Center-focus problem by its complex separatrices

Isaac A. García and Jaume Giné

Advances in Qualitative Theory of Differential Equations Port de Sóller, Mallorca (Spain) February 06-10, 2023

Introduction

We consider families of real analytic planar differential systems

$$
\begin{equation*}
\dot{x}=P(x, y ; \lambda), \quad \dot{y}=Q(x, y ; \lambda) \tag{1}
\end{equation*}
$$

or equivalently planar vector fields

$$
\mathcal{X}=P(x, y ; \lambda) \partial_{x}+Q(x, y ; \lambda) \partial_{y} .
$$

Introduction

We consider families of real analytic planar differential systems

$$
\begin{equation*}
\dot{x}=P(x, y ; \lambda), \quad \dot{y}=Q(x, y ; \lambda) \tag{1}
\end{equation*}
$$

or equivalently planar vector fields

$$
\mathcal{X}=P(x, y ; \lambda) \partial_{x}+Q(x, y ; \lambda) \partial_{y}
$$

We assume:
■ The family depends analytically on the parameters $\lambda \in \mathbb{R}^{p}$.

Introduction

We consider families of real analytic planar differential systems

$$
\begin{equation*}
\dot{x}=P(x, y ; \lambda), \quad \dot{y}=Q(x, y ; \lambda) \tag{1}
\end{equation*}
$$

or equivalently planar vector fields

$$
\mathcal{X}=P(x, y ; \lambda) \partial_{x}+Q(x, y ; \lambda) \partial_{y}
$$

We assume:
■ The family depends analytically on the parameters $\lambda \in \mathbb{R}^{p}$.
■ $(x, y)=(0,0)$ is a monodromic singularity of \mathcal{X}, that is local orbits turn around the origin for any $\lambda \in \Lambda \subset \mathbb{R}^{p}$.

Introduction

We consider families of real analytic planar differential systems

$$
\begin{equation*}
\dot{x}=P(x, y ; \lambda), \quad \dot{y}=Q(x, y ; \lambda) \tag{1}
\end{equation*}
$$

or equivalently planar vector fields

$$
\mathcal{X}=P(x, y ; \lambda) \partial_{x}+Q(x, y ; \lambda) \partial_{y}
$$

We assume:
■ The family depends analytically on the parameters $\lambda \in \mathbb{R}^{p}$.
$\square(x, y)=(0,0)$ is a monodromic singularity of \mathcal{X}, that is local orbits turn around the origin for any $\lambda \in \Lambda \subset \mathbb{R}^{p}$.

- Since \mathcal{X} is analytic, independently I'lyashenko and Écalle, prove that the singularity only can be either a center or a focus.

Poincaré-Lyapunov center-focus problem

The stability of the monodromic singularity is not solved by the blow-up procedure.

Poincaré-Lyapunov center-focus problem

The stability of the monodromic singularity is not solved by the blow-up procedure.

Poincaré-Lyapunov center-focus problem

To discern the subsets of Λ corresponding to a center and a focus.

Degrees of degeneracy in the center-focus problem

We let $D \mathcal{X}(0,0)$ denotes the Jacobian matrix of \mathcal{X} at the origin.

Degrees of degeneracy in the center-focus problem

We let $D \mathcal{X}(0,0)$ denotes the Jacobian matrix of \mathcal{X} at the origin.

- Non-degenerate case: When $D \mathcal{X}(0,0) \not \equiv 0$ has pure imaginary eigenvalues different from zero the center-focus problem was solved by the Poincaré and Lyapunov works.

Degrees of degeneracy in the center-focus problem

We let $D \mathcal{X}(0,0)$ denotes the Jacobian matrix of \mathcal{X} at the origin.

- Non-degenerate case: When $D \mathcal{X}(0,0) \not \equiv 0$ has pure imaginary eigenvalues different from zero the center-focus problem was solved by the Poincaré and Lyapunov works.
- Nilpotent case: When $D \mathcal{X}(0,0) \not \equiv 0$ has a double zero eigenvalue the center-focus problem was solved by Moussu.

Degrees of degeneracy in the center-focus problem

We let $D \mathcal{X}(0,0)$ denotes the Jacobian matrix of \mathcal{X} at the origin.

- Non-degenerate case: When $D \mathcal{X}(0,0) \not \equiv 0$ has pure imaginary eigenvalues different from zero the center-focus problem was solved by the Poincaré and Lyapunov works.
- Nilpotent case: When $D \mathcal{X}(0,0) \not \equiv 0$ has a double zero eigenvalue the center-focus problem was solved by Moussu.
- Degenerate case: When $D \mathcal{X}(0,0) \equiv 0$ the center-focus problem remains open except few specific cases.

Real analytic invariant curves from complex separatrices

Let $F(x, y)=0$ be a real invariant analytic curve of \mathcal{X} with analytic cofactor $K(x, y)$:

$$
\mathcal{X}(F)=K F
$$

Real analytic invariant curves from complex separatrices

Let $F(x, y)=0$ be a real invariant analytic curve of \mathcal{X} with analytic cofactor $K(x, y)$:

$$
\mathcal{X}(F)=K F
$$

REMARK: We are only interested in invariant curves $F(x, y)=0$ passing through the origin, that is with $F(0,0)=0$.

Real analytic invariant curves from complex separatrices

Let $F(x, y)=0$ be a real invariant analytic curve of \mathcal{X} with analytic cofactor $K(x, y)$:

$$
\mathcal{X}(F)=K F
$$

Remark: We are only interested in invariant curves $F(x, y)=0$ passing through the origin, that is with $F(0,0)=0$.
This is because $U(x, y) F(x, y)=0$ is also an invariant analytic curve of \mathcal{X} for any analytic unit $U(x, y)$ with $U(0,0) \neq 0$

Real analytic invariant curves from complex separatrices

Toy example
■ Linear vector field $\mathcal{X}=(-y+\lambda x) \partial_{x}+(x+\lambda y) \partial_{y}$ with $\lambda \in \mathbb{R}$.

Real analytic invariant curves from complex separatrices

Toy example

■ Linear vector field $\mathcal{X}=(-y+\lambda x) \partial_{x}+(x+\lambda y) \partial_{y}$ with $\lambda \in \mathbb{R}$.

- Complex invariant curves (complex separatrices) $f_{1}(x, y)=x+i y=0$ and $f_{2}(x, y)=x-i y=0$ with cofactors $K_{1}(x, y)=i+\lambda$ and $K_{2}(x, y)=-i+\lambda$, respectively.

Real analytic invariant curves from complex separatrices

Toy example

■ Linear vector field $\mathcal{X}=(-y+\lambda x) \partial_{x}+(x+\lambda y) \partial_{y}$ with $\lambda \in \mathbb{R}$.

- Complex invariant curves (complex separatrices)
$f_{1}(x, y)=x+i y=0$ and $f_{2}(x, y)=x-i y=0$ with cofactors $K_{1}(x, y)=i+\lambda$ and $K_{2}(x, y)=-i+\lambda$, respectively.
- Real analytic invariant curve

$$
\begin{aligned}
& F^{\mathbb{R}}(x, y)=f_{1}(x, y) f_{2}(x, y)=x^{2}+y^{2}=0 \text { with cofactor } \\
& K^{\mathbb{R}}(x, y)=K_{1}(x, y)+K_{2}(x, y)=2 \lambda
\end{aligned}
$$

Existence of real analytic invariant curves at monodromic singularities

Theorem 1

■ Let $\mathcal{X}=P(x, y) \partial_{x}+Q(x, y) \partial_{y}$ be real analytic planar vector field in a neighborhood of a monodromic singularity at the origin;

Existence of real analytic invariant curves at monodromic singularities

Theorem 1

■ Let $\mathcal{X}=P(x, y) \partial_{x}+Q(x, y) \partial_{y}$ be real analytic planar vector field in a neighborhood of a monodromic singularity at the origin;
Then there exists a real analytic invariant curve $F^{\mathbb{R}}(x, y)=0$ of \mathcal{X} with $F^{\mathbb{R}}(0,0)=0$ and $F^{\mathbb{R}}$ having an isolated zero in \mathbb{R}^{2} at the origin.

Existence of real analytic invariant curves at monodromic singularities

Theorem 1

- Let $\mathcal{X}=P(x, y) \partial_{x}+Q(x, y) \partial_{y}$ be real analytic planar vector field in a neighborhood of a monodromic singularity at the origin;
Then there exists a real analytic invariant curve $F^{\mathbb{R}}(x, y)=0$ of \mathcal{X} with $F^{\mathbb{R}}(0,0)=0$ and $F^{\mathbb{R}}$ having an isolated zero in \mathbb{R}^{2} at the origin.

Sketch of the proof: We take the "canonical complexification" $\mathcal{X}^{\mathbb{C}}$ at $\left(\mathbb{C}^{2}, 0\right)$ of the real analytic vector field \mathcal{X} at $\left(\mathbb{R}^{2}, 0\right)$ and next we use Camacho-Sad separatrix theorem.

The Newton diagram of \mathcal{X}

Given an analytic vector field $\mathcal{X}=P(x, y) \partial_{x}+Q(x, y) \partial_{y}$ with

$$
P(x, y)=\sum_{(i, j) \in \mathbb{N}^{2}} a_{i j} x^{i} y^{j-1}, \quad Q(x, y)=\sum_{(i, j) \in \mathbb{N}^{2}} b_{i j} x^{i-1} y^{j},
$$

The Newton diagram of \mathcal{X}

Given an analytic vector field $\mathcal{X}=P(x, y) \partial_{x}+Q(x, y) \partial_{y}$ with

$$
P(x, y)=\sum_{(i, j) \in \mathbb{N}^{2}} a_{i j} x^{i} y^{j-1}, \quad Q(x, y)=\sum_{(i, j) \in \mathbb{N}^{2}} b_{i j} x^{i-1} y^{j},
$$

$$
■ \operatorname{supp}(\mathcal{X})=\left\{(i, j) \in \mathbb{N}^{2}:\left(a_{i j}, b_{i j}\right) \neq(0,0)\right\}
$$

The Newton diagram of \mathcal{X}

Given an analytic vector field $\mathcal{X}=P(x, y) \partial_{x}+Q(x, y) \partial_{y}$ with

$$
P(x, y)=\sum_{(i, j) \in \mathbb{N}^{2}} a_{i j} x^{i} y^{j-1}, \quad Q(x, y)=\sum_{(i, j) \in \mathbb{N}^{2}} b_{i j} x^{i-1} y^{j},
$$

- $\operatorname{supp}(\mathcal{X})=\left\{(i, j) \in \mathbb{N}^{2}:\left(a_{i j}, b_{i j}\right) \neq(0,0)\right\}$.
- The Newton diagram $\mathbf{N}(\mathcal{X})$ of \mathcal{X} is the boundary of the convex hull of the set

$$
\bigcup_{(i, j) \in \operatorname{supp}(\mathcal{X})}\left\{(i, j)+\mathbb{R}_{+}^{2}\right\} .
$$

The Newton diagram of \mathcal{X}

Given an analytic vector field $\mathcal{X}=P(x, y) \partial_{x}+Q(x, y) \partial_{y}$ with

$$
P(x, y)=\sum_{(i, j) \in \mathbb{N}^{2}} a_{i j} x^{i} y^{j-1}, \quad Q(x, y)=\sum_{(i, j) \in \mathbb{N}^{2}} b_{i j} x^{i-1} y^{j},
$$

$■ \operatorname{supp}(\mathcal{X})=\left\{(i, j) \in \mathbb{N}^{2}:\left(a_{i j}, b_{i j}\right) \neq(0,0)\right\}$.

- The Newton diagram $\mathbf{N}(\mathcal{X})$ of \mathcal{X} is the boundary of the convex hull of the set

$$
\bigcup_{(i, j) \in \operatorname{supp}(\mathcal{X})}\left\{(i, j)+\mathbb{R}_{+}^{2}\right\} .
$$

- Each edge of $\mathbf{N}(\mathcal{X})$ has associated the weights $(p, q) \in \mathbb{N}^{2}$ with p and q coprime such that q / p of the the tangent angle between that segment and the ordinate axis.

The Newton diagram of \mathcal{X}

Given an analytic vector field $\mathcal{X}=P(x, y) \partial_{x}+Q(x, y) \partial_{y}$ with

$$
P(x, y)=\sum_{(i, j) \in \mathbb{N}^{2}} a_{i j} x^{i} y^{j-1}, \quad Q(x, y)=\sum_{(i, j) \in \mathbb{N}^{2}} b_{i j} x^{i-1} y^{j},
$$

■ $\operatorname{supp}(\mathcal{X})=\left\{(i, j) \in \mathbb{N}^{2}:\left(a_{i j}, b_{i j}\right) \neq(0,0)\right\}$.
■ The Newton diagram $\mathbf{N}(\mathcal{X})$ of \mathcal{X} is the boundary of the convex hull of the set

$$
\bigcup_{(i, j) \in \operatorname{supp}(\mathcal{X})}\left\{(i, j)+\mathbb{R}_{+}^{2}\right\} .
$$

- Each edge of $\mathbf{N}(\mathcal{X})$ has associated the weights $(p, q) \in \mathbb{N}^{2}$ with p and q coprime such that q / p of the the tangent angle between that segment and the ordinate axis.
$W(\mathbb{N}(\mathcal{X})) \subset \mathbb{N}^{2}$ is the set containing all the weights associated to the edges in $\mathbf{N}(\mathcal{X})$.

The weighted polar blow-up

The weighted polar blow-up
Given $(p, q) \in W(\mathbf{N}(\mathcal{X}))$, we take the blow-up $(x, y) \mapsto(\rho, \varphi)$ given by

$$
\begin{equation*}
x=\rho^{p} \cos \varphi, \quad y=\rho^{q} \sin \varphi . \tag{2}
\end{equation*}
$$

The differential equation on the cyclinder C

In coordinates $(\rho, \varphi) \mathcal{X}$ is orbitally equivalent to

$$
\dot{\rho}=R(\varphi, \rho)=\rho F_{r}(\varphi)+O\left(\rho^{2}\right), \quad \dot{\varphi}=\Theta(\varphi, \rho)=G_{r}(\varphi)+O(\rho) .
$$

The differential equation on the cyclinder C

In coordinates $(\rho, \varphi) \mathcal{X}$ is orbitally equivalent to

$$
\dot{\rho}=R(\varphi, \rho)=\rho F_{r}(\varphi)+O\left(\rho^{2}\right), \quad \dot{\varphi}=\Theta(\varphi, \rho)=G_{r}(\varphi)+O(\rho) .
$$

We define the (p, q)-characteristic directions at the origin of \mathcal{X} as:

$$
\Omega_{p q}=\left\{\varphi^{*} \in \mathbb{S}^{1}: G_{r}\left(\varphi^{*}\right)=0\right\}
$$

The differential equation on the cyclinder C

In coordinates $(\rho, \varphi) \mathcal{X}$ is orbitally equivalent to

$$
\dot{\rho}=R(\varphi, \rho)=\rho F_{r}(\varphi)+O\left(\rho^{2}\right), \quad \dot{\varphi}=\Theta(\varphi, \rho)=G_{r}(\varphi)+O(\rho) .
$$

We define the (p, q)-characteristic directions at the origin of \mathcal{X} as:

$$
\Omega_{p q}=\left\{\varphi^{*} \in \mathbb{S}^{1}: G_{r}\left(\varphi^{*}\right)=0\right\}
$$

We consider the ordinary differential equation:

$$
\begin{equation*}
\frac{d \rho}{d \varphi}=\mathcal{F}(\varphi, \rho)=\frac{R(\varphi, \rho)}{\Theta(\varphi, \rho)} \tag{3}
\end{equation*}
$$

where $\mathcal{F}: C \backslash \Theta^{-1}(0) \rightarrow \mathbb{R}$ being the cylinder

$$
C=\left\{(\varphi, \rho) \in \mathbb{S}^{1} \times \mathbb{R}: 0 \leq \rho \ll 1\right\} \text { with } \mathbb{S}^{1}=\mathbb{R} /(2 \pi \mathbb{Z})
$$

The invariant curve on the cyclinder C

Let $F(x, y)=0$ be a real invariant analytic curve of \mathcal{X} with $F(0,0)=0$ (which always exists by Theorem 1). Then

$$
\mathcal{X}(F)=K F .
$$

The invariant curve on the cyclinder C

Let $F(x, y)=0$ be a real invariant analytic curve of \mathcal{X} with $F(0,0)=0$ (which always exists by Theorem 1). Then

$$
\mathcal{X}(F)=K F .
$$

In weighted polar coordinates this equation is transformed into

$$
\hat{\mathcal{X}}(\hat{F})=\hat{K} \hat{F}
$$

The invariant curve on the cyclinder C

Let $F(x, y)=0$ be a real invariant analytic curve of \mathcal{X} with $F(0,0)=0$ (which always exists by Theorem 1). Then

$$
\mathcal{X}(F)=K F .
$$

In weighted polar coordinates this equation is transformed into

$$
\hat{\mathcal{X}}(\hat{F})=\hat{K} \hat{F}
$$

where
■ $\hat{\mathcal{X}}=\partial_{\varphi}+\mathcal{F}(\varphi, \rho) \partial_{\rho}$

The invariant curve on the cyclinder C

Let $F(x, y)=0$ be a real invariant analytic curve of \mathcal{X} with $F(0,0)=0$ (which always exists by Theorem 1). Then

$$
\mathcal{X}(F)=K F .
$$

In weighted polar coordinates this equation is transformed into

$$
\hat{\mathcal{X}}(\hat{F})=\hat{K} \hat{F}
$$

where
■ $\hat{\mathcal{X}}=\partial_{\varphi}+\mathcal{F}(\varphi, \rho) \partial_{\rho}$

- $\hat{F}(\varphi, \rho)=F\left(\rho^{p} \cos \varphi, \rho^{q} \sin \varphi\right)$;

The invariant curve on the cyclinder C

Let $F(x, y)=0$ be a real invariant analytic curve of \mathcal{X} with $F(0,0)=0$ (which always exists by Theorem 1). Then

$$
\mathcal{X}(F)=K F .
$$

In weighted polar coordinates this equation is transformed into

$$
\hat{\mathcal{X}}(\hat{F})=\hat{K} \hat{F}
$$

where
■ $\hat{\mathcal{X}}=\partial_{\varphi}+\mathcal{F}(\varphi, \rho) \partial_{\rho}$

- $\hat{F}(\varphi, \rho)=F\left(\rho^{p} \cos \varphi, \rho^{q} \sin \varphi\right)$;
- \hat{K} is the cofactor of the invariant curve $\hat{F}=0$ of $\hat{\mathcal{X}}$.

The cofactor of the invariant curve on the cyclinder C

The explicit expression of \hat{K} is:

$$
\hat{K}(\varphi, \rho)=\frac{D(\varphi) K\left(\rho^{p} \cos \varphi, \rho^{q} \sin \varphi\right)}{\rho^{r} \Theta(\varphi, \rho)} .
$$

- $D(\varphi)=p \cos ^{2} \varphi+q \sin ^{2} \varphi>0$

The cofactor of the invariant curve on the cyclinder C

The explicit expression of \hat{K} is:

$$
\hat{K}(\varphi, \rho)=\frac{D(\varphi) K\left(\rho^{p} \cos \varphi, \rho^{q} \sin \varphi\right)}{\rho^{r} \Theta(\varphi, \rho)} .
$$

- $D(\varphi)=p \cos ^{2} \varphi+q \sin ^{2} \varphi>0$

■ r is the leading (p, q)-quasihomogeneous degree in the expansion

$$
\mathcal{X}=\sum_{j \geq r} \mathcal{X}_{j}
$$

with \mathcal{X}_{j} the (p, q)-quasihomogeneous vector field of degree j.

The Cauchy principal value of an improper integral

Given a continuous function f defined in $I \subset[0,2 \pi] \backslash \Omega$ with $\Omega=\left\{\theta_{1}^{*}, \ldots, \theta_{\ell}^{*}\right\}$, the Cauchy principal value of the integral $\int_{I} f(\theta) d \theta$ is defined as

$$
P V \int_{I} f(\theta) d \theta=\lim _{\varepsilon \rightarrow 0^{+}} \int_{I_{\varepsilon}} f(\theta) d \theta
$$

when the limit exists. Here we have used the notation $I_{\varepsilon}=\Lambda \backslash J_{\varepsilon}$ with $J_{\varepsilon}=\cup_{i=1}^{\ell}\left(\theta_{i}^{*}-\varepsilon, \theta_{i}^{*}+\varepsilon\right)$.

The main result

Let $\rho\left(\varphi ; \rho_{0}\right)$ be the solution of the Cauchy problem

$$
\frac{d \rho}{d \varphi}=\mathcal{F}(\varphi, \rho), \quad \rho\left(0 ; \rho_{0}\right)=\rho_{0}>0
$$

The main result

Let $\rho\left(\varphi ; \rho_{0}\right)$ be the solution of the Cauchy problem

$$
\frac{d \rho}{d \varphi}=\mathcal{F}(\varphi, \rho), \quad \rho\left(0 ; \rho_{0}\right)=\rho_{0}>0
$$

We define

$$
I_{\hat{K}}\left(\rho_{0}\right):=P V \int_{0}^{2 \pi} \hat{K}\left(\varphi, \rho\left(\varphi ; \rho_{0}\right)\right) d \varphi .
$$

The main result

Let $\rho\left(\varphi ; \rho_{0}\right)$ be the solution of the Cauchy problem

$$
\frac{d \rho}{d \varphi}=\mathcal{F}(\varphi, \rho), \quad \rho\left(0 ; \rho_{0}\right)=\rho_{0}>0
$$

We define

$$
I_{\hat{K}}\left(\rho_{0}\right):=P V \int_{0}^{2 \pi} \hat{K}\left(\varphi, \rho\left(\varphi ; \rho_{0}\right)\right) d \varphi
$$

Theorem 2

Let $F=0$ be an analytic invariant curve of \mathcal{X} through the origin. For any initial condition $\rho_{0}>0$ sufficiently small, $I_{\hat{K}}\left(\rho_{0}\right)$ exists and moreover the origin is a center if and only if $I_{\hat{K}}\left(\rho_{0}\right) \equiv 0$.

The main result

Let $\rho\left(\varphi ; \rho_{0}\right)$ be the solution of the Cauchy problem

$$
\frac{d \rho}{d \varphi}=\mathcal{F}(\varphi, \rho), \quad \rho\left(0 ; \rho_{0}\right)=\rho_{0}>0
$$

We define

$$
I_{\hat{K}}\left(\rho_{0}\right):=P V \int_{0}^{2 \pi} \hat{K}\left(\varphi, \rho\left(\varphi ; \rho_{0}\right)\right) d \varphi
$$

Theorem 2

Let $F=0$ be an analytic invariant curve of \mathcal{X} through the origin. For any initial condition $\rho_{0}>0$ sufficiently small, $I_{\hat{K}}\left(\rho_{0}\right)$ exists and moreover the origin is a center if and only if $I_{\hat{K}}\left(\rho_{0}\right) \equiv 0$.

REmARK: If F is a first integral $\Longrightarrow \hat{K} \equiv 0 \Longrightarrow I_{\hat{K}}\left(\rho_{0}\right) \equiv 0$.

Overcoming the difficulty of computing $\rho\left(\varphi ; \rho_{0}\right)$

Corollary (sufficient focus condition)

Assume the cofactor K of an analytic invariant curve through the origin has the (p, q)-quasihomogeneous expansion

$$
K(x, y)=K_{\bar{r}}(x, y)+\cdots
$$

If $K_{\bar{r}}(\cos \varphi, \sin \varphi)$ is a semi-definite function in \mathbb{S}^{1} then the origin is a focus of \mathcal{X}.

Overcoming the difficulty of computing $\rho\left(\varphi ; \rho_{0}\right)$

Corollary (sufficient focus condition)

Assume the cofactor K of an analytic invariant curve through the origin has the (p, q)-quasihomogeneous expansion

$$
K(x, y)=K_{\bar{r}}(x, y)+\cdots
$$

If $K_{\bar{r}}(\cos \varphi, \sin \varphi)$ is a semi-definite function in \mathbb{S}^{1} then the origin is a focus of \mathcal{X}.

How to compute $K_{\bar{r}}(x, y)$ without the expression of F ?

Computing $K_{\bar{F}}(x, y)$

In order to compute $K_{\bar{r}}(x, y)$ we could apply several methods:

Newton-Puiseux factorization

By Newton-Puiseux Theorem there exists a finite factorization

$$
\begin{equation*}
F^{\mathbb{R}}(x, y)=u(x, y) \prod_{i}\left(y-y_{i}^{*}(x)\right) \tag{4}
\end{equation*}
$$

- u is a real analytic unit $u(0,0) \neq 0$;
- $y_{i}^{*}(x)$ are complex holomorphic functions of $x^{1 / n_{i}}$ with $y_{i}^{*}(0)=0$ called branches of $F^{\mathbb{R}}$ at the origin;
- The exponents $n_{i} \in \mathbb{Z}^{+}$are called the indices of the branches y_{i}^{*}.

Computing $K_{\bar{r}}(x, y)$

Invariant branching theory (Bruno)

- The invariant branches are $y_{i}^{*}(x)=\alpha_{0} x^{q / p}+\cdots$ with $(p, q) \in W(\mathbf{N}(\mathcal{X})) ;$
- α_{0} is computed using that $y^{p}-\alpha_{0} x^{q}=0$ is an invariant algebraic curve of \mathcal{X}_{r}.
- The branches have the expansion

$$
y_{i}^{*}(x)=\sum_{j \geq 0} \alpha_{j} x^{\frac{q}{p}+\frac{j}{n_{i}}}
$$

- There are general methods to compute the index n_{i} (Fuchs indices, etc...).

Computing $K_{\bar{r}}(x, y)$

We consider the (p, q)-quasihomogeneous expansions:

$$
\begin{aligned}
\mathcal{X} & =\mathcal{X}_{r}+\cdots \\
F(x, y) & =F_{s}(x, y)+\cdots \\
K(x, y) & =K_{\bar{r}}(x, y)+\cdots
\end{aligned}
$$

Computing $K_{\bar{r}}(x, y)$

We consider the (p, q)-quasihomogeneous expansions:

$$
\begin{aligned}
\mathcal{X} & =\mathcal{X}_{r}+\cdots, \\
F(x, y) & =F_{s}(x, y)+\cdots, \\
K(x, y) & =K_{\bar{r}}(x, y)+\cdots .
\end{aligned}
$$

Direct method (Algaba et. al.)

- $F_{s}=0$ is an invariant algebraic curve of \mathcal{X}_{r} with cofactor $K_{\bar{r}}$.
- The irreducible factors of F_{s} are factors of the inverse integrating factor $V(x, y)=(p x, q y) \wedge \mathcal{X}_{r}$ of \mathcal{X}_{r}.

Example: Mañosas monodromic family

Victor Mañosas shows that family

$$
\begin{equation*}
\dot{x}=x y^{2}-y^{3}+a x^{5}, \quad \dot{y}=2 x^{7}-x^{4} y+4 x y^{2}+y^{3} \tag{5}
\end{equation*}
$$

has a monodromic singularity at the origin with parameters $\Lambda=\left\{a \in \mathbb{R}: \Delta(a):=32-(1+3 a)^{2}>0\right\}$. Moreover he proves:

Mañosas family in Λ
The origin is always a focus.

Example: Mañosas monodromic family

Victor Mañosas shows that family

$$
\begin{equation*}
\dot{x}=x y^{2}-y^{3}+a x^{5}, \quad \dot{y}=2 x^{7}-x^{4} y+4 x y^{2}+y^{3}, \tag{5}
\end{equation*}
$$

has a monodromic singularity at the origin with parameters $\Lambda=\left\{a \in \mathbb{R}: \Delta(a):=32-(1+3 a)^{2}>0\right\}$. Moreover he proves:

Mañosas family in Λ

The origin is always a focus.
Mañosas proof:
i) The Poincaré map is $\Pi(x)=\eta_{1} x+o(x)$ with

$$
\begin{equation*}
\eta_{1}=\exp \left(\pi+\frac{4 \pi a}{\sqrt{\Delta(a)}}\right) \neq 1 \text { if } a \neq-31 / 25 \tag{6}
\end{equation*}
$$

Example: Mañosas monodromic family

Victor Mañosas shows that family

$$
\begin{equation*}
\dot{x}=x y^{2}-y^{3}+a x^{5}, \quad \dot{y}=2 x^{7}-x^{4} y+4 x y^{2}+y^{3}, \tag{5}
\end{equation*}
$$

has a monodromic singularity at the origin with parameters $\Lambda=\left\{a \in \mathbb{R}: \Delta(a):=32-(1+3 a)^{2}>0\right\}$. Moreover he proves:

Mañosas family in Λ

The origin is always a focus.
Mañosas proof:
i) The Poincaré map is $\Pi(x)=\eta_{1} x+o(x)$ with

$$
\begin{equation*}
\eta_{1}=\exp \left(\pi+\frac{4 \pi a}{\sqrt{\Delta(a)}}\right) \neq 1 \text { if } a \neq-31 / 25 \tag{6}
\end{equation*}
$$

ii) When $a=-31 / 25$ he uses a Lyapunov function.

Example: Our proof in Mañosas monodromic family

Mañosas family in Λ
The origin is always a focus.

Example: Our proof in Mañosas monodromic family

Mañosas family in Λ
The origin is always a focus.

- $W(\mathbf{N}(\mathcal{X}))=\{(1,1),(1,3)\}$.

Example: Our proof in Mañosas monodromic family

Mañosas family in Λ

The origin is always a focus.

- $W(\mathbf{N}(\mathcal{X}))=\{(1,1),(1,3)\}$.
- Taking the weights $(p, q)=(1,1)$ we see that $\mathcal{X}=\mathcal{X}_{2}+\cdots$ with $\mathcal{X}_{2}=\left(x y^{2}-y^{3}\right) \partial_{x}+\left(4 x y^{2}+y^{3}\right) \partial_{y}$;

Example: Our proof in Mañosas monodromic family

Mañosas family in Λ

The origin is always a focus.

- $W(\mathbf{N}(\mathcal{X}))=\{(1,1),(1,3)\}$.
- Taking the weights $(p, q)=(1,1)$ we see that $\mathcal{X}=\mathcal{X}_{2}+\cdots$ with $\mathcal{X}_{2}=\left(x y^{2}-y^{3}\right) \partial_{x}+\left(4 x y^{2}+y^{3}\right) \partial_{y}$;
■ Using Bruno's theory we check if there is an invariant branch of the form $y_{j}^{*}(x)=\alpha_{0} x^{1 / 1}+o(x)$ with $\alpha_{0} \neq 0$.

Example: Our proof in Mañosas monodromic family

Mañosas family in Λ

The origin is always a focus.

- $W(\mathbf{N}(\mathcal{X}))=\{(1,1),(1,3)\}$.
- Taking the weights $(p, q)=(1,1)$ we see that $\mathcal{X}=\mathcal{X}_{2}+\cdots$ with $\mathcal{X}_{2}=\left(x y^{2}-y^{3}\right) \partial_{x}+\left(4 x y^{2}+y^{3}\right) \partial_{y}$;
■ Using Bruno's theory we check if there is an invariant branch of the form $y_{j}^{*}(x)=\alpha_{0} x^{1 / 1}+o(x)$ with $\alpha_{0} \neq 0$.
- The leading term α_{0} is computed imposing that $y^{1}-\alpha_{0} x^{1}=0$ is an invariant curve of \mathcal{X}_{2}

Example: Our proof in Mañosas monodromic family

Mañosas family in Λ

The origin is always a focus.

- $W(\mathbf{N}(\mathcal{X}))=\{(1,1),(1,3)\}$.
- Taking the weights $(p, q)=(1,1)$ we see that $\mathcal{X}=\mathcal{X}_{2}+\cdots$ with $\mathcal{X}_{2}=\left(x y^{2}-y^{3}\right) \partial_{x}+\left(4 x y^{2}+y^{3}\right) \partial_{y}$;
■ Using Bruno's theory we check if there is an invariant branch of the form $y_{j}^{*}(x)=\alpha_{0} x^{1 / 1}+o(x)$ with $\alpha_{0} \neq 0$.
- The leading term α_{0} is computed imposing that $y^{1}-\alpha_{0} x^{1}=0$ is an invariant curve of $\mathcal{X}_{2} \Longrightarrow \alpha_{0}= \pm i \sqrt{2} \in \mathbb{C}$;

Example: Our proof in Mañosas monodromic family

Mañosas family in Λ

The origin is always a focus.

- $W(\mathbf{N}(\mathcal{X}))=\{(1,1),(1,3)\}$.
- Taking the weights $(p, q)=(1,1)$ we see that $\mathcal{X}=\mathcal{X}_{2}+\cdots$ with $\mathcal{X}_{2}=\left(x y^{2}-y^{3}\right) \partial_{x}+\left(4 x y^{2}+y^{3}\right) \partial_{y}$;
■ Using Bruno's theory we check if there is an invariant branch of the form $y_{j}^{*}(x)=\alpha_{0} x^{1 / 1}+o(x)$ with $\alpha_{0} \neq 0$.
- The leading term α_{0} is computed imposing that $y^{1}-\alpha_{0} x^{1}=0$ is an invariant curve of $\mathcal{X}_{2} \Longrightarrow \alpha_{0}= \pm i \sqrt{2} \in \mathbb{C}$;
■ Now we know that the invariant branches of \mathcal{X} at the origin are

$$
y_{j}^{*}(x)=\alpha_{0} x^{\frac{1}{1}}+\sum_{i \geq 1} \alpha_{i} x^{\frac{1}{1}+\frac{i}{n_{j}}}
$$

for some index $n_{j} \in \mathbb{Z}^{+}$.

Example: Our proof in Mañosas monodromic family

■ There are several ways to determine the index n_{j}. Either we show that the branch is simple or we compute the Fuch's index and check it is not in $\mathbb{Q}^{+} \backslash \mathbb{N}$.

Example: Our proof in Mañosas monodromic family

- There are several ways to determine the index n_{j}. Either we show that the branch is simple or we compute the Fuch's index and check it is not in $\mathbb{Q}^{+} \backslash \mathbb{N}$.

$$
n_{j}=q=1 .
$$

Example: Our proof in Mañosas monodromic family

- There are several ways to determine the index n_{j}. Either we show that the branch is simple or we compute the Fuch's index and check it is not in $\mathbb{Q}^{+} \backslash \mathbb{N}$.

$$
n_{j}=q=1
$$

■ $F(x, y)=\left(y-y_{1}^{*}(x)\right)\left(y-y_{2}^{*}(x)\right)=0$ is a real analytic invariant curve of \mathcal{X} through the origin;

Example: Our proof in Mañosas monodromic family

■ We get the $(1,1)$-quasihomogeneous expansions:

$$
\begin{aligned}
F(x, y) & =F_{2}(x, y)+\cdots=4 x^{2}+y^{2}+\cdots \\
K(x, y) & =K_{2}(x, y)+\cdots=2 y^{2}+\cdots
\end{aligned}
$$

Example: Our proof in Mañosas monodromic family

■ We get the $(1,1)$-quasihomogeneous expansions:

$$
\begin{aligned}
F(x, y) & =F_{2}(x, y)+\cdots=4 x^{2}+y^{2}+\cdots \\
K(x, y) & =K_{2}(x, y)+\cdots=2 y^{2}+\cdots
\end{aligned}
$$

■ Clearly $K_{2}(\cos \varphi, \sin \varphi)$ is semi-positive defined.

Example 2

We consider the family of vector fields

$$
\begin{aligned}
\dot{x} & =\lambda_{1}\left(x^{6}+3 y^{2}\right)(-y+\mu x)+\lambda_{2}\left(x^{2}+y^{2}\right)\left(y+A x^{3}\right), \\
\dot{y} & =\lambda_{1}\left(x^{6}+3 y^{2}\right)(x+\mu y)+\lambda_{2}\left(x^{2}+y^{2}\right)\left(-x^{5}+3 A x^{2} y\right) .(7)
\end{aligned}
$$

The $(0,0)$ is monodromic if and only if the parameters lie in

$$
\Lambda=\left\{\left(\lambda_{1}, \lambda_{2}, \mu, A\right) \in \mathbb{R}^{4}: 3 \lambda_{1}-\lambda_{2}>0, \quad \lambda_{1}-\lambda_{2}>0\right\} .
$$

Example 2

We consider the family of vector fields

$$
\begin{aligned}
\dot{x} & =\lambda_{1}\left(x^{6}+3 y^{2}\right)(-y+\mu x)+\lambda_{2}\left(x^{2}+y^{2}\right)\left(y+A x^{3}\right) \\
\dot{y} & =\lambda_{1}\left(x^{6}+3 y^{2}\right)(x+\mu y)+\lambda_{2}\left(x^{2}+y^{2}\right)\left(-x^{5}+3 A x^{2} y\right) .(7)
\end{aligned}
$$

The $(0,0)$ is monodromic if and only if the parameters lie in

$$
\Lambda=\left\{\left(\lambda_{1}, \lambda_{2}, \mu, A\right) \in \mathbb{R}^{4}: 3 \lambda_{1}-\lambda_{2}>0, \quad \lambda_{1}-\lambda_{2}>0\right\} .
$$

$$
\begin{aligned}
& \text { Family (7) restricted to } \bar{\Lambda} \subset \Lambda \\
& \bar{\Lambda}=\left\{\left(\lambda_{1}, \lambda_{2}, \mu, A\right) \in \mathbb{R}^{4}: \lambda_{1}>0, \lambda_{2}<0, \lambda_{2} / \lambda_{1} \in \mathbb{Z}^{-}\right\} \subset \Lambda \text {. }
\end{aligned}
$$

Example 2

We consider the family of vector fields

$$
\begin{aligned}
\dot{x} & =\lambda_{1}\left(x^{6}+3 y^{2}\right)(-y+\mu x)+\lambda_{2}\left(x^{2}+y^{2}\right)\left(y+A x^{3}\right) \\
\dot{y} & =\lambda_{1}\left(x^{6}+3 y^{2}\right)(x+\mu y)+\lambda_{2}\left(x^{2}+y^{2}\right)\left(-x^{5}+3 A x^{2} y\right) .(7)
\end{aligned}
$$

The $(0,0)$ is monodromic if and only if the parameters lie in

$$
\Lambda=\left\{\left(\lambda_{1}, \lambda_{2}, \mu, A\right) \in \mathbb{R}^{4}: 3 \lambda_{1}-\lambda_{2}>0, \quad \lambda_{1}-\lambda_{2}>0\right\} .
$$

> Family (7) restricted to $\bar{\Lambda} \subset \Lambda$
> $\bar{\Lambda}=\left\{\left(\lambda_{1}, \lambda_{2}, \mu, A\right) \in \mathbb{R}^{4}: \lambda_{1}>0, \lambda_{2}<0, \lambda_{2} / \lambda_{1} \in \mathbb{Z}^{-}\right\} \subset \Lambda$.
(i) If $\mu \neq 0$ then the origin is a focus;

Example 2

We consider the family of vector fields

$$
\begin{aligned}
\dot{x} & =\lambda_{1}\left(x^{6}+3 y^{2}\right)(-y+\mu x)+\lambda_{2}\left(x^{2}+y^{2}\right)\left(y+A x^{3}\right) \\
\dot{y} & =\lambda_{1}\left(x^{6}+3 y^{2}\right)(x+\mu y)+\lambda_{2}\left(x^{2}+y^{2}\right)\left(-x^{5}+3 A x^{2} y\right) .(7)
\end{aligned}
$$

The $(0,0)$ is monodromic if and only if the parameters lie in

$$
\Lambda=\left\{\left(\lambda_{1}, \lambda_{2}, \mu, A\right) \in \mathbb{R}^{4}: 3 \lambda_{1}-\lambda_{2}>0, \quad \lambda_{1}-\lambda_{2}>0\right\}
$$

Family (7) restricted to $\bar{\Lambda} \subset \Lambda$

$$
\bar{\Lambda}=\left\{\left(\lambda_{1}, \lambda_{2}, \mu, A\right) \in \mathbb{R}^{4}: \lambda_{1}>0, \lambda_{2}<0, \lambda_{2} / \lambda_{1} \in \mathbb{Z}^{-}\right\} \subset \Lambda .
$$

(i) If $\mu \neq 0$ then the origin is a focus;
(ii) If $\mu=0$ then the origin is a focus or a center according to whether $A \neq 0$ or $A=0$, respectively.

Proof

(i) The full family has two invariant curves

$$
F_{1}(x, y)=x^{2}+y^{2}=0, \quad F_{2}(x, y)=y^{2}+x^{6} / 3=0
$$

with associated cofactors

$$
\begin{aligned}
& K^{(1)}(x, y)=2\left(\lambda_{2} x y\left(1-x^{4}\right)+A \lambda_{2} x^{2}\left(x^{2}+3 y^{2}\right)+\lambda_{1} \mu\left(x^{6}+3 y^{2}\right)\right. \\
& K^{(2)}(x, y)=6\left(\lambda_{1} x y\left(1-x^{4}\right)+A \lambda_{2}\left(x^{4}+x^{2} y^{2}\right)+\lambda_{1} \mu\left(x^{6}+y^{2}\right)\right) .
\end{aligned}
$$

Proof

(i) The full family has two invariant curves

$$
F_{1}(x, y)=x^{2}+y^{2}=0, \quad F_{2}(x, y)=y^{2}+x^{6} / 3=0
$$

with associated cofactors
$K^{(1)}(x, y)=2\left(\lambda_{2} x y\left(1-x^{4}\right)+A \lambda_{2} x^{2}\left(x^{2}+3 y^{2}\right)+\lambda_{1} \mu\left(x^{6}+3 y^{2}\right)\right.$,
$K^{(2)}(x, y)=6\left(\lambda_{1} x y\left(1-x^{4}\right)+A \lambda_{2}\left(x^{4}+x^{2} y^{2}\right)+\lambda_{1} \mu\left(x^{6}+y^{2}\right)\right)$.
(ii) $W(\mathbf{N}(\mathcal{X}))=\{(1,1),(1,3)\}$ and leading parts are

■ $(p, q)=(1,1)$ and $\mathcal{X}_{2}=* \partial_{x}+\lambda_{1} 3 y^{2}(x+y \mu) \partial_{y} ;$
■ $(p, q)=(1,3)$ and $\mathcal{X}_{4}=\lambda_{2} x^{2}\left(A x^{3}+y\right) \partial_{x}+* \partial_{y}$

Proof

(i) The full family has two invariant curves

$$
F_{1}(x, y)=x^{2}+y^{2}=0, \quad F_{2}(x, y)=y^{2}+x^{6} / 3=0
$$

with associated cofactors
$K^{(1)}(x, y)=2\left(\lambda_{2} x y\left(1-x^{4}\right)+A \lambda_{2} x^{2}\left(x^{2}+3 y^{2}\right)+\lambda_{1} \mu\left(x^{6}+3 y^{2}\right)\right.$,
$K^{(2)}(x, y)=6\left(\lambda_{1} x y\left(1-x^{4}\right)+A \lambda_{2}\left(x^{4}+x^{2} y^{2}\right)+\lambda_{1} \mu\left(x^{6}+y^{2}\right)\right)$.
(ii) $W(\mathbf{N}(\mathcal{X}))=\{(1,1),(1,3)\}$ and leading parts are

■ $(p, q)=(1,1)$ and $\mathcal{X}_{2}=* \partial_{x}+\lambda_{1} 3 y^{2}(x+y \mu) \partial_{y} ;$

- $(p, q)=(1,3)$ and $\mathcal{X}_{4}=\lambda_{2} x^{2}\left(A x^{3}+y\right) \partial_{x}+* \partial_{y}$

Consequently, $\Omega_{11} \neq \emptyset$ and $\Omega_{13} \neq \emptyset$.

Proof

■ We take the invariant curve $F=F_{1}^{m_{1}} F_{2}^{m_{2}}=0$ with arbitrary $m_{i} \in \mathbb{Z}^{+}$whose cofactor is $K=m_{1} K^{(1)}+m_{2} K^{(2)}$

Proof

■ We take the invariant curve $F=F_{1}^{m_{1}} F_{2}^{m_{2}}=0$ with arbitrary $m_{i} \in \mathbb{Z}^{+}$whose cofactor is $K=m_{1} K^{(1)}+m_{2} K^{(2)}$
■ The (1, 1)-quasihomogeneous expansion of K is $K(x, y)=K_{2}(x, y)+\cdots$ with

$$
K_{2}(x, y)=2 y\left(\left(3 m_{2} \lambda_{1}+m_{1} \lambda_{2}\right) x+3\left(m_{1}+m_{2}\right) \lambda_{1} \mu y\right)+\cdots .
$$

Proof

- We take the invariant curve $F=F_{1}^{m_{1}} F_{2}^{m_{2}}=0$ with arbitrary $m_{i} \in \mathbb{Z}^{+}$whose cofactor is $K=m_{1} K^{(1)}+m_{2} K^{(2)}$
■ The (1, 1)-quasihomogeneous expansion of K is $K(x, y)=K_{2}(x, y)+\cdots$ with

$$
K_{2}(x, y)=2 y\left(\left(3 m_{2} \lambda_{1}+m_{1} \lambda_{2}\right) x+3\left(m_{1}+m_{2}\right) \lambda_{1} \mu y\right)+\cdots .
$$

(i) Under the conditions in statement (i) the function $K_{2}(\cos \varphi, \sin \varphi)$ is sign-defined in \mathbb{S}^{1}.

Proof

■ We take the invariant curve $F=F_{1}^{m_{1}} F_{2}^{m_{2}}=0$ with arbitrary $m_{i} \in \mathbb{Z}^{+}$whose cofactor is $K=m_{1} K^{(1)}+m_{2} K^{(2)}$
■ The (1, 1)-quasihomogeneous expansion of K is $K(x, y)=K_{2}(x, y)+\cdots$ with

$$
K_{2}(x, y)=2 y\left(\left(3 m_{2} \lambda_{1}+m_{1} \lambda_{2}\right) x+3\left(m_{1}+m_{2}\right) \lambda_{1} \mu y\right)+\cdots .
$$

(i) Under the conditions in statement (i) the function $K_{2}(\cos \varphi, \sin \varphi)$ is sign-defined in \mathbb{S}^{1}.
(ii) Under the conditions in statement (ii), $K_{2}(x, y) \equiv 0$ and $K(x, y)=K_{4}(x, y)$ such that $K_{4}(\cos \varphi, \sin \varphi)$ is sign-defined in \mathbb{S}^{1} when $A \neq 0$ and $K(x, y) \equiv 0$ when $A=0$.

Proof

■ We take the invariant curve $F=F_{1}^{m_{1}} F_{2}^{m_{2}}=0$ with arbitrary $m_{i} \in \mathbb{Z}^{+}$whose cofactor is $K=m_{1} K^{(1)}+m_{2} K^{(2)}$
■ The $(1,1)$-quasihomogeneous expansion of K is $K(x, y)=K_{2}(x, y)+\cdots$ with

$$
K_{2}(x, y)=2 y\left(\left(3 m_{2} \lambda_{1}+m_{1} \lambda_{2}\right) x+3\left(m_{1}+m_{2}\right) \lambda_{1} \mu y\right)+\cdots .
$$

(i) Under the conditions in statement (i) the function $K_{2}(\cos \varphi, \sin \varphi)$ is sign-defined in \mathbb{S}^{1}.
(ii) Under the conditions in statement (ii), $K_{2}(x, y) \equiv 0$ and $K(x, y)=K_{4}(x, y)$ such that $K_{4}(\cos \varphi, \sin \varphi)$ is sign-defined in \mathbb{S}^{1} when $A \neq 0$ and $K(x, y) \equiv 0$ when $A=0$.
Remark: Taking the (1,3)-quasihomogeneous expansion of K we get no new results.

MANY THANKS

FOR YOUR ATTENTION !!

