Continuous Dynamics of nilpotent polynomial vector fields in \mathbb{R}^{3}

Álvaro Castañeda
Universidad de Chile Departamento de Matemáticas

AQTDE 2023
Port de Soller
work joint with Salomón Rebollo-Perdomo

Motivation

Open Problem: Are there smooth vector fields in \mathbb{R}^{3} under the hypotheses of the Markus- Yamabe's Problem and having periodic orbits for the system $\dot{x}=F(x)$?

Hypothesis Markus-Yamabe's Problem: Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ a vector field such that:

1. $F(0)=0$.
2. For all $x \in \mathbb{R}^{3}$, all the eigenvalues of the Jacobian matrix $J F(x)$ have negative real part.

Vector Fields with The Hypothesis

$$
F(x, y, z)=\lambda(x, y, z)+H(x, y, z)
$$

where $J H(x, y, z)$ is nilpotent and $\lambda<0$.
In dimension three, is it possible know which are the maps H such that $J H$ is nilpotent?

- M. Chamberland and A. van den Essen, 2006

$$
H=(u(x, y), v(x, y, z), h(u, v)) .
$$

- D. Yan and M. de Bondt, 2020

$$
G=\left(u_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), u_{2}\left(x_{1}, x_{2}\right), \ldots, u_{n}\left(x_{1}, x_{2}\right)\right) .
$$

- Á.C and A. van den Essen, 2020

$$
F=\left(u_{1}\left(x_{1}, x_{2}\right), u_{2}\left(x_{1}, x_{2}, x_{3}\right), \ldots, u_{n-1}\left(x_{1}, x_{2}, x_{n}\right), u_{n}\left(x_{1}, x_{2}\right)\right) .
$$

Furthermore, $X+F$ are invertible, thus this large family of maps satisfy the Jacobian Çonjecture.

The polynomial vector field

$$
\begin{equation*}
F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3},(x, y, z) \longmapsto\left(F_{1}(x, y), F_{2}(x, y, z), F_{3}(x, y)\right) \tag{1}
\end{equation*}
$$

is nilpotent if and only if

$$
\begin{align*}
F_{1}(x, y) & =P_{1}\left(y+A_{1}(x)\right) \\
F_{2}(x, y, z) & =P_{2}\left(z+\frac{1}{d_{2} p_{d_{2}}} A_{2}(x)\right)-A_{1}^{\prime}(x) F_{1}(x, y), \\
F_{3}(x, y) & =-\frac{1}{d_{2} p_{d 2}}\left[-\frac{1}{2} A_{1}^{\prime \prime}(x)\left(F_{1}(x, y)\right)^{2}+A_{2}^{\prime}(x) F_{1}(x, y)\right]+A_{3} \tag{2}
\end{align*}
$$

where
$\left\{\begin{array}{l}P_{i} \in \mathbb{R}[s], d_{i}:=\operatorname{deg} P_{i} \geq 1, p_{d_{i}}:=\text { the leading coefficient of } P_{i}, \\ A_{1}(x)=a_{10}+a_{11} x+a_{12} x^{2}, A_{2}(x)=a_{20}+a_{21} x, A_{3} \in \mathbb{R} . \\ \text { If } d_{2}>1, \text { then } A_{1}^{\prime \prime}(x) \equiv 0 .\end{array}\right.$

Case $\lambda=0$

Consider the differential system

$$
\begin{equation*}
\dot{X}=F(X) \tag{4}
\end{equation*}
$$

where $F=\left(F_{1}, F_{2}, F_{3}\right)$ as in (2).

Result 1

Each differential system (4) is polynomially integrable. In addition, if $\operatorname{deg} A_{1}(x)=1$, then differential system (4) is polynomially completely integrable.

Result 2

Assume that $\operatorname{deg} P_{1}(s)=\operatorname{deg} P_{2}(s)=1$ in system (4).

1. If $\operatorname{deg} A_{1}(x)=1$, then each nontrivial trajectory of system (4) goes to infinity in forward and backward time.
2. If $\operatorname{deg} A_{1}(x)=2$ and we define $\mu:=A_{3} a_{12} p_{d_{2}} p_{d_{1}}^{2}$, then
2.1 each trajectory of (4) goes to infinity in forward and backward time if $\mu>0$,
2.2 there exists a unique cuspidal invariant surface \mathcal{S}_{0} of (4) and each trajectory of (4) in $\mathbb{R}^{3} \backslash \mathcal{S}_{0}$ goes to infinity in forward and backward time if $\mu=0$,
2.3 there exists a unique isochronous periodic surface \mathcal{S}_{μ} of (4) and each trajectory of (4) in $\mathbb{R}^{3} \backslash \mathcal{S}_{\mu}$ goes to infinity in forward and backward time if $\mu<0$.

Simpler conjugated systems

By using

$$
\begin{equation*}
(x, y, z) \xrightarrow{\psi}\left(x, y+A_{1}(x), z+\frac{1}{d_{2} p_{d_{2}}} A_{2}(x)\right)=(u, v, w), \tag{5}
\end{equation*}
$$

as a change of coordinates, together with equations (2) and (3), the differential system (4) becomes

$$
\begin{align*}
\dot{u} & =P_{1}(v), \\
\dot{v} & =P_{2}(w), \tag{6}\\
\dot{w} & =\frac{a_{12}}{d_{2} p_{d 2}}\left(P_{1}(v)\right)^{2}+A_{3} .
\end{align*}
$$

Proof Result 1 (Polynomial Integrability)

The last two equations in (6) form a planar Hamiltonian system, whose Hamiltonian function is

$$
G(v, w):=\int P_{2}(w) d w-\frac{a_{12}}{d_{2} p_{d 2}} \int\left(P_{1}(v)\right)^{2} d v-A_{3} v
$$

Then, by extending this function to \mathbb{R}^{3}, that is, by defining the polynomial function

$$
\begin{equation*}
H(u, v, w):=\int P_{2}(w) d w-\frac{a_{12}}{d_{2} p_{d 2}} \int\left(P_{1}(v)\right)^{2} d v-A_{3} v \tag{7}
\end{equation*}
$$

we have

$$
H_{u}=0, \quad H_{v}=-\frac{a_{12}}{d_{2} p_{d 2}}\left(P_{1}(v)\right)^{2}-A_{3} \quad \text { and } \quad H_{w}=P_{2}(w)
$$

Thus,
$P_{1}(v) H_{u}+P_{2}(w) H_{v}+\left(\frac{a_{12}}{d_{2} p_{d 2}}\left(P_{1}(v)\right)^{2}+A_{3}\right) H_{w}=0, \quad \forall(u, v, w) \in \mathbb{R}$

We now prove the second part of the theorem. Since $\operatorname{deg} A_{1}(x)=1, a_{12}=0$. Then, system (6) reduces to

$$
\begin{align*}
\dot{u} & =P_{1}(v), \\
\dot{v} & =P_{2}(w), \tag{8}\\
\dot{w} & =A_{3} .
\end{align*}
$$

We have proved that system (6) has a polynomial first integral, then we will show the existence of an additional polynomial first integral of the system.

- If $A_{3}=0$, then (8) admits the two functionally independent polynomial first integrals

$$
H_{1}(u, v, w)=w \quad \text { and } \quad H_{2}(u, v, w)=\int P_{1}(v) d v-u P_{2}(w)
$$

- If $A_{3} \neq 0$, then (8) admits the two functionally independent polynomial first integrals

$$
H_{1}(u, v, w)=\int P_{2}(w) d w-A_{3} v
$$

and

$$
H_{2}(u, v, w)=A_{3}^{d_{1}+1} u-\sum_{j=0}^{d_{1}}(-1)^{j} A_{3}^{d_{1}-j}\left(\frac{d^{j}}{d v^{j}} P_{1}(v)\right) \xi_{j}(w)
$$

where $\xi_{0}(w)=w$ and $\xi_{j}(w)=\int P_{2}(w) \xi_{j-1}(w) d w$ for $j=1,2, \ldots, d_{1}$.

Proof Result 2: $\operatorname{deg} P_{1}(s)=\operatorname{deg} P_{2}(s)=1$

Statement 1). Since $\operatorname{deg} A_{1}(x)=1, a_{12}=0$. The linear change of coordinates

$$
X=\frac{1}{p_{d_{1}} p_{d_{2}}} u, Y=\frac{1}{p_{d_{1}} p_{d_{2}}} P_{1}(v), Z=\frac{1}{p_{d_{2}}} P_{2}(w)
$$

transforms the differential system (6), with $a_{12}=0$, into the differential system

$$
\begin{aligned}
& \dot{X}=Y, \\
& \dot{Y}=Z \\
& \dot{Z}=A_{3}
\end{aligned}
$$

which can be solved explicitly. Indeed, the trajectory $\phi_{t}\left(X_{0}, Y_{0}, Z_{0}\right)$ of the system passing through the point $\left(X_{0}, Y_{0}, Z_{0}\right)$ has the components:
$X(t)=\frac{A_{3}}{6} t^{3}+\frac{Z_{0}}{2} t^{2}+Y_{0} t+X_{0}, Y(t)=\frac{A_{3}}{2} t^{2}+Z_{0} t+Y_{0}, Z(t)=A_{3} t+Z_{c}$

Statement 2). Since $\operatorname{deg} A_{1}(x)=2, a_{12} \neq 0$. The linear change of coordinates

$$
X=\left(a_{12} p_{d_{1}}\right) u, Y=\left(a_{12} p_{d_{1}}\right) P_{1}(v), Z=\left(a_{12} p_{d_{1}}^{2}\right) P_{2}(w)
$$

transforms the differential system (6), with $a_{12} \neq 0$, into the differential system

$$
\begin{align*}
& \dot{X}=Y \\
& \dot{Y}=Z \tag{9}\\
& \dot{Z}=Y^{2}+\mu,
\end{align*}
$$

where $\mu=A_{3} a_{12} p_{d_{2}} p_{d_{1}}^{2}$. Moreover, the first integral (7) for system (6) becomes

$$
H(X, Y, Z)=-\mu Y+\frac{Z^{2}}{2}-\frac{Y^{3}}{3}
$$

which is a first integral for system (9). Thus, a trajectory of the system (9) is contained in a level surface $H^{-1}(c) \subset \mathbb{R}^{3}$ of H, with $c \in \mathbb{R}$.

Since H does not depend on $X, H^{-1}(c)$ has the form

$$
H^{-1}(c)=\mathbb{R} \times G^{-1}(c)
$$

where $G(Y, Z)=-\mu Y+Z^{2} / 2-Y^{3} / 3$. Moreover, the last two equations in (9) form the planar Hamiltonian system associated with $G(Y, Z)$.

Case 1: $\mu>0 . G(Y, Z)$ does not have any singular point in the $Y Z$-plane. Thus, $G^{-1}(c)$ is homeomorphic to \mathbb{R} for any $c \in \mathbb{R}$. In addition, system (9) does not have singularities in the whole space \mathbb{R}^{3}, then each $H^{-1}(c)$ is a simply connected surface without any singularity of the system. Therefore, each trajectory goes to infinity in forward and backward time.

Case 2: $\mu=0$. $G(Y, Z)$ has the origin as the unique singularity in the $Y Z$-plane. In fact, $(0,0)$ is a cusp singularity of $G(Y, Z)$. Since $G(0,0)=0, G^{-1}(0)$ is the cuspidal cubic curve. Hence, $G^{-1}(c)$ is homeomorphic to \mathbb{R} for any $c \neq 0$. In addition, since all the singularities of (9) are of the form $(X, 0,0)$, they are contained in the cuspidal invariant (singular) surface $S_{0}:=H^{-1}(0)=\mathbb{R} \times G^{-1}(0)$. This implies that $H^{-1}(c)$, with $c \neq 0$ is a simply connected surface without any singularity of the system. Hence, all trajectories in $\mathbb{R}^{3} \backslash S_{0}$ have to escape to infinity in forward and backward time.

Case 3: $\mu<0$. We can change the parameter μ by $-\beta^{2}$, with $\beta>0$. Then, by using the linear the change of coordinates $X=\sqrt{\beta} x, Y=\beta(y-1), Z=\beta^{3 / 2} z$ and the linear change of time $\tau=\sqrt{\beta} t$, the differential system (9), with $\mu=-\beta^{2}$, is transformed into the differential system

$$
\begin{align*}
& x^{\prime}=y-1 \\
& y^{\prime}=z \tag{10}\\
& z^{\prime}=y(y-2)
\end{align*}
$$

where the prime denotes the derivative with respect to a new time variable τ.

(10) has a unique isochronous periodic surface

The differential system (10) does not have any singularity in the whole \mathbb{R}^{3} and it has the polynomial first integral

$$
H(x, y, z)=\left(6 y^{2}+3 z^{2}-2 y^{3}\right) / 6
$$

Since this first integral does not depend on x, $H^{-1}(c)=\mathbb{R} \times G^{-1}(c)$, where $G(y, z)=\left(6 y^{2}+3 z^{2}-2 y^{3}\right) / 6$. The last two equations in (10) form, in the $y z$-plane, the planar Hamiltonian system associated with $G(y, z)$, whose singularities are $(0,0)$ and $(2,0)$. A simple computation shows that they are a center and a saddle, respectively.

Figure: a) Phase portrait of the planar Hamiltonian system associated with $G(y, z)$.
b) σ^{+}transversal section

Figure: b) Foliation of the first integral of (10).
-This Hamiltonian system has a period annulus \mathscr{P} surrounding the center $(0,0)$ and bounded by the homoclinic loop Γ that joins the stable and the unstable manifolds of the saddle point $(2,0)$.

- Since $G(0,0)=0$ and $G(2,0)=4 / 3$, for all $c \in(0,4 / 3)$ the level curve $G^{-1}(c)$ has a connected component γ_{c} homeomorphic to the unit circle \mathbb{S}^{1} that forms part of \mathscr{P} and the level surface $H^{-1}(c)$ has a connected component \mathcal{S}_{c} homeomorphic to the cylinder $\mathbb{R} \times \mathbb{S}^{1}$.
- The straight lines $L_{0}:=\mathbb{R} \times\{(0,0)\}$ and $L_{2}:=\mathbb{R} \times\{(2,0)\}$ are invariant by the flow of (10). Thus, as trajectories, they go to infinity in forward and backward time.

Moreover, a straightforward analysis on the topology of $G^{-1}(c)$ implies that for any $c \in \mathbb{R}$,

$$
H^{-1}(c) \cap\left(\mathbb{R}^{3} \backslash\left(\cup_{c \in(0,4 / 3)} \mathcal{S}_{c} \cup L_{0} \cup L_{2}\right)\right)
$$

is formed only by disjoint simply connected surfaces. Hence:
i) only the invariant surfaces \mathcal{S}_{c}, with $c \in(0,4 / 3)$, could support periodic orbits and
ii) any trajectory of system (10) in $\mathbb{R}^{3} \backslash \cup_{c \in(0,4 / 3)} \mathcal{S}_{c}$ goes to infinity in forward and backward time.

It remains to prove the existence of only one surface $S^{*}=\mathcal{S}_{C^{*}}$, with $c^{*} \in(0,4 / 3)$, that is foliated by periodic orbits of the same period.

- There exists a well-defined Poincaré first return map

$$
\begin{aligned}
\mathcal{P}: \Sigma^{+} & \longrightarrow \Sigma^{+} \\
(x, c) & \longmapsto \phi_{\tau(x, c)}(x, c)
\end{aligned}
$$

where $\tau(x, c)$ is the time of first return of the point (x, c) to Σ^{+}.

- There exist a unique c^{*} such that $\mathcal{P}\left(x, c^{*}\right)=\left(x, c^{*}\right)$.

Moreover, $\mathcal{P}(x, c)=\phi_{\tau(x, c)}(x, c)=\left(x_{c}(\tau(x, c)), c\right)$, which implies that the fixed points of \mathcal{P} are in correspondence with the zeros of the displacement function

$$
L(x, c):=x_{c}(\tau(x, c))-x_{c}(0)
$$

Since the right-hand side of the system

$$
\begin{align*}
& x^{\prime}=y-1 \\
& y^{\prime}=z \tag{11}\\
& z^{\prime}=y(y-2)
\end{align*}
$$

does not depend on x, the time of first return $\tau(x, c)$ does not either, that is, $\tau(x, c)=\tau(0, c)$.

- Thus, if $L\left(0, c^{*}\right)=0$, then $L\left(x, c^{*}\right)=0$ for all $x \in \mathbb{R}$, whence $\mathcal{S}_{C^{*}}$ will be a isochronous (periodic) surface,

Uniqueness of the isochronous surface $\mathcal{S}_{c^{*}}$

- It is enough to study the function

$$
L(0, c)=x_{c}(\tau(0, c))-x_{c}(0), \quad \text { with } x_{c}(0)=0
$$

- It proves that $L(0, c)<0$ for $0<c \leq 2 / 3, L(0, c)>0$ for $2 / 3 \ll c<4 / 3$, and $L(0, c)$ is a monotonous increasing function in $(2 / 3,4 / 3)$, which implies the existence of a unique $c^{*} \in(0,4 / 3)$ such that $L\left(0, c^{*}\right)=0$.

Question

- Is any periodic orbit in \mathcal{S}_{c} persisting under the perturbation $\lambda /$ with $\lambda<0$?
A positive answer to the this question would give a affirmative response to the initial open problem.

We note that for $d_{1}>1$ the planar Hamiltonian system associated with system (4) can have several period annuli. For instance, by taking $P_{1}(s)=s^{2}-s-3, P_{2}(s)=s, a_{12}=1$ and $A_{3}=-6$, the system (4) has two period annuli. Hence, we can ask:

- How many periodic surfaces can have system (4) for $d_{1}>1$ and $d_{2}=1$?

Thank you very much!!!!

