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Introduction

We consider families of real analytic planar differential systems

ẋ = P(x , y ;λ), ẏ = Q(x , y ;λ), (1)

or equivalently planar vector fields

X = P(x , y ;λ)∂x + Q(x , y ;λ)∂y .

We assume:

The family depends analytically on the parameters λ ∈ Rp.

(x , y) = (0, 0) is a monodromic singularity of X , that is local
orbits turn around the origin for any λ ∈ Λ ⊂ Rp.

Since X is analytic, independently I’lyashenko and Écalle,
prove that the singularity only can be either a center or a
focus.
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Poincaré-Lyapunov center-focus problem

The stability of the monodromic singularity is not solved by the
blow-up procedure.

Poincaré-Lyapunov center-focus problem

To discern the subsets of Λ corresponding to a center and a focus.
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Degrees of degeneracy in the center-focus problem

We let DX (0, 0) denotes the Jacobian matrix of X at the origin.

Non-degenerate case: When DX (0, 0) ̸≡ 0 has pure
imaginary eigenvalues different from zero the center-focus
problem was solved by the Poincaré and Lyapunov works.

Nilpotent case: When DX (0, 0) ̸≡ 0 has a double zero
eigenvalue the center-focus problem was solved by Moussu.

Degenerate case: When DX (0, 0) ≡ 0 the center-focus
problem remains open except few specific cases.
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Nilpotent case: When DX (0, 0) ̸≡ 0 has a double zero
eigenvalue the center-focus problem was solved by Moussu.

Degenerate case: When DX (0, 0) ≡ 0 the center-focus
problem remains open except few specific cases.
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Real analytic invariant curves from complex separatrices

Let F (x , y) = 0 be a real invariant analytic curve of X with
analytic cofactor K (x , y):

X (F ) = KF

Remark: We are only interested in invariant curves F (x , y) = 0
passing through the origin, that is with F (0, 0) = 0.
This is because U(x , y)F (x , y) = 0 is also an invariant analytic
curve of X for any analytic unit U(x , y) with U(0, 0) ̸= 0
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Real analytic invariant curves from complex separatrices

Toy example

Linear vector field X = (−y +λx)∂x +(x +λy)∂y with λ ∈ R.

Complex invariant curves (complex separatrices)
f1(x , y) = x + iy = 0 and f2(x , y) = x − iy = 0 with cofactors
K1(x , y) = i + λ and K2(x , y) = −i + λ, respectively.

Real analytic invariant curve
FR(x , y) = f1(x , y)f2(x , y) = x2 + y2 = 0 with cofactor
KR(x , y) = K1(x , y) + K2(x , y) = 2λ.
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Existence of real analytic invariant curves at monodromic
singularities

Theorem 1

Let X = P(x , y)∂x + Q(x , y)∂y be real analytic planar vector
field in a neighborhood of a monodromic singularity at the
origin;

Then there exists a real analytic invariant curve FR(x , y) = 0 of X
with FR(0, 0) = 0 and FR having an isolated zero in R2 at the
origin.

Sketch of the proof: We take the “canonical
complexification” XC at (C2, 0) of the real analytic vector field X
at (R2, 0) and next we use Camacho-Sad separatrix theorem.
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The Newton diagram of X

Given an analytic vector field X = P(x , y)∂x + Q(x , y)∂y with

P(x , y) =
∑

(i ,j)∈N2

aijx
iy j−1, Q(x , y) =

∑
(i ,j)∈N2

bijx
i−1y j ,

supp(X ) = {(i , j) ∈ N2 : (aij , bij) ̸= (0, 0)}.
The Newton diagram N(X ) of X is the boundary of the
convex hull of the set ⋃

(i ,j)∈supp(X )

{(i , j) + R2
+}.

Each edge of N(X ) has associated the weights (p, q) ∈ N2

with p and q coprime such that q/p of the the tangent angle
between that segment and the ordinate axis.

W (N(X )) ⊂ N2 is the set containing all the weights associated to
the edges in N(X ).
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Isaac A. Garćıa and Jaume Giné Center-focus problem by its complex separatrices



The Newton diagram of X

Given an analytic vector field X = P(x , y)∂x + Q(x , y)∂y with

P(x , y) =
∑

(i ,j)∈N2

aijx
iy j−1, Q(x , y) =

∑
(i ,j)∈N2

bijx
i−1y j ,

supp(X ) = {(i , j) ∈ N2 : (aij , bij) ̸= (0, 0)}.
The Newton diagram N(X ) of X is the boundary of the
convex hull of the set ⋃

(i ,j)∈supp(X )

{(i , j) + R2
+}.

Each edge of N(X ) has associated the weights (p, q) ∈ N2

with p and q coprime such that q/p of the the tangent angle
between that segment and the ordinate axis.

W (N(X )) ⊂ N2 is the set containing all the weights associated to
the edges in N(X ).
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The weighted polar blow-up

The weighted polar blow-up

Given (p, q) ∈ W (N(X )), we take the blow-up (x , y) 7→ (ρ, φ)
given by

x = ρp cosφ, y = ρq sinφ. (2)
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The differential equation on the cyclinder C

In coordinates (ρ, φ) X is orbitally equivalent to

ρ̇ = R(φ, ρ) = ρFr (φ) + O(ρ2), φ̇ = Θ(φ, ρ) = Gr (φ) + O(ρ).

We define the (p, q)-characteristic directions at the origin of X as:

Ωpq = {φ∗ ∈ S1 : Gr (φ
∗) = 0}.

We consider the ordinary differential equation:

dρ

dφ
= F(φ, ρ) =

R(φ, ρ)

Θ(φ, ρ)
, (3)

where F : C\Θ−1(0) → R being the cylinder

C =
{
(φ, ρ) ∈ S1 × R : 0 ≤ ρ ≪ 1

}
with S1 = R/(2πZ)
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The invariant curve on the cyclinder C

Let F (x , y) = 0 be a real invariant analytic curve of X with
F (0, 0) = 0 (which always exists by Theorem 1). Then

X (F ) = KF .

In weighted polar coordinates this equation is transformed into

X̂ (F̂ ) = K̂ F̂

where

X̂ = ∂φ + F(φ, ρ)∂ρ

F̂ (φ, ρ) = F (ρp cosφ, ρq sinφ);

K̂ is the cofactor of the invariant curve F̂ = 0 of X̂ .
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The cofactor of the invariant curve on the cyclinder C

The explicit expression of K̂ is:

K̂ (φ, ρ) =
D(φ)K (ρp cosφ, ρq sinφ)

ρrΘ(φ, ρ)
.

D(φ) = p cos2 φ+ q sin2 φ > 0

r is the leading (p, q)-quasihomogeneous degree in the
expansion

X =
∑
j≥r

Xj

with Xj the (p, q)-quasihomogeneous vector field of degree j .
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The Cauchy principal value of an improper integral

Given a continuous function f defined in I ⊂ [0, 2π]\Ω with
Ω = {θ∗1, . . . , θ∗ℓ}, the Cauchy principal value of the integral∫
I f (θ) dθ is defined as

PV

∫
I
f (θ) dθ = lim

ε→0+

∫
Iε

f (θ) dθ,

when the limit exists. Here we have used the notation Iε = I\Jε
with Jε = ∪ℓ

i=1(θ
∗
i − ε, θ∗i + ε).
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The main result

Let ρ(φ; ρ0) be the solution of the Cauchy problem

dρ

dφ
= F(φ, ρ), ρ(0; ρ0) = ρ0 > 0

We define

IK̂ (ρ0) := PV

∫ 2π

0
K̂ (φ, ρ(φ; ρ0)) dφ .

Theorem 2

Let F = 0 be an analytic invariant curve of X through the origin.
For any initial condition ρ0 > 0 sufficiently small, IK̂ (ρ0) exists and
moreover the origin is a center if and only if IK̂ (ρ0) ≡ 0.

Remark: If F is a first integral =⇒ K̂ ≡ 0 =⇒ IK̂ (ρ0) ≡ 0.
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moreover the origin is a center if and only if IK̂ (ρ0) ≡ 0.

Remark: If F is a first integral =⇒ K̂ ≡ 0 =⇒ IK̂ (ρ0) ≡ 0.
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Overcoming the difficulty of computing ρ(φ; ρ0)

Corollary (sufficient focus condition)

Assume the cofactor K of an analytic invariant curve through the
origin has the (p, q)-quasihomogeneous expansion

K (x , y) = Kr̄ (x , y) + · · · .

If Kr̄ (cosφ, sinφ) is a semi-definite function in S1 then the origin is
a focus of X .

How to compute Kr̄ (x , y) without the expression of F ?
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Computing Kr̄(x , y)

In order to compute Kr̄ (x , y) we could apply several methods:

Newton-Puiseux factorization

By Newton-Puiseux Theorem there exists a finite factorization

FR(x , y) = u(x , y)
∏
i

(y − y∗i (x)) (4)

u is a real analytic unit u(0, 0) ̸= 0;

y∗i (x) are complex holomorphic functions of x1/ni with
y∗i (0) = 0 called branches of FR at the origin;

The exponents ni ∈ Z+ are called the indices of the branches
y∗i .
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Computing Kr̄(x , y)

Invariant branching theory (Bruno)

The invariant branches are y∗i (x) = α0x
q/p + · · · with

(p, q) ∈ W (N(X ));

α0 is computed using that yp − α0x
q = 0 is an invariant

algebraic curve of Xr .

The branches have the expansion

y∗i (x) =
∑
j≥0

αjx
q
p
+ j

ni ,

There are general methods to compute the index ni (Fuchs
indices, etc...).
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Computing Kr̄(x , y)

We consider the (p, q)-quasihomogeneous expansions:

X = Xr + · · · ,
F (x , y) = Fs(x , y) + · · · ,
K (x , y) = Kr̄ (x , y) + · · · .

Direct method (Algaba et. al.)

Fs = 0 is an invariant algebraic curve of Xr with cofactor Kr̄ .

The irreducible factors of Fs are factors of the inverse
integrating factor V (x , y) = (px , qy) ∧ Xr of Xr .
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Example: Mañosas monodromic family

Victor Mañosas shows that family

ẋ = xy2 − y3 + ax5, ẏ = 2x7 − x4y + 4xy2 + y3, (5)

has a monodromic singularity at the origin with parameters
Λ = {a ∈ R : ∆(a) := 32− (1 + 3a)2 > 0}. Moreover he proves:

Mañosas family in Λ

The origin is always a focus.

Mañosas proof:
i) The Poincaré map is Π(x) = η1x + o(x) with

η1 = exp

(
π +

4πa√
∆(a)

)
̸= 1 if a ̸= −31/25. (6)

ii) When a = −31/25 he uses a Lyapunov function.
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Isaac A. Garćıa and Jaume Giné Center-focus problem by its complex separatrices



Example: Our proof in Mañosas monodromic family

Mañosas family in Λ

The origin is always a focus.

W (N(X )) = {(1, 1), (1, 3)}.
Taking the weights (p, q) = (1, 1) we see that X = X2 + · · ·
with X2 = (xy2 − y3)∂x + (4xy2 + y3)∂y ;
Using Bruno’s theory we check if there is an invariant branch
of the form y∗j (x) = α0x

1/1 + o(x) with α0 ̸= 0.

The leading term α0 is computed imposing that y1 − α0x
1 = 0

is an invariant curve of X2 =⇒ α0 = ±i
√
2 ∈ C;

Now we know that the invariant branches of X at the origin are

y∗
j (x) = α0x

1
1 +

∑
i≥1

αix
1
1+

i
nj

for some index nj ∈ Z+.
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Example: Our proof in Mañosas monodromic family

There are several ways to determine the index nj . Either we
show that the branch is simple or we compute the Fuch’s
index and check it is not in Q+\N.

nj = q = 1.

F (x , y) = (y − y∗1 (x))(y − y∗2 (x)) = 0 is a real analytic
invariant curve of X through the origin;
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Example: Our proof in Mañosas monodromic family

We get the (1, 1)-quasihomogeneous expansions:

F (x , y) = F2(x , y) + · · · = 4x2 + y2 + · · · ,
K (x , y) = K2(x , y) + · · · = 2y2 + · · · .

Clearly K2(cosφ, sinφ) is semi-positive defined.
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Example 2

We consider the family of vector fields

ẋ = λ1(x
6 + 3y2)(−y + µx) + λ2(x

2 + y2)(y + Ax3),

ẏ = λ1(x
6 + 3y2)(x + µy) + λ2(x

2 + y2)(−x5 + 3Ax2y).(7)

The (0, 0) is monodromic if and only if the parameters lie in

Λ = {(λ1, λ2, µ,A) ∈ R4 : 3λ1 − λ2 > 0, λ1 − λ2 > 0}.

Family (7) restricted to Λ̄ ⊂ Λ

Λ̄ = {(λ1, λ2, µ,A) ∈ R4 : λ1 > 0, λ2 < 0, λ2/λ1 ∈ Z−} ⊂ Λ.

(i) If µ ̸= 0 then the origin is a focus;

(ii) If µ = 0 then the origin is a focus or a center according to
whether A ̸= 0 or A = 0, respectively.
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ẏ = λ1(x
6 + 3y2)(x + µy) + λ2(x

2 + y2)(−x5 + 3Ax2y).(7)

The (0, 0) is monodromic if and only if the parameters lie in

Λ = {(λ1, λ2, µ,A) ∈ R4 : 3λ1 − λ2 > 0, λ1 − λ2 > 0}.

Family (7) restricted to Λ̄ ⊂ Λ

Λ̄ = {(λ1, λ2, µ,A) ∈ R4 : λ1 > 0, λ2 < 0, λ2/λ1 ∈ Z−} ⊂ Λ.

(i) If µ ̸= 0 then the origin is a focus;

(ii) If µ = 0 then the origin is a focus or a center according to
whether A ̸= 0 or A = 0, respectively.
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Proof

(i) The full family has two invariant curves

F1(x , y) = x2 + y2 = 0, F2(x , y) = y2 + x6/3 = 0,

with associated cofactors

K (1)(x , y) = 2(λ2xy(1− x4) + Aλ2x
2(x2 + 3y2) + λ1µ(x

6 + 3y2),

K (2)(x , y) = 6(λ1xy(1− x4) + Aλ2(x
4 + x2y2) + λ1µ(x

6 + y2)).

(ii) W (N(X )) = {(1, 1), (1, 3)} and leading parts are

(p, q) = (1, 1) and X2 = ∗∂x + λ13y
2(x + yµ)∂y ;

(p, q) = (1, 3) and X4 = λ2x
2(Ax3 + y)∂x + ∗∂y

Consequently, Ω11 ̸= ∅ and Ω13 ̸= ∅.
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Proof

We take the invariant curve F = Fm1
1 Fm2

2 = 0 with arbitrary
mi ∈ Z+ whose cofactor is K = m1K

(1) +m2K
(2)

The (1, 1)-quasihomogeneous expansion of K is
K (x , y) = K2(x , y) + · · · with

K2(x , y) = 2y((3m2λ1 +m1λ2)x + 3(m1 +m2)λ1µy) + · · · .

(i) Under the conditions in statement (i) the function
K2(cosφ, sinφ) is sign-defined in S1.

(ii) Under the conditions in statement (ii), K2(x , y) ≡ 0 and
K (x , y) = K4(x , y) such that K4(cosφ, sinφ) is sign-defined
in S1 when A ̸= 0 and K (x , y) ≡ 0 when A = 0.

Remark: Taking the (1, 3)-quasihomogeneous expansion of K we
get no new results.
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Proof

We take the invariant curve F = Fm1
1 Fm2
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(1) +m2K
(2)
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in S1 when A ̸= 0 and K (x , y) ≡ 0 when A = 0.

Remark: Taking the (1, 3)-quasihomogeneous expansion of K we
get no new results.

Isaac A. Garćıa and Jaume Giné Center-focus problem by its complex separatrices



MANY THANKS

FOR YOUR ATTENTION !!
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