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Abel equation

Consider

dx

dt
= x ′ = A(t)x3 + B(t)x2, t ∈ [0,T ].

Denote u(t, x) to the solution determined by u(0, x) = x , and

d(x) = u(T , x)− x .

A solution u(t, x) is said to be

• periodic or closed if u(T , x) = x or equivalently d(x) = 0.

• periodic and singular if d(x) = 0, d ′(x) = 0.

• periodic and double if d(x) = d ′(x) = 0, d ′′(x) 6= 0.

Isolated periodic solutions are also called limit cycles.
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A motivation problem

Consider the Abel equation with linear coefficients

x ′ = (a0 + a1 sin t + a2 cos t) x3 + (b0 + b1 sin t + b2 cos t) x2.

What is the maximum number of limit cycles for this equation?

What is the maximum number of positive limit cycles?
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Some known results

In the following cases, the equation has at most one positive limit
cycle:

• A(t) ≥ 0 (Pliss 1966).

• B(t) ≥ 0 (Gasull-Llibre 1990).

• αA(t) + βB(t) ≥ 0 for some α, β ∈ R
(Álvarez-Gasull-Giacomini 2007).

• a0, b0 ≤ 0 (Bravo-Torregrosa 2008).

• a0b0 = 0 (Bravo-Fernández-Gasull 2009).

The first three also holds changing ≥ 0 for ≤ 0.
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Some known results

Assume we are in the region where none of the known results hold.
Then

1 A has two zeros in [0, 2π), tA1 < tA2 .

2 B has two zeroes in [0, 2π), tB1 < tB2 .

3 The zeroes are interleaved tB1 < tA1 < tB2 < tA2 or
tA1 < tB1 < tA2 < tB2 .
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Semi-stability

Our aim is two control the stability of the singular limit cycles, and
then use it to bound the number of limit cycles.

For any α, β ∈ R, if u(t, x̃) is a singular limit cycle

sgn (dxx(x̃)) = sgn

(∫ T

0
F (t, α)G (t, β) dt

)
,

where

F (t, α) := (2− α)B(t) + 2(3− α)A(t)ũ(t),

G (t, β) := ux(t, x̃)− βũ(t).
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Lower bound

By changes of variables,

x ′ = (a0(1− cos t)− sin t) x3 + (b0 + b1 sin t + b2 cos t) x2,

with b0 + b2 > 0. That is, A(0) = 0, A′(0) = −1, B(0) > 0.
Developing in series

d(x) =2b0πx
2 + (2a0π + 4b20π

2)x3

+ π(3a0b1 − b2 + 8b30π
2 + 2b0(1 + 5a0π))x4 +O(x5).

For a0 = b0 = 0,

d(x) = −πb2x4 +O(x5).

Therefore two positive limit cycles bifurcate form u(t, x) = 0 in a
neighbourhood of a0 = b0 = 0, with b0 < 0 < a0.
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Stability of double closed solutions

Consider
x ′ = A(t)x3 + B(t)x2, t ∈ [0,T ]

Denote
P(t) = 4(B(t)A′(t)− B ′(t)A(t))− B3(t)

and

v(t, x) = B(t)(2A(t)x + B(t))2 + P(t).
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Stability of double closed solutions

Theorem

If

(C1) A(0) = 0, A(t) has a simple zero tA ∈ (0,T ) and B(t) has
two simple zeroes tB1 , tB2 ∈ [0,T ] with
0 < tB1 < tA < tB2 ≤ T ;

and, for any positive singular closed solution ũ(t) := u(t, x̃) of the
Abel equation,

(C2) the function 2A(t)ũ(t) + B(t) has at most a simple zero in
each of the intervals [0, tA] and [tA,T ],

(C3) v(t, ũ(t)) < 0 for every t ∈ [0,T ],

then
d ′′(x̃) < 0.
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Bounding the number of positive limit cycles

Assume the Abel differential equation deppends on a parameter,

x ′ = A(t, λ)x3 + B(t, λ)x2,

and denote
F (t, x , λ) = A(t, λ)x3 + B(t, λ)x2.

Denote

• u(t, x , λ) the solution determined by u(0, x , λ) = x ,

• d(x , λ) = u(T , x , λ)− x ,

• H(λ) the number of positive isolated closed solutions (limit
cycles) for that value of the parameter.
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Bounding the number of positive limit cycles

Theorem

Assume that

1 Fλ(t, x , λ) > 0 for every λ ∈ (λ1, λ2), t ∈ (0,T ) and x > 0,

2 dxx(x̃ , λ) < 0, for every positive singular closed solution
u(t, x̃ , λ) with λ ∈ [λ1, λ2].

Then
H(λ) ≤ H(λ2) + 2, for every λ ∈ (λ1, λ2).

Moreover, the two possible aditional closed solutions correspond to
a Hopf bifurcation of the origin or a Hopf bifurcation of infinity.
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Stability of double closed solutions

Assume u(t, x̃) is a double closed solution.

Proposition (Bravo-Fernández-Gasull 2015)

For any α, β ∈ R,

sgn (dxx(x̃)) = sgn

(∫ T

0
F (t, α)G (t, β) dt

)
,

where

F (t, α) := (2− α)B(t) + 2(3− α)A(t)ũ(t),

G (t, β) := ux(t, x̃)− βũ(t).
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Stability of double closed solutions

By (C2) and (C3), for every α ∈ R, F (t, α) has at most two
changes of sign in (0,T ). Moreover, F (t, α) = 0 is the graph of a
smooth function α(t),

t1 t2tA

F (t,α)>0

F (t,α)<0F (t,α)<0

α(t)

Figure: Sketch of α(t).
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Stability of double closed solutions

By (C2), there exist β0, β1, β2, such that G (t, β) has two changes
of sign in (0,T ) for every β ∈ (β1, β2), β 6= β0, and no zeroes for
β 6∈ [β1, β2]. More precisely, G (t, β) = 0 is the graph of a positive
closed smooth function β(t),

t1 t2

β(t)
β0

Figure: Sketch of β(t).
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Some sufficient conditions

Define
φ(t) = −B(t)/(2A(t)).

By condition (C1), φ(t) ≥ 0 if and only if t ∈ [0, tB1 ] ∪ [tA, tB2 ].

Proposition

Let u(t) be a positive singular closed solution and suppose that
(C1) holds. Let J1 = (0, tB1), J2 = (tA, tB2). If the function P, has
at most one zero in each Ji , i = 1, 2, then u(t)−φ(t) has a unique
simple zero in each Ji , i = 1, 2. That is, condition (C2) holds.
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Some sufficient conditions

Denote

v̇(t, x) = vt(t, x) + vx(t, x)(A(t)x3 + B(t)x2).

Proposition

If v(t, 0) = A′(t)B(t)− A(t)B ′(t) < 0 for every t ∈ [0,T ],
v(0, x) < 0 and v(T , x) < 0, for every x ≥ 0, and
v−1(0) ∩ v̇−1(0) = ∅, then condition (C3) holds.
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Some sufficient conditions

Let

Q(t) = B(t)(A(t)B ′′(t)−B(t)A′′(t))+3B ′(t)(B(t)A′(t)−A(t)B ′(t))

Corollary

If Q(t) has no zeroes in (0,T ) or v(t̄, x) = 0 has not positive
solutions for each zero t̄ of Q(t) in (0,T ), then
v−1(0) ∩ v̇−1(0) = ∅.
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A simple family

Consider tA, tB ∈ R, and

x ′ = t(t − tA)x3 + (t − tB)(t − 1)x2, t ∈ [0, 1].

It has at most one positive isolated closed solution if

1 tA 6∈ (0, 1) or tB 6∈ (0, 1).

2 tA ∈ (0, 1), tB ∈ (0, 1), and tA ∈ (0, tB).

Theorem

Abel equation has at most two positive closed solutions, taking
into account their multiplicities, and this upper bound is sharp.
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Thank you!

Moltes gràcies!
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