DARBOUX RELATIVE EXACTNESS AND PSEUDO-ABELIAN INTEGRALS

Colin Christopher *, Pavao Mardešić **

Plymouth University, UK *, Institut de Mathématiques, Université de Bourgogne, Dijon, France ** and Zagreb University, Zagreb, Croatia **

> AQTDE, Port de Soller, 7/02/2023.

伺 ト イ ヨ ト イ ヨ ト

Center problem (generic case)

$$\omega = P(x, y)dx + Q(x, y)dy, \quad P, Q \in \mathbb{R}[x, y],$$
$$\omega = xdx + ydy + \cdots.$$

Foliation given by

$$\omega = 0$$

Center or focus?

Displacement function:

$$\Delta(t)=\sum a_i(P,Q)t^i.$$

Center: $\Delta \equiv 0$, i.e. $a_i \equiv 0$, for all *i*. It is an *algebraic set*. Focus: $\Delta \not\equiv 0$. Problem: Determine *irreducible components* corresponding to center in parameter space. The center focus problem is solved for quadratic vector fields (Dulac). There are four irreducible components.

Let $\omega = 0$ have a center at the origin, F first integral near the center surrounded by a family of closed trajectories $\gamma(t)$, $\gamma(t) \subset F^{-1}(t)$ Conisider deformations:

$$\omega + \epsilon \eta = \mathbf{0}$$

Infinitesimal center problem:

Determine deformations η such that the center is preserved (i.e. $M_i \equiv 0$, for every *i*). M_i Melnikov functions Displacement function

$$\Delta_\epsilon(t) = \sum_{i=1}^\infty M_i(t) \epsilon^i.$$

Tangential center problem: Conditions for $M_1 \equiv 0$.

Solution of tangential center problem in generic Hamiltonian case: Ilyashenko's results

Hamiltonian case $\omega = dH$, $H \in \mathbb{R}[x, y]$, η polynomial form. Then $M_1(t) = -\int_{\gamma(t)} \eta$ is an *abelian integral*. η is *relatively exact* if $\eta = PdF + dR$, $P, R \in \mathbb{R}[x, y]$.

Theorem (Ilyashenko)

Under generic conditions on F, the first Melnikov function M_1 vanishes identically if and only if η is relatively exact.

Idea of proof: (\Leftarrow) obvious.

 (\Rightarrow) : Complexify! Show that by monodromy the cycle γ generates all the cycles of the complex fiber $F^{-1}(t)$. Then obtain P by integration of $\frac{d\eta}{dF}$ using the vanishing of its integral on all the cycles in the fibers $F^{-1}(t)$.

・ロト ・得ト ・ヨト ・ヨト

Corollary 1

Hamiltonians form an irreducible component of the space of centers.

Corollary 2

Inferior bound for the number of limit cycles bifurcating from a center. At least $\frac{1}{2}(n^2 - n - 2)$ limit cycles can bifurcate from Hamiltonian centers in degree n deformations.

Corollary 3

Françoise algorithm for calculating the first nonzero Melnikov function.

/□ ▶ < 글 ▶ < 글

Darboux integrable system:

Let
$$F = \prod_{i=0}^{\ell} f_i^{\lambda_i}$$
, $M = \prod_{i=0}^{\ell} f_i$, $f_i \in \mathbb{R}[x, y]$, $\lambda_i \in \mathbb{R}$.

Let $\omega = M \frac{dF}{F}$. It is a polynomial form, with first integral F and integrating factor $\frac{1}{M}$.

Assume $\omega = 0$ has a center at the origin surrounded by closed cycles $\gamma(t) \subset F^{-1}(t)$.

We study *deformations*

$$\omega + \epsilon \eta = \mathbf{0}.$$

Note that now

$$M_1(t) = \int_{\gamma(t)} \frac{\eta}{M},$$

where $\gamma(t) \subset F^{-1}(t)$. It is a *pseudo-abelian integral*

Darboux relatively exact forms

With Colin Christopher, we impose generic conditions on F, prove a theorem generalizing Ilyashenko's theorem for deformation of Hamiltonian centers, as well as the three corollaries.

Definition

A form $\frac{\eta}{M}$ is *Darboux relatively exact* if

$$\frac{\eta}{M} = \frac{P}{M}\frac{dF}{F} + d\left(\frac{R}{M}\right) + \sum_{i=0}^{\ell} a_i \frac{df_i}{f_i}.$$

for some polynomials P and R and coefficients a_i .

Note first that if $\frac{\eta}{M}$ is Darboux relatively exact and γ does not wind around $f_i = 0$ for any *i*, then

$$\int_{\gamma(t)}\frac{\eta}{M}\equiv 0.$$

The converse is our main theorem generalizing Ilyashenko's theorem to deformations of Darboux centers under some genericity conditions.

We complexify F.

Let L_i be the separatrices given by $f_i = 0$ in \mathbb{CP}^2 and L_∞ be the line at infinity.

Conditions:

- (G1) L_i are all smooth and together with L_{∞} intersect two by two transversally (normal crossing) and no three in the same point.
- (G2) All quotients of exponents $\frac{\lambda_i}{\lambda_j}$ are irrational (including the exponents at points at infinity).
- (G3) All critical points are of Morse type and all critical values of F outside F = 0 are different.

・ 同 ト ・ ヨ ト ・ ヨ ト

Main Theorem

Theorem (C. Christopher, P. Mardešić)

Assume $F = \prod_{i=0}^{\ell} f_i^{\lambda_i}$ verifies (G1),(G2) and (G3). Let $M = \prod_{i=0}^{\ell} f_i, \, \omega = M \frac{dF}{F}, \, \gamma(t) \subset F^{-1}(t)$ a family of vanishing cycles at a center p, (with $F(p) \neq 0$), of the foliation given by $\omega = 0$. Then

$$\int_{\gamma(t)} \frac{\eta}{M^k} = 0$$

if and only if

$$\frac{\eta}{M^k} = \frac{P}{M^{k+1}}\omega + d\left(\frac{R}{M^k}\right) + \sum_{i=0}^{\ell} a_i \frac{df_i}{f_i}.$$

For k = 1: $M_1 \equiv 0$ if and only if the form $\frac{\eta}{M}$ is Darboux relatively exact.

э.

Corollary 1

Tangential Darboux centers form an irreducible component.

Corollary 2

At least $n^2 - 2$ limit cycles can be created by deformations of Darboux centers in the space of vector fields of degree n.

Corollary 3

Darboux-Françoise algorithm for calculating the first non-zero Melnikov function.

/□ ▶ < 글 ▶ < 글

Idea of the proof of the Main Theorem (line case) I

We assume $\int_{\gamma(t)} \frac{\eta}{M} \equiv 0$. We search for $a_i \in \mathbb{R}$, R and P in $\mathbb{R}[x, y]$.

- Complexify
- Solve locally
- Extend

There exists at least one node p_0 at the line at infinity. Let L_0 be the corresponding separatrix given by $f_0 = 0$ and $\{p_0\} = L_0 \cap L_\infty$. We put $a_0 = 0$, $a_i = \text{Res}\left(\frac{\eta}{M^k}, p_i\right)$, $\{p_i\} = L_i \cap L_0$. Put

$$\tilde{\eta} = \frac{\eta}{M^k} - \sum_{i=0}^{\ell} a_i \frac{df_i}{f_i}.$$

We want first to construct the function $G = \frac{R}{M^k}$.

G is first constructed in a neighborhood of p_0 by integration term by term of $\tilde{\eta}$. There are no convergence problems due to the choice of a node (no small divisors).

Take a small transversal Σ to L_0 in a neighborhood of the node p_0 , where the function G is already defined. Let $\{p_{\Sigma}\} = L_0 \cap \Sigma$. The function G will be given by integrating $\tilde{\eta}$ along lifts of paths $\sigma \in \pi_1(L_0 \setminus \bigcup_{i=1}^{\ell,\infty}, p_{\Sigma})$. In order to get G univalued, it must verify the homological

equation:

$$G(\sigma_q(t)) - G(q) = \int_{\sigma_q} \tilde{\eta},$$

where σ_q is a lift of σ from q and $G(\sigma_q)$ is analytic extension of G along σ_q .

4 同 1 4 三 1 4 三 1 4 二

In the classical Hamiltonian case, Ilyashenko obtains an analogous condition by showing that by monodromy one generates all the cycles. More precisely, he uses the variation

$$\mathsf{Var}_{\mathsf{\Gamma}}(\gamma(t_*)) = \mathsf{Mon}_{\mathsf{\Gamma}}(\gamma)(t_*) - \gamma(t_*) = \gamma(t_*e^{2\pi i}) - \gamma(t_*),$$

where t_* is a generic value. Here we use *weighted variation* Var_{λ}:

$$\operatorname{Var}_{\lambda}(\gamma(t_*)) = \gamma(t_*e^{2\pi i\lambda}) - \gamma(t_*).$$

for convenient λ .

Pochhammer cycles are lifts of commutator cycles above $L_0 \setminus \bigcup_{i=1}^{\ell,\infty} L_i$ to the leaves of the foliation $\omega = 0$.

Proposition (key Proposition)

All Pochhammer cycles above $L_0 \setminus \bigcup_{i=1}^{\ell,\infty} L_i$ are in the orbit by weighted variation of γ . Hence, by analytic continuation the integral of $\tilde{\eta}$ along all Pochhamer cycles vanishes.

The vanishing of the integral of $\tilde{\eta}$ along all Pochhammer cycles above $L_0 \setminus \bigcup_{i=0}^{\ell,\infty} L_i$ give a *univalued meromorphic function* G defined in a neighborhood of L_0 .

Next one uses a Stein extension theorem, which shows that this function extends meromorphically to the whole \mathbb{CP}^2 . One verifies that the poles are of order at most k at the separatrices L_i . By construction, the integral of the form $\tilde{\eta} - dG$ along any path in $\omega = 0$ vanishes. It is hence proportional to ω . One obtains the proportionality factor $\frac{P}{M^{k+1}}$.

- We think that our theorem will be very important to study *bifurcations starting from Darboux integrable systems*.
- Many results are obtained for the number of zeros of abelian integrals, but very few for *number of zeros of pseudo abelian integrals*.
- The Françoise-Darboux algorith will give *iterated pseudo abelian integrals.* What can be said about their length, number of zeros?
- Can one obtain some kind of *Picard-Fuchs equations* which would help studying zeros of pseudo abelian integrals?