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Motivation

Open Problem: Are there smooth vector fields in R3 under the
hypotheses of the Markus– Yamabe’s Problem and having periodic
orbits for the system ẋ = F (x)?

Hypothesis Markus-Yamabe’s Problem: Let F : R3 → R3 a
vector field such that:

1. F (0) = 0.

2. For all x ∈ R3, all the eigenvalues of the Jacobian matrix
JF (x) have negative real part.
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Vector Fields with The Hypothesis

F (x , y , z) = λ(x , y , z) + H(x , y , z)

where JH(x , y , z) is nilpotent and λ < 0.

In dimension three, is it possible know which are the maps H
such that JH is nilpotent?
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• M. Chamberland and A. van den Essen, 2006

H = (u(x , y), v(x , y , z), h(u, v)).

• D. Yan and M. de Bondt, 2020

G = (u1(x1, x2, . . . , xn), u2(x1, x2), . . . , un(x1, x2)).

• Á.C and A. van den Essen, 2020

F = (u1(x1, x2), u2(x1, x2, x3), . . . , un−1(x1, x2, xn), un(x1, x2)).

Furthermore, X + F are invertible, thus this large family of maps
satisfy the Jacobian Çonjecture.
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The polynomial vector field

F : R3 −→ R3, (x , y , z) 7−→ (F1(x , y),F2(x , y , z),F3(x , y)), (1)

is nilpotent if and only if

F1(x , y) = P1

(
y + A1(x)

)
,

F2(x , y , z) = P2

(
z +

1

d2pd2
A2(x)

)
− A′

1(x)F1(x , y),

F3(x , y) = − 1

d2pd2

[
−1

2
A′′
1(x)

(
F1(x , y)

)2
+ A′

2(x)F1(x , y)

]
+ A3,

(2)
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where
Pi ∈ R[s], di := degPi ≥ 1, pdi := the leading coefficient of Pi ,

A1(x) = a10 + a11x + a12x
2, A2(x) = a20 + a21x , A3 ∈ R.

If d2 > 1, then A′′
1(x) ≡ 0.

(3)
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Case λ = 0

Consider the differential system

Ẋ = F (X ) (4)

where F = (F1,F2,F3) as in (2).

Result 1
Each differential system (4) is polynomially integrable. In addition,
if degA1(x) = 1, then differential system (4) is polynomially
completely integrable.
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Result 2
Assume that degP1(s) = degP2(s) = 1 in system (4).

1. If degA1(x) = 1, then each nontrivial trajectory of system (4)
goes to infinity in forward and backward time.

2. If degA1(x) = 2 and we define µ := A3 a12 pd2 p
2
d1
, then

2.1 each trajectory of (4) goes to infinity in forward and backward
time if µ > 0,

2.2 there exists a unique cuspidal invariant surface S0 of (4) and
each trajectory of (4) in R3\S0 goes to infinity in forward and
backward time if µ = 0,

2.3 there exists a unique isochronous periodic surface Sµ of (4)
and each trajectory of (4) in R3\Sµ goes to infinity in forward
and backward time if µ < 0.
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Simpler conjugated systems

By using

(x , y , z)

(
x , y + A1(x), z +

1

d2pd2
A2(x)

)
= (u, v ,w),Ψ

(5)
as a change of coordinates, together with equations (2) and (3),
the differential system (4) becomes

u̇ = P1(v),

v̇ = P2(w),

ẇ =
a12

d2pd2

(
P1(v)

)2
+ A3.

(6)
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Proof Result 1 (Polynomial Integrability)

The last two equations in (6) form a planar Hamiltonian system,
whose Hamiltonian function is

G (v ,w) :=

∫
P2(w) dw − a12

d2pd2

∫
(P1(v))

2 dv − A3v .

Then, by extending this function to R3, that is, by defining the
polynomial function

H(u, v ,w) :=

∫
P2(w) dw − a12

d2pd2

∫
(P1(v))

2 dv − A3v , (7)

we have

Hu = 0, Hv = − a12
d2pd2

(P1(v))
2 − A3 and Hw = P2(w).

Thus,

P1(v)Hu+P2(w)Hv+

(
a12

d2pd2

(
P1(v)

)2
+ A3

)
Hw = 0, ∀ (u, v ,w) ∈ R3.
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We now prove the second part of the theorem. Since
degA1(x) = 1, a12 = 0. Then, system (6) reduces to

u̇ = P1(v),

v̇ = P2(w),

ẇ = A3.

(8)

We have proved that system (6) has a polynomial first integral,
then we will show the existence of an additional polynomial first
integral of the system.

• If A3 = 0, then (8) admits the two functionally independent
polynomial first integrals

H1(u, v ,w) = w and H2(u, v ,w) =

∫
P1(v) dv − uP2(w).
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• If A3 ̸= 0, then (8) admits the two functionally independent
polynomial first integrals

H1(u, v ,w) =

∫
P2(w) dw − A3v

and

H2(u, v ,w) = Ad1+1
3 u −

d1∑
j=0

(−1)jAd1−j
3

(
d j

dv j
P1(v)

)
ξj(w),

where ξ0(w) = w and ξj(w) =
∫
P2(w)ξj−1(w) dw for

j = 1, 2, . . . , d1. ■
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Proof Result 2: degP1(s) = degP2(s) = 1

Statement 1). Since degA1(x) = 1, a12 = 0. The linear change of
coordinates

X =
1

pd1pd2
u, Y =

1

pd1pd2
P1(v), Z =

1

pd2
P2(w)

transforms the differential system (6), with a12 = 0, into the
differential system

Ẋ = Y ,

Ẏ = Z ,

Ż = A3,

which can be solved explicitly. Indeed, the trajectory ϕt(X0,Y0,Z0)
of the system passing through the point (X0,Y0,Z0) has the
components:

X (t) =
A3

6
t3+

Z0

2
t2+Y0 t+X0,Y (t) =

A3

2
t2+Z0 t+Y0,Z (t) = A3 t+Z0.
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Statement 2). Since degA1(x) = 2, a12 ̸= 0. The linear change of
coordinates

X = (a12 pd1) u, Y = (a12 pd1)P1(v), Z = (a12 p
2
d1)P2(w)

transforms the differential system (6), with a12 ̸= 0, into the
differential system

Ẋ = Y ,

Ẏ = Z ,

Ż = Y 2 + µ,

(9)

where µ = A3 a12 pd2 p
2
d1
. Moreover, the first integral (7) for

system (6) becomes

H(X ,Y ,Z ) = −µY +
Z 2

2
− Y 3

3
,

which is a first integral for system (9). Thus, a trajectory of the
system (9) is contained in a level surface H−1(c) ⊂ R3 of H, with
c ∈ R.
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Since H does not depend on X , H−1(c) has the form

H−1(c) = R× G−1(c),

where G (Y ,Z ) = −µY + Z 2/2− Y 3/3. Moreover, the last two
equations in (9) form the planar Hamiltonian system associated
with G (Y ,Z ).
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Case 1: µ > 0. G (Y ,Z ) does not have any singular point in the
YZ -plane. Thus, G−1(c) is homeomorphic to R for any c ∈ R. In
addition, system (9) does not have singularities in the whole space
R3, then each H−1(c) is a simply connected surface without any
singularity of the system. Therefore, each trajectory goes to
infinity in forward and backward time.
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Case 2: µ = 0. G (Y ,Z ) has the origin as the unique singularity
in the YZ -plane. In fact, (0, 0) is a cusp singularity of G (Y ,Z ).
Since G (0, 0) = 0, G−1(0) is the cuspidal cubic curve. Hence,
G−1(c) is homeomorphic to R for any c ̸= 0. In addition, since all
the singularities of (9) are of the form (X , 0, 0), they are contained
in the cuspidal invariant (singular) surface
S0 := H−1(0) = R× G−1(0). This implies that H−1(c), with
c ̸= 0 is a simply connected surface without any singularity of the
system. Hence, all trajectories in R3\S0 have to escape to infinity
in forward and backward time.
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Case 3: µ < 0. We can change the parameter µ by −β2, with
β > 0. Then, by using the linear the change of coordinates
X =

√
βx , Y = β(y − 1), Z = β3/2 z and the linear change of

time τ =
√
β t, the differential system (9), with µ = −β2, is

transformed into the differential system

x ′ = y − 1,

y ′ = z ,

z ′ = y(y − 2),

(10)

where the prime denotes the derivative with respect to a new time
variable τ .
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(10) has a unique isochronous periodic surface

The differential system (10) does not have any singularity in the
whole R3 and it has the polynomial first integral

H(x , y , z) = (6y2 + 3z2 − 2y3)/6.

Since this first integral does not depend on x ,
H−1(c) = R× G−1(c), where G (y , z) = (6y2 + 3z2 − 2y3)/6.
The last two equations in (10) form, in the yz-plane, the planar
Hamiltonian system associated with G (y , z), whose singularities
are (0, 0) and (2, 0). A simple computation shows that they are a
center and a saddle, respectively.
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Figure: a) Phase portrait of the planar Hamiltonian system associated
with G (y , z).
b) σ+ transversal section
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b)

Figure: b) Foliation of the first integral of (10).
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•This Hamiltonian system has a period annulus P surrounding the
center (0, 0) and bounded by the homoclinic loop Γ that joins the
stable and the unstable manifolds of the saddle point (2, 0).

• Since G (0, 0) = 0 and G (2, 0) = 4/3, for all c ∈ (0, 4/3) the
level curve G−1(c) has a connected component γc homeomorphic
to the unit circle S1 that forms part of P and the level surface
H−1(c) has a connected component Sc homeomorphic to the
cylinder R× S1.

• The straight lines L0 := R× {(0, 0)} and L2 := R× {(2, 0)} are
invariant by the flow of (10). Thus, as trajectories, they go to
infinity in forward and backward time.
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Moreover, a straightforward analysis on the topology of G−1(c)
implies that for any c ∈ R,

H−1(c) ∩
(
R3\

(
∪c∈(0,4/3) Sc ∪ L0 ∪ L2

))
is formed only by disjoint simply connected surfaces. Hence:

i) only the invariant surfaces Sc , with c ∈ (0, 4/3), could
support periodic orbits and

ii) any trajectory of system (10) in R3\ ∪c∈(0,4/3) Sc goes to
infinity in forward and backward time.
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It remains to prove the existence of only one surface S∗ = Sc∗ ,
with c∗ ∈ (0, 4/3), that is foliated by periodic orbits of the same
period.
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• There exists a well-defined Poincaré first return map

P : Σ+ −→ Σ+

(x , c) 7−→ ϕτ(x ,c)(x , c),

where τ(x , c) is the time of first return of the point (x , c) to Σ+.

• There exist a unique c∗ such that P(x , c∗) = (x , c∗).

Álvaro Castañeda Continuous Dynamics of nilpotent polynomial vector fields in R3



Moreover, P(x , c) = ϕτ(x ,c)(x , c) = (xc(τ(x , c)), c), which implies
that the fixed points of P are in correspondence with the zeros of
the displacement function

L(x , c) := xc(τ(x , c))− xc(0).

Since the right-hand side of the system

x ′ = y − 1,

y ′ = z ,

z ′ = y(y − 2),

(11)

does not depend on x , the time of first return τ(x , c) does not
either, that is, τ(x , c) = τ(0, c).

• Thus, if L(0, c∗) = 0, then L(x , c∗) = 0 for all x ∈ R, whence
Sc∗ will be a isochronous (periodic) surface,
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Uniqueness of the isochronous surface Sc∗ .

• It is enough to study the function

L(0, c) = xc(τ(0, c))− xc(0), with xc(0) = 0.

• It proves that L(0, c) < 0 for 0 < c ≤ 2/3, L(0, c) > 0 for
2/3 ≪ c < 4/3, and L(0, c) is a monotonous increasing function in(
2/3, 4/3

)
, which implies the existence of a unique c∗ ∈ (0, 4/3)

such that L(0, c∗) = 0.
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Question

▶ Is any periodic orbit in Sc persisting under the perturbation
λI with λ < 0?

A positive answer to the this question would give a affirmative
response to the initial open problem.

We note that for d1 > 1 the planar Hamiltonian system associated
with system (4) can have several period annuli. For instance, by
taking P1(s) = s2 − s − 3, P2(s) = s, a12 = 1 and A3 = −6, the
system (4) has two period annuli. Hence, we can ask:

▶ How many periodic surfaces can have system (4) for d1 > 1
and d2 = 1?
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Thank you very much!!!!
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