Continuous Dynamics of nilpotent polynomial vector fields in \mathbb{R}^3

Álvaro Castañeda Universidad de Chile Departamento de Matemáticas

AQTDE 2023 Port de Soller work joint with Salomón Rebollo-Perdomo

通 とう ほ とう ほう

Open Problem: Are there smooth vector fields in \mathbb{R}^3 under the hypotheses of the Markus– Yamabe's Problem and having periodic orbits for the system $\dot{x} = F(x)$?

Hypothesis Markus-Yamabe's Problem: Let $F : \mathbb{R}^3 \to \mathbb{R}^3$ a vector field such that:

1.
$$F(0) = 0$$
.

2. For all $x \in \mathbb{R}^3$, all the eigenvalues of the Jacobian matrix JF(x) have negative real part.

(日本)(日本)(日本)

$$F(x, y, z) = \lambda(x, y, z) + H(x, y, z)$$

where JH(x, y, z) is nilpotent and $\lambda < 0$.

In dimension three, is it possible know which are the maps H such that JH is nilpotent?

・ 同 ト ・ ヨ ト ・ ヨ ト

• M. Chamberland and A. van den Essen, 2006

$$H = (u(x, y), v(x, y, z), h(u, v)).$$

• D. Yan and M. de Bondt, 2020

$$G = (u_1(x_1, x_2, \ldots, x_n), u_2(x_1, x_2), \ldots, u_n(x_1, x_2)).$$

• Á.C and A. van den Essen, 2020

$$F = (u_1(x_1, x_2), u_2(x_1, x_2, x_3), \dots, u_{n-1}(x_1, x_2, x_n), u_n(x_1, x_2)).$$

Furthermore, X + F are invertible, thus this large family of maps satisfy the Jacobian Çonjecture.

向下 イヨト イヨト

The polynomial vector field

$$F: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \ (x, y, z) \longmapsto (F_1(x, y), F_2(x, y, z), F_3(x, y)), \ (1)$$

is nilpotent if and only if

$$F_{1}(x,y) = P_{1}(y + A_{1}(x)),$$

$$F_{2}(x,y,z) = P_{2}\left(z + \frac{1}{d_{2}p_{d_{2}}}A_{2}(x)\right) - A'_{1}(x)F_{1}(x,y),$$

$$F_{3}(x,y) = -\frac{1}{d_{2}p_{d_{2}}}\left[-\frac{1}{2}A''_{1}(x)(F_{1}(x,y))^{2} + A'_{2}(x)F_{1}(x,y)\right] + A_{3},$$
(2)

イロト イヨト イヨト イヨト

э

where

$$\begin{cases} P_i \in \mathbb{R}[s], \ d_i := \deg P_i \ge 1, \ p_{d_i} := \text{the leading coefficient of } P_i, \\ A_1(x) = a_{10} + a_{11}x + a_{12}x^2, \ A_2(x) = a_{20} + a_{21}x, \ A_3 \in \mathbb{R}. \\ \text{If } d_2 > 1, \ \text{then } A_1''(x) \equiv 0. \end{cases}$$
(3)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 ・ の < ⊙

Consider the differential system

$$\dot{X} = F(X) \tag{4}$$

where $F = (F_1, F_2, F_3)$ as in (2).

Result 1

Each differential system (4) is polynomially integrable. In addition, if deg $A_1(x) = 1$, then differential system (4) is polynomially completely integrable.

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Result 2

Assume that deg $P_1(s) = \text{deg } P_2(s) = 1$ in system (4).

- 1. If deg $A_1(x) = 1$, then each nontrivial trajectory of system (4) goes to infinity in forward and backward time.
- 2. If deg $A_1(x) = 2$ and we define $\mu := A_3 a_{12} p_{d_2} p_{d_1}^2$, then
 - 2.1 each trajectory of (4) goes to infinity in forward and backward time if $\mu > 0$,
 - 2.2 there exists a unique cuspidal invariant surface S_0 of (4) and each trajectory of (4) in $\mathbb{R}^3 \setminus S_0$ goes to infinity in forward and backward time if $\mu = 0$,
 - 2.3 there exists a unique isochronous periodic surface S_{μ} of (4) and each trajectory of (4) in $\mathbb{R}^{3}\backslash S_{\mu}$ goes to infinity in forward and backward time if $\mu < 0$.

イロト 不得 トイヨト イヨト ニヨー

Simpler conjugated systems

By using

$$(x, y, z) \xrightarrow{\Psi} \left(x, y + A_1(x), z + \frac{1}{d_2 p_{d_2}} A_2(x)\right) = (u, v, w),$$
(5)
as a change of coordinates, together with equations (2) and (3),
the differential system (4) becomes

$$\dot{u} = P_1(v), \dot{v} = P_2(w), \dot{w} = \frac{a_{12}}{d_2 p_{d_2}} (P_1(v))^2 + A_3.$$
(6)

・ 回 ト ・ ヨ ト ・ ヨ ト

臣

Proof Result 1 (Polynomial Integrability)

The last two equations in (6) form a planar Hamiltonian system, whose Hamiltonian function is

$$G(v,w) := \int P_2(w) \, dw - \frac{a_{12}}{d_2 p_{d_2}} \int (P_1(v))^2 \, dv - A_3 v.$$

Then, by extending this function to $\mathbb{R}^3,$ that is, by defining the polynomial function

$$H(u, v, w) := \int P_2(w) \, dw - \frac{a_{12}}{d_2 p_{d_2}} \int (P_1(v))^2 \, dv - A_3 v, \quad (7)$$

we have

$$H_u = 0, \quad H_v = -\frac{a_{12}}{d_2 p_{d2}} (P_1(v))^2 - A_3 \text{ and } H_w = P_2(w).$$

Thus,

$$P_1(v) H_u + P_2(w) H_v + \left(\frac{a_{12}}{d_2 p_{d_2}} (P_1(v))^2 + A_3\right) H_w = 0, \quad \forall (u, v, w) \in \mathbb{R}$$

We now prove the second part of the theorem. Since deg $A_1(x) = 1$, $a_{12} = 0$. Then, system (6) reduces to

$$\begin{split} \dot{u} &= P_1(v), \\ \dot{v} &= P_2(w), \\ \dot{w} &= A_3. \end{split} \tag{8}$$

We have proved that system (6) has a polynomial first integral, then we will show the existence of an additional polynomial first integral of the system.

• If $A_3 = 0$, then (8) admits the two functionally independent polynomial first integrals

$$H_1(u,v,w)=w$$
 and $H_2(u,v,w)=\int P_1(v)\,dv-uP_2(w).$

- 本部 トイヨト イヨト - ヨ

• If $A_3 \neq 0$, then (8) admits the two functionally independent polynomial first integrals

$$H_1(u,v,w) = \int P_2(w) \, dw - A_3 v$$

and

$$H_2(u, v, w) = A_3^{d_1+1}u - \sum_{j=0}^{d_1} (-1)^j A_3^{d_1-j} \left(\frac{d^j}{dv^j} P_1(v)\right) \xi_j(w),$$

where $\xi_0(w) = w$ and $\xi_j(w) = \int P_2(w)\xi_{j-1}(w) \, dw$ for $j = 1, 2, ..., d_1$.

Proof Result 2: deg $P_1(s) = \deg P_2(s) = 1$

Statement 1). Since deg $A_1(x) = 1$, $a_{12} = 0$. The linear change of coordinates

$$X = \frac{1}{p_{d_1} p_{d_2}} u, \ Y = \frac{1}{p_{d_1} p_{d_2}} P_1(v), \ Z = \frac{1}{p_{d_2}} P_2(w)$$

transforms the differential system (6), with $a_{12} = 0$, into the differential system

$$\dot{X} = Y,$$

 $\dot{Y} = Z,$
 $\dot{Z} = A_3,$

which can be solved explicitly. Indeed, the trajectory $\phi_t(X_0, Y_0, Z_0)$ of the system passing through the point (X_0, Y_0, Z_0) has the components:

$$X(t) = \frac{A_3}{6} t^3 + \frac{Z_0}{2} t^2 + Y_0 t + X_0, \quad Y(t) = \frac{A_3}{2} t^2 + Z_0 t + Y_0, \quad Z(t) = A_3 t + Z_0 t + Z$$

Statement 2). Since deg $A_1(x) = 2$, $a_{12} \neq 0$. The linear change of coordinates

$$X = (a_{12} p_{d_1}) u, \ Y = (a_{12} p_{d_1}) P_1(v), \ Z = (a_{12} p_{d_1}^2) P_2(w)$$

transforms the differential system (6), with $a_{12} \neq 0$, into the differential system

$$\dot{X} = Y,$$

 $\dot{Y} = Z,$ (9)
 $\dot{Z} = Y^2 + \mu,$

where $\mu = A_3 a_{12} p_{d_2} p_{d_1}^2$. Moreover, the first integral (7) for system (6) becomes

$$H(X, Y, Z) = -\mu Y + \frac{Z^2}{2} - \frac{Y^3}{3},$$

which is a first integral for system (9). Thus, a trajectory of the system (9) is contained in a level surface $H^{-1}(c) \subset \mathbb{R}^3$ of H, with $c \in \mathbb{R}$.

Since H does not depend on X, $H^{-1}(c)$ has the form

$$H^{-1}(c) = \mathbb{R} \times G^{-1}(c),$$

where $G(Y, Z) = -\mu Y + Z^2/2 - Y^3/3$. Moreover, the last two equations in (9) form the planar Hamiltonian system associated with G(Y, Z).

・ 回 ト ・ ヨ ト ・ ヨ ト

Case 1: $\mu > 0$. G(Y, Z) does not have any singular point in the YZ-plane. Thus, $G^{-1}(c)$ is homeomorphic to \mathbb{R} for any $c \in \mathbb{R}$. In addition, system (9) does not have singularities in the whole space \mathbb{R}^3 , then each $H^{-1}(c)$ is a simply connected surface without any singularity of the system. Therefore, each trajectory goes to infinity in forward and backward time.

イロト イポト イヨト イヨト 二日

Case 2: $\mu = 0$. G(Y, Z) has the origin as the unique singularity in the YZ-plane. In fact, (0,0) is a cusp singularity of G(Y, Z). Since G(0,0) = 0, $G^{-1}(0)$ is the cuspidal cubic curve. Hence, $G^{-1}(c)$ is homeomorphic to \mathbb{R} for any $c \neq 0$. In addition, since all the singularities of (9) are of the form (X,0,0), they are contained in the cuspidal invariant (singular) surface $S_0 := H^{-1}(0) = \mathbb{R} \times G^{-1}(0)$. This implies that $H^{-1}(c)$, with $c \neq 0$ is a simply connected surface without any singularity of the system. Hence, all trajectories in $\mathbb{R}^3 \setminus S_0$ have to escape to infinity in forward and backward time.

Case 3: $\mu < 0$. We can change the parameter μ by $-\beta^2$, with $\beta > 0$. Then, by using the linear the change of coordinates $X = \sqrt{\beta}x$, $Y = \beta(y-1)$, $Z = \beta^{3/2}z$ and the linear change of time $\tau = \sqrt{\beta}t$, the differential system (9), with $\mu = -\beta^2$, is transformed into the differential system

$$x' = y - 1,$$

 $y' = z,$ (10)
 $z' = y(y - 2),$

where the prime denotes the derivative with respect to a new time variable τ .

・ 同 ト ・ ヨ ト ・ ヨ ト

The differential system (10) does not have any singularity in the whole \mathbb{R}^3 and it has the polynomial first integral

$$H(x, y, z) = (6y^2 + 3z^2 - 2y^3)/6.$$

Since this first integral does not depend on x, $H^{-1}(c) = \mathbb{R} \times G^{-1}(c)$, where $G(y, z) = (6y^2 + 3z^2 - 2y^3)/6$. The last two equations in (10) form, in the *yz*-plane, the planar Hamiltonian system associated with G(y, z), whose singularities are (0,0) and (2,0). A simple computation shows that they are a center and a saddle, respectively.

- 4 回 ト 4 日 ト - 日 日

Figure: a) Phase portrait of the planar Hamiltonian system associated with G(y, z). b) σ^+ transversal section

イロト イポト イヨト イヨト

臣

Figure: b) Foliation of the first integral of (10).

ヘロア 人間 アメヨア 人間 アー

Ð,

•This Hamiltonian system has a period annulus \mathscr{P} surrounding the center (0,0) and bounded by the homoclinic loop Γ that joins the stable and the unstable manifolds of the saddle point (2,0).

• Since G(0,0) = 0 and G(2,0) = 4/3, for all $c \in (0,4/3)$ the level curve $G^{-1}(c)$ has a connected component γ_c homeomorphic to the unit circle \mathbb{S}^1 that forms part of \mathscr{P} and the level surface $H^{-1}(c)$ has a connected component \mathcal{S}_c homeomorphic to the cylinder $\mathbb{R} \times \mathbb{S}^1$.

• The straight lines $L_0 := \mathbb{R} \times \{(0,0)\}$ and $L_2 := \mathbb{R} \times \{(2,0)\}$ are invariant by the flow of (10). Thus, as trajectories, they go to infinity in forward and backward time.

Moreover, a straightforward analysis on the topology of $G^{-1}(c)$ implies that for any $c \in \mathbb{R}$,

$$H^{-1}(c) \cap \left(\mathbb{R}^3 \setminus \left(\cup_{c \in (0,4/3)} \mathcal{S}_c \cup L_0 \cup L_2 \right) \right)$$

is formed only by disjoint simply connected surfaces. Hence:

- i) only the invariant surfaces S_c , with $c \in (0, 4/3)$, could support periodic orbits and
- ii) any trajectory of system (10) in $\mathbb{R}^3 \setminus \bigcup_{c \in (0,4/3)} S_c$ goes to infinity in forward and backward time.

It remains to prove the existence of only one surface $S^* = S_{c^*}$, with $c^* \in (0, 4/3)$, that is foliated by periodic orbits of the same period.

・ 同 ト ・ ヨ ト ・ ヨ ト …

• There exists a well-defined Poincaré first return map

$$egin{array}{rcl} \mathcal{P}\colon\Sigma^+&\longrightarrow&\Sigma^+\ (x,c)&\longmapsto&\phi_{ au(x,c)}(x,c), \end{array}$$

where $\tau(x, c)$ is the time of first return of the point (x, c) to Σ^+ .

• There exist a unique c^* such that $\mathcal{P}(x, c^*) = (x, c^*)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Moreover, $\mathcal{P}(x, c) = \phi_{\tau(x,c)}(x, c) = (x_c(\tau(x, c)), c)$, which implies that the fixed points of \mathcal{P} are in correspondence with the zeros of the displacement function

$$L(x,c):=x_c(\tau(x,c))-x_c(0).$$

Since the right-hand side of the system

$$x' = y - 1,$$

 $y' = z,$ (11)
 $z' = y(y - 2),$

does not depend on x, the time of first return $\tau(x, c)$ does not either, that is, $\tau(x, c) = \tau(0, c)$.

• Thus, if $L(0, c^*) = 0$, then $L(x, c^*) = 0$ for all $x \in \mathbb{R}$, whence S_{c^*} will be a isochronous (periodic) surface,

ヘロト 不得 トイヨト イヨト 二日

• It is enough to study the function

$$L(0,c) = x_c(\tau(0,c)) - x_c(0), \text{ with } x_c(0) = 0.$$

• It proves that L(0, c) < 0 for $0 < c \le 2/3$, L(0, c) > 0 for $2/3 \ll c < 4/3$, and L(0, c) is a monotonous increasing function in (2/3, 4/3), which implies the existence of a unique $c^* \in (0, 4/3)$ such that $L(0, c^*) = 0$.

- 同 ト - ヨ ト - ヨ ト

Is any periodic orbit in S_c persisting under the perturbation λI with λ < 0?</p>

A positive answer to the this question would give a affirmative response to the initial open problem.

We note that for $d_1 > 1$ the planar Hamiltonian system associated with system (4) can have several period annuli. For instance, by taking $P_1(s) = s^2 - s - 3$, $P_2(s) = s$, $a_{12} = 1$ and $A_3 = -6$, the system (4) has two period annuli. Hence, we can ask:

▶ How many periodic surfaces can have system (4) for d₁ > 1 and d₂ = 1?

Thank you very much!!!!

<ロ> <同> <同> < 同> < 同>

æ