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The basics

An elementary slow-fast system{
ẋ = ϵ
ẏ = a(x)y

Orbit through (x0, y0) is expressed as a graph

y = y0 exp
1

ϵ

∫ x

x0

a(s)ds

The integral is called a slow divergence integral. Suppose now that{
a(x) < 0 x < x∗

a(x) > 0 x > x∗

Then we have an implicitly defined transition map

x0 7→ x1 with

∫ x1

x0

a(s)ds = 0

that takes a point from {y = y0, x < x∗} to a point in {y = y0, x > x∗}.{
ẋ = ϵ
ẏ = a(x)y2

y = y0
1

1− ϵ
∫ x
x0
a(s)ds

In both cases y intersects {y = y0} when∫ x

x0

a(s)ds = 0
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Suppose a(x) = arctan x . Then by symmetry we should have∫ −x0

x0

a(s)ds = 0

So the entry-exit map is trivial

x0 7→ −x0

The numerics is less trivial. Let us consider the o.d.e. integrator from

Maple. ϵ = 0.1
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The basics in a Rosenzweig-Macarthur predator-prey model
ẋ = x (1− x)− xy

λ+ x
,

ẏ = ϵy

(
−µ+

x

λ+ x

)
,

C

P

C

P

C

P

C

P

xRxL

Y

Y ′

Y

xL

x′
R

(a) (b) (c) (d)

Though predator-prey cycles like in (d) are possible theoretically, the
number of prey drops to exponentially small levels, even for moderate
values of ϵ !
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From hyperbolic to non-hyperbolic

Consider the slow-fast system{
ẋ = ϵ
ẏ = a(x)y2

Orbit through (x0, y0) is expressed as a graph

y = y0

(
1− y0

ϵ

∫ x

x0

a(s)ds

)−1

The rest is the same!

The integral is called a slow divergence integral. Suppose now that{
a(x) < 0 x < x∗

a(x) > 0 x > x∗

Then we have an implicitly defined transition map

x0 7→ x1 with

∫ x1

x0

a(s)ds = 0

that takes a point from {y = y0, x < x∗} to a point in {y = y0, x > x∗}.{
ẋ = ϵ
ẏ = a(x)y2

y = y0
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In this case even Maple can integrate numerically!
ϵ = 0.001
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In this case even Maple can integrate numerically!
ϵ = 0.0001
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Non-hyperbolic Rosenzweig-Macarthur predator-prey model
ẋ = x2 (1− x)− x2y

λ+ x
,

ẏ = ϵy

(
−µ+

x

λ+ x

)
,

Slow-fast analysis in first quadrant stays the same

C

P

C

P

C

P

C

P

xRxL

Y

Y ′

Y

xL

x′
R

(a) (b) (c) (d)

This adaptation looks a bit like changing the Holling type of
functional response but it still is a bit different than that.

Population numbers vary in a more realistic way in this adapted
model.
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Going beyond the elementary examples{
ẋ = ϵf (x , y , ϵ, λ)
ẏ = a(x , y , ϵ, λ)y

⇒ studied by many people (Pontryagin, Benoit, Liu, ...)
In [DM & Schecter 2016] We reconsidered it in a unified way together with{

ẋ = ϵf (x , y , ϵ, λ)
ẏ = a(x , y , ϵ, λ)y2

Theorem

Let x0 and x1 be such that∫ x1

x0

a(x , 0, 0, λ)/f (x , 0, 0, λ)dx = 0

Then for y0 > 0 small enough there is a well-defined entry-exit map
{y = y0} → {y = y0} near x0 given by

x 7→ P(x , ϵ, ϵ log ϵ), with P(x0, 0, 0) = x1.
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The entry–exit in [DM-Schecter 2016] even allows multiple turning points:

x

z z

x x

z

However:

we did not yet treat the case of dimension > 2. Ongoing research in a
joint project with X. Zhang

we did not treat the boundaries of the entry and exit sections: what if
the asymptotic entry or exit point is exactly at a turning point?
Ongoing research in a joint project with M. Alvarez in view of the
study of canard-type solutions to Abel equations

we did not discuss saddle-node type unfolding of the double critical
curve Preprint with J. Torregrosa dealing with limit cycles and critical
periods (at present in the plane only)

Slow-fast + chaos February 2023 9 / 30



The entry–exit in [DM-Schecter 2016] even allows multiple turning points:

x

z z

x x

z

However:

we did not yet treat the case of dimension > 2. Ongoing research in a
joint project with X. Zhang

we did not treat the boundaries of the entry and exit sections: what if
the asymptotic entry or exit point is exactly at a turning point?
Ongoing research in a joint project with M. Alvarez in view of the
study of canard-type solutions to Abel equations

we did not discuss saddle-node type unfolding of the double critical
curve Preprint with J. Torregrosa dealing with limit cycles and critical
periods (at present in the plane only)

Slow-fast + chaos February 2023 9 / 30



Back to the predator-prey model
ẋ = x (1− x)− xy

λ+ x
,

ẏ = ϵy

(
−µ+

x

λ+ x

)
,

Aim:

Theorem (DM, Y. Patsios)

Given any smooth map
F : [0, 1] → [0, 1]

there exists a “3D-variant” of the above predator-prey model for which a
suitable (2D) first return map “mimics” the behaviour of the (1D) map F .
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Theorem (DM, Y. Patsios)

Given any smooth map
P : [0, 1] → [0, 1]

there exists a “3D-variant” of the above predator-prey model for which a
suitable (2D) first return map “mimics” the behaviour of the (1D) map P.

Remarks:

This way of formulating a theorem is of course unacceptably vague

First return maps are by definition diffeomorphisms whereas F need
not be !!!

We would like to stay as close as possible to a realistic predator-prey
model, but here we focused on ease of presentation

The 3D-variant is easily constructed and the dynamic behaviour is
easily verified with standard ode-solvers

Ideally we think of the 2D diffeo F as a map with a 1D attracting
invariant curve γ for which F |γ = P, but this is in general too much
to demand.
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Set up: 
ẋ
ẏ

=
=

. . .

. . .

}
like before

ż = ϵh(x , y , z , ϵ)

By adding a second slow variable (ż = O(ϵ) the critical curve, a parabola,
becomes a critical surface.
We can then trace the evolution of z by computing integrals over parts of
the critical surface, which projects trivially on the former critical curve.
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Taking a section Σ = {x = c} between the fold and the plane we easily
conclude the existence of a first return map

P : Σ → Σ
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The amended system
ẋ = x(1 + 2x − x2 − y)
ẏ = ϵy(x − 1

2)
ż = ϵh(x , y , z , ϵ)

We assume Ω > 0.
Slow-fast analysis
The parabolic critical surface is given by

y = 1 + 2x − x2

with a top line along {x = 1, y = 2}. Since ẏ |x=1,y=2 = ϵ > 0, the
dynamics point upwards near the fold so it is a jump situation
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Slow dynamics on the parabolic surface:

dz

dy
=

h(x , y , z , 0)

(12 − x)y

∣∣∣∣∣
y=1+2x−x2

We make it really easy for ourselves and assume

h = h0(y)×
(
(12 − x)y

)
+ O(y − 1− 2x + x2)

Then the slow dynamics becomes trivial

dz

dy
= h0(y) =⇒ zjump = z0 +

∫ 2

y0

h0(y)dy .

We will choose h0 a bit later.
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Slow dynamics on the invariant plane {x = 0}:{
y ′ = − y

2
z ′ = h(0, y , z , 0)

Here we make it ourselves really really easy by assuming

h(0, y , z , 0) = 0

So the dynamics is fully understood by the planar model.
The two conditions are compatible when h0(1) = 0.
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Entry-exit mechanism
ẋ = x(1 + 2x − x2 − y)Ω(y , z)
ẏ = ϵy(x − 1

2)
ż = ϵh(x , y , z , ϵ)

The divergence on {x = 0}:

(1− y)Ω(y , z)

So the divergence integral shows the exit point:∫ yexit

yentry

(1− y)Ω(y , z)

−y/2
dy = 0.

and
zexit = zentry
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First return map (following “Chaotic attractors of relaxation oscillators”,
Nonlinearity 2006, by Guckenheimer, Wechselberger and Lai-Sang Young)

(yentry , zentry ) 7→ (yjump, zjump) + oϵ(1)

where
yjump = 2

and zjump is implicitly defined by∫ yexit

yentry

(1− y)Ω(y , z)

−y/2
dy = 0

(yexit , zexit) = (y0, z0)

zjump = z0 +

∫ 2

y0

h0(y)dy .
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So after one iteration we assume yentry = yjump and find a 1-D map

zentry 7→ zjump + o(1)

where zjump is implicitly defined by∫ yexit

2

(1− y)Ω(y , z)

−y/2
dy = 0

(yexit , zentry ) = (y0, z0)

zjump = z0 +

∫ 2

y0

h0(y)dy .
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Eliminating variables

Suppose we want to reverse engineer a 1-D map z 7→ P(z).∫ yexit

2

(1− y)Ω(y , z)

−y/2
dy = 0

(yexit , zentry ) = (y0, z0)

P(z) = z0 +

∫ 2

y0

h0(y)dy .

Next, choose
h0(y) = 1− y

so

yexit = 1−
√

(y − 1)2 + 2P(zentry )− 2zentry
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This leads to a very nice implicit expression for the limiting 1-D map:∫ 1−
√

(y−1)2+2P(zentry )−2zentry

2

(1− y)Ω(y , z)

−y/2
dy = 0

Reverse engineering P: consider this implicit expression as an equation for
the unknown function Ω.

Example solution:

Ω(y , z) = y
(
1 + (y − 1)2 − (y − 1)Ω̄(z)

)
,

with

Ω̄(z) =
3(2 + P − z)(P − z)

1 + (1− 2z + 2P)3/2
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We could now try to follow the techniques in
“Chaotic attractors of relaxation oscillators”, Nonlinearity 2006, by
Guckenheimer, Wechselberger and Lai-Sang
to prove chaotic attractor.

However, in that paper conditions are quite strong and possibly require
partly numerical verification!
We prefer to apply “Topological horseshoes”, Trans. AMS 2001, by
Kennedy and Yorke
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Kennedy-Yorke Topological horseshoes

Let QL,QR ⊂ Q ⊂ X ⊂ Rn be compact sets, and assume Q ⊂ X is
connected. Let

f : Q → X

be continuous.
Assume furthermore QL ∩ QR = ∅. Finally assume the “crossing number”
M ≥ 2.
Then there is a closed invariant subset C of Q for which f |C is
semi-conjugate to a one-sided shift on M symbols.

X

Q

QL QR

Slow-fast + chaos February 2023 23 / 30



Crossing number

We define a connection as a compact connected subset of Q intersecting
with both QL and QR

The crossing number M is the largest number such that any connection
contains at least M disjoint compact connected subsets whose f -image is
a connection

X

Q

QL QR
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(b) satisfies conditions, (a) not.
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Theorem

Let P : [0, 1] → [0, 1] satisfy the conditions of Kennedy-Yorke “in a stable
way”, then we can lift the one-dimensional sets QL, QR , Q and X to the
plane so that the lifted sets satisfy the conditions of Kennedy-Yorke for the
slow-fast return map P
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The conclusion is the presence of chaos but not in a very strong sense. . .

s
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Conclusions:

There is a rigorous proof of the existence of invariant sets with
chaotic dynamics

By making the invariant plane non-hyperbolic, the slow-fast analysis
does not change at all and the construction is easily verified
numerically! 

ẋ = x2(1 + 2x − x2 − y)Ω(y , z)
ẏ = ϵy(x − 1

2)
ż = ϵh(x , y , z , ϵ)

We didn’t really prove that the invariant set is an attractor (project
with X. Zhang)

We didn’t study how the invariant set behaves asymptotically as
ϵ → 0 (same project)

What about reverse engineering higher dimensional maps

try the application of the more recent Lai-Sang conditions (Annals
paper) to deal with chaos from a measure-theoretic point of view
without resorting to numerics
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Numerical simulations with the non-hyperbolic model and ϵ = 0.0001
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Numerical simulations with the non-hyperbolic model and ϵ = 0.0001

Slow-fast + chaos February 2023 29 / 30



Thank you for your attention!
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