(s),$$

g(s) holomorphic in W_M .

 \ast the coefficients in principal parts of poles real, with dependence on $x_0,$ as noted!

 \ast related to the coefficients of the asymptotic expansion of the tube function of the orbit!

* **new** wrt model: **higher-order poles** correspond to *logarithmic terms* in the asymptotic expansion of the tube function due to $\rho \neq 0$

generalized asymptotic expansion of tube function-coefficients oscillatory functions

Proposition (MRR 2020)

A generalized asymptotic expansion of the tube function with full description of oscillatory coefficients:

$$\begin{split} V_f(\varepsilon) &\sim 2^{\frac{1}{k+1}} a^{-\frac{1}{k+1}} \frac{k+1}{k} \cdot \varepsilon^{\frac{1}{k+1}} + \sum_{m=2}^k a_m \cdot \varepsilon^{\frac{m}{k+1}} + 2\rho \frac{k-1}{k} \cdot \varepsilon \log \varepsilon + b_{k+1}(x_0)\varepsilon + \\ &+ \sum_{m=k+2}^{2k} \sum_{p=0}^{\lfloor \frac{m}{k} \rfloor + 1} c_{m,p} \varepsilon^{\frac{m}{k+1}} \log^p \varepsilon + \sum_{p=1}^{\lfloor \frac{2k+1}{k} \rfloor + 1} c_{2k+1,p} \varepsilon^{\frac{2k+1}{k+1}} \log^p \varepsilon + \\ &+ \tilde{P}_{2k+1}(G(\tau_{\varepsilon})) \cdot \varepsilon^{\frac{2k+1}{k+1}} + \sum_{m=2k+2}^{\infty} \sum_{p=0}^{\lfloor \frac{m}{k} \rfloor + 1} \tilde{Q}_{m,p}(G(\tau_{\varepsilon})) \cdot \varepsilon^{\frac{m}{k+1}} \log^p \varepsilon, \ \varepsilon \to 0^+. \end{split}$$

(*) $\varepsilon \mapsto \tau_{\varepsilon}$ the so-called continuous critical time (MRRZ 2019), $\tau_{\varepsilon} \sim \varepsilon^{-\frac{\kappa}{k+1}}$ (*) $G: [0, +\infty) \to \mathbb{R}$ 1-periodic, G(s) = 1 - s, $s \in (0, 1)$, G(0) = 0(*) \tilde{P}_{2k+1} resp. $\tilde{Q}_{m,p}$, polynomials whose coefficients in general depend on coefficients of f and initial condition x_0 .

The model hyperbolic case

*
$$\mathcal{O}_f(x_0) = \{x_0\lambda^n : n \in \mathbb{N}_0\},\$$

* $\mathcal{L}_f := \{\ell_j := f^{\circ j}(x_0) - f^{\circ (j+1)}(x_0) = x_0(1-\lambda)\lambda^j : j \in \mathbb{N}_0\},\$
* $(a_1) := 2^{1-s} \sum_{j=1}^{\infty} \ell^s = 2^{1-s} x_0^s \cdot (1-\lambda)^s = 1$

$$\zeta_f(s) := \frac{2}{s} \sum_{j=0}^{s} \ell_j^s = \frac{2 - x_0 \cdot (1-\lambda)}{s} \frac{1}{1-\lambda^s},$$

★ extends meromorphically from $\{s \in \mathbb{C} : \Re(s) > 0\}$ to \mathbb{C} : double pole $s_0 = 0$ and the simple poles:

$$s_k := \frac{2k\pi}{\log\lambda}i, \ k \in \mathbb{Z}.$$

$$V_f(\varepsilon) = -\frac{2}{\log \lambda} \varepsilon(-\log \varepsilon) + H(\log_\lambda \frac{2\varepsilon}{x_0(1-\lambda)}) \cdot \varepsilon,$$

 $H:\,[0,+\infty)\to\mathbb{R}$ a 1-periodic bounded function.

*

Parabolic orbits vs. hyperbolic orbits and fractality

- the hyperbolic case: poles of zeta function as non-real complex dimensions, similarly as for Cantor sets (LF 2013, LRZ 2017), but in further terms
- the parabolic case: no non-real complex dimensions
- indication of self-similarity of hyperbolic orbits?

The bibliography

- (MRR 2020) Mardešić, Radunovic, Resman, Fractal zeta functions of orbits of parabolic diffeomorphisms, accepted for publication in Analys. Math. Phy. (2022), https://arxiv.org/abs/2010.05955v2
- KIRR 2022) Klimes, M., Mardesic, P., Radunovic, G., Resman, M., Analytic invariants of a parabolic diffeomorphism from its orbit, submitted (2021), https://arxiv.org/pdf/2112.14324v2.pdf
 - (LF 2000) M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions, Birkhäuser, Boston, 2000.
 - (LF 2013) M. L. Lapidus and M. van Frankenhuijsen, Fractality, Complex Dimensions, and Zeta Functions: Geometry and Spectra of Fractal Strings, second revised and enlarged edition (of the 2006 edn.), Springer Monographs in Mathematics, Springer, New York, 2013.
- (LRZ 2017) M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions, Springer Monographs in Mathematics, Springer, New York, 2017.
 - (R 2014) M. Resman, Epsilon-neighborhoods of orbits of parabolic diffeomorphisms and cohomological equations, *Nonlinearity* **27** (2014), 3005–3029
- MRRZ 2019) P. Mardešić, M. Resman, J. P. Rolin, V. Županović, Tubular neighborhoods of orbits of Dulac maps, *Journal of Dynamics and Differential Equations* 1 (2019), 1-49.