# STRUCTURAL STABILITY IN A CLASS OF REFRACTIVE PARTIALLY INTEGRABLE VECTOR FIELDS

#### Claudio A. Buzzi UNESP - Rio Preto

## AQTDE - Port de Soller

6 - 10 Frebruary 2023

Coauthors: Ana Livia Rodero and Marco A. Teixeira

Buzzi, C. A. Structural stability in refractive partially integrable systems

Our main interest is to study stability problems inside a class of 3-dimensional partially integrable piecewise smooth vector fields.

Our main interest is to study stability problems inside a class of 3-dimensional partially integrable piecewise smooth vector fields.

We consider piecewise smooth vector fields Z = (X, Y) defined on ℝ<sup>3</sup> with discontinuity set Σ = {(x, y, z) ∈ ℝ<sup>3</sup> : z = 0},

Our main interest is to study stability problems inside a class of 3-dimensional partially integrable piecewise smooth vector fields.

We consider piecewise smooth vector fields Z = (X, Y) defined on ℝ<sup>3</sup> with discontinuity set
Σ = {(x, y, z) ∈ ℝ<sup>3</sup> : z = 0}, expressed as

$$Z(x, y, z) = \begin{cases} X(x, y, z), \ z \ge 0, \\ Y(x, y, z), \ z \le 0, \end{cases}$$
(1)

where X, Y are defined on  $\mathbb{R}^3$ , of  $C^r$ -class,  $r \ge 4$ .

Our main interest is to study stability problems inside a class of 3-dimensional partially integrable piecewise smooth vector fields.

We consider piecewise smooth vector fields Z = (X, Y) defined on ℝ<sup>3</sup> with discontinuity set
Σ = {(x, y, z) ∈ ℝ<sup>3</sup> : z = 0}, expressed as

$$Z(x, y, z) = \begin{cases} X(x, y, z), \ z \ge 0, \\ Y(x, y, z), \ z \le 0, \end{cases}$$
(1)

where X, Y are defined on  $\mathbb{R}^3$ , of  $C^r$ -class,  $r \ge 4$ .

• Z = (X, Y) admit  $H(x, y, z) = x^2 + y^2 + z^2$  as a first integral.

伺 ト イ ヨ ト イ ヨ ト

Our main interest is to study stability problems inside a class of 3-dimensional partially integrable piecewise smooth vector fields.

We consider piecewise smooth vector fields Z = (X, Y) defined on ℝ<sup>3</sup> with discontinuity set
Σ = {(x, y, z) ∈ ℝ<sup>3</sup> : z = 0}, expressed as

$$Z(x, y, z) = \begin{cases} X(x, y, z), \ z \ge 0, \\ Y(x, y, z), \ z \le 0, \end{cases}$$
(1)

where X, Y are defined on  $\mathbb{R}^3$ , of  $C^r$ -class,  $r \ge 4$ .

- Z = (X, Y) admit  $H(x, y, z) = x^2 + y^2 + z^2$  as a first integral.
- Z = (X, Y) is refractive, i.e., Xf(p) = Yf(p) for all  $p \in \Sigma$ .

We denote by  $\mathcal{X}$  the class of piecewise vector fields Z = (X, Y)and we endow it with the  $C^r$ - product topology.

- ∢ ≣ ▶

We denote by  $\mathcal{X}$  the class of piecewise vector fields Z = (X, Y) and we endow it with the  $C^r$ - product topology.

We call  $\mathfrak{R}$  the space of all refractive vector fields Z = (X, Y) in  $\mathcal{X}$  and we endow  $\mathfrak{R}$  with the  $C^r$ -induced product topology. Observe that  $\mathfrak{R}$  is a Banach manifold.

We denote by  $\mathcal{X}$  the class of piecewise vector fields Z = (X, Y) and we endow it with the  $C^r$ - product topology.

We call  $\mathfrak{R}$  the space of all refractive vector fields Z = (X, Y) in  $\mathcal{X}$  and we endow  $\mathfrak{R}$  with the  $C^r$ -induced product topology. Observe that  $\mathfrak{R}$  is a Banach manifold.

For  $\lambda > 0$  and sufficiently small, we denote by  $\mathfrak{R}^{S_{\lambda}}$  the set of all the refractive piecewise smooth vector fields  $Z \in \mathfrak{R}$  restricted to the sphere  $\mathbb{S}_{\lambda}^2$ .

We denote by  $\mathcal{X}$  the class of piecewise vector fields Z = (X, Y) and we endow it with the  $C^r$ - product topology.

We call  $\mathfrak{R}$  the space of all refractive vector fields Z = (X, Y) in  $\mathcal{X}$  and we endow  $\mathfrak{R}$  with the  $C^r$ -induced product topology. Observe that  $\mathfrak{R}$  is a Banach manifold.

For  $\lambda > 0$  and sufficiently small, we denote by  $\mathfrak{R}^{S_{\lambda}}$  the set of all the refractive piecewise smooth vector fields  $Z \in \mathfrak{R}$  restricted to the sphere  $\mathbb{S}_{\lambda}^2$ .

In other words, if  $Z \in \mathfrak{R}$  then the restriction  $Z_{|_{\mathbb{S}^2_{\lambda}}} \in \mathfrak{R}^{S_{\lambda}}$ , for all  $\lambda > 0$ .

#### Our main objective is to establish stability conditions in $\mathfrak{R}$ .

Buzzi, C. A. Structural stability in refractive partially integrable systems

伺 ト イヨト イヨト

Our main objective is to establish stability conditions in  $\mathfrak{R}$ .

In this context, we characterize a subset  $\Sigma_0 \subset \mathfrak{R}$  having a simple and comprehensive description satisfying that

< ∃ >

Our main objective is to establish stability conditions in  $\mathfrak{R}$ .

In this context, we characterize a subset  $\Sigma_0 \subset \mathfrak{R}$  having a simple and comprehensive description satisfying that

if  $Z \in \mathfrak{R}$  is locally structurally stable then  $Z \in \Sigma_0$ .

Buzzi, C. A. Structural stability in refractive partially integrable systems

/□ ▶ < 글 ▶ < 글

 $\bullet$  Theorem A is a version of Peixoto's Theorem on  $\mathfrak{R}^{\mathcal{S}_{\lambda}}$ 

- Theorem A is a version of Peixoto's Theorem on  $\mathfrak{R}^{S_{\lambda}}$
- Theorem B is inspired by the classification of generic one-parameter smooth vector fields defined on two-dimensional manifolds given in [Sotomayor1974] and [Teixeira1977].

- Theorem A is a version of Peixoto's Theorem on  $\mathfrak{R}^{S_{\lambda}}$
- Theorem B is inspired by the classification of generic one-parameter smooth vector fields defined on two-dimensional manifolds given in [Sotomayor1974] and [Teixeira1977].

The last part of the work is analyze the systems in the space  $\mathfrak{R}$ .

- Theorem A is a version of Peixoto's Theorem on  $\mathfrak{R}^{S_{\lambda}}$
- Theorem B is inspired by the classification of generic one-parameter smooth vector fields defined on two-dimensional manifolds given in [Sotomayor1974] and [Teixeira1977].

The last part of the work is analyze the systems in the space  $\mathfrak{R}$ .

• These results pave the way to prove Theorem C involving 3-dimensional refractive piecewise smooth vector fields in  $\Re$ .

### Piecewise smooth systems

$$\Sigma = \{(x, y, z) : z = 0\} = f^{-1}(0) \text{ with } f(x, y, z) = z.$$

Buzzi, C. A. Structural stability in refractive partially integrable systems

$$\Sigma = \{(x, y, z) : z = 0\} = f^{-1}(0) \text{ with } f(x, y, z) = z.$$

In general, the *Lie derivative of* f along X at  $p \in \Sigma$  is given by  $Xf(p) = X(p) \cdot \nabla f(p)$ .

$$\Sigma = \{(x, y, z) : z = 0\} = f^{-1}(0) \text{ with } f(x, y, z) = z.$$

$$\Sigma = \{(x, y, z) : z = 0\} = f^{-1}(0) \text{ with } f(x, y, z) = z.$$

p is fold point of X if  $Xf(p) = 0, X^2f(p) \neq 0$ .

$$\Sigma = \{(x, y, z) : z = 0\} = f^{-1}(0) \text{ with } f(x, y, z) = z.$$

p is fold point of X if  $Xf(p) = 0, X^2f(p) \neq 0$ .

Recall that the fold points of X are said visible (invisible) if  $X^2 f(p) > 0$  ( $X^2 f(p) < 0$ , respect.).

ゆ マ チョン イロン

$$\Sigma = \{(x, y, z) : z = 0\} = f^{-1}(0) \text{ with } f(x, y, z) = z.$$

p is fold point of X if  $Xf(p) = 0, X^2f(p) \neq 0$ .

Recall that the fold points of X are said visible (invisible) if  $X^2 f(p) > 0$  ( $X^2 f(p) < 0$ , respect.).

The tangency set of X(Y) with  $\Sigma$  is defined by  $S_X = \{p \in \Sigma : Xf(p) = 0\} (S_Y = \{p \in \Sigma : Yf(p) = 0\},$ respect.).

伺 ト く ヨ ト く ヨ ト

$$\Sigma = \{(x, y, z) : z = 0\} = f^{-1}(0) \text{ with } f(x, y, z) = z.$$

p is fold point of X if  $Xf(p) = 0, X^2f(p) \neq 0$ .

Recall that the fold points of X are said visible (invisible) if  $X^2 f(p) > 0$  ( $X^2 f(p) < 0$ , respect.).

The tangency set of X(Y) with  $\Sigma$  is defined by  $S_X = \{p \in \Sigma : Xf(p) = 0\} (S_Y = \{p \in \Sigma : Yf(p) = 0\},$ respect.).

Ultimately, the tangency set of Z is  $S_Z = S_X \cup S_Y$ .

#### Refractive piecewise smooth systems

 $Z = (X, Y) \in \mathcal{X}$  is *refractive* (at  $\Sigma$ ) provided Xf(p) = Yf(p) for all  $p \in \Sigma$ .

Buzzi, C. A. Structural stability in refractive partially integrable systems

< ∃ >

#### Refractive piecewise smooth systems

 $Z = (X, Y) \in \mathcal{X}$  is *refractive* (at  $\Sigma$ ) provided Xf(p) = Yf(p) for all  $p \in \Sigma$ .

Thus, if Z is a refractive system then  $\Sigma$  is composed just by crossing regions, denoted, as usual, by  $\Sigma^{c} = \{p \in \Sigma : Xf(p)Yf(p) > 0\}$ , and singularities or tangential points. Besides,  $S_{X} = S_{Y}$ .

### Refractive piecewise smooth systems

 $Z = (X, Y) \in \mathcal{X}$  is *refractive* (at  $\Sigma$ ) provided Xf(p) = Yf(p) for all  $p \in \Sigma$ .

Thus, if Z is a refractive system then  $\Sigma$  is composed just by crossing regions, denoted, as usual, by  $\Sigma^{c} = \{p \in \Sigma : Xf(p)Yf(p) > 0\}$ , and singularities or tangential points. Besides,  $S_{X} = S_{Y}$ .



FIGURE 1. (a) Crossing region; (b) Parabolic fold-fold point; (c) Hyperbolic fold-fold point; (d) Elliptic fold-fold point.

Let  $p \in \Sigma$  be an elliptic fold–fold point of Z and consider a local chart x of  $\Sigma$  for which x = 0 corresponds to  $p \in \Sigma$ .

Let  $p \in \Sigma$  be an elliptic fold–fold point of Z and consider a local chart x of  $\Sigma$  for which x = 0 corresponds to  $p \in \Sigma$ .

The vector field X induces on  $\Sigma$  an involution given by  $\phi_X(\mathbf{x})$ .

Let  $p \in \Sigma$  be an elliptic fold-fold point of Z and consider a local chart x of  $\Sigma$  for which x = 0 corresponds to  $p \in \Sigma$ .

The vector field X induces on  $\Sigma$  an involution given by  $\phi_X(x)$ .  $\phi_X(x)$  is the point where the trajectory of X passing by x meets  $\Sigma$ .

Let  $p \in \Sigma$  be an elliptic fold-fold point of Z and consider a local chart x of  $\Sigma$  for which x = 0 corresponds to  $p \in \Sigma$ .

The vector field X induces on  $\Sigma$  an involution given by  $\phi_X(x)$ .  $\phi_X(x)$  is the point where the trajectory of X passing by x meets  $\Sigma$ .

Analogously, we denote by  $\phi_Y$  the involution induced by Y.

Let  $p \in \Sigma$  be an elliptic fold–fold point of Z and consider a local chart x of  $\Sigma$  for which x = 0 corresponds to  $p \in \Sigma$ .

The vector field X induces on  $\Sigma$  an involution given by  $\phi_X(x)$ .  $\phi_X(x)$  is the point where the trajectory of X passing by x meets  $\Sigma$ .

Analogously, we denote by  $\phi_Y$  the involution induced by Y. These involutions must be of the form

$$\begin{split} \phi_X(\mathbf{x}) &= -\mathbf{x} + \alpha_X \mathbf{x}^2 - \alpha_X^2 \mathbf{x}^3 + \mathcal{O}_4(\mathbf{x}) \text{ and} \\ \phi_Y(\mathbf{x}) &= -\mathbf{x} + \alpha_Y \mathbf{x}^2 - \alpha_Y^2 \mathbf{x}^3 + \mathcal{O}_4(\mathbf{x}), \text{ for certain } \alpha_X, \alpha_Y \in \mathbb{R}. \end{split}$$

Let  $p \in \Sigma$  be an elliptic fold-fold point of Z and consider a local chart x of  $\Sigma$  for which x = 0 corresponds to  $p \in \Sigma$ .

The vector field X induces on  $\Sigma$  an involution given by  $\phi_X(x)$ .  $\phi_X(x)$  is the point where the trajectory of X passing by x meets  $\Sigma$ .

Analogously, we denote by  $\phi_{Y}$  the involution induced by Y. These involutions must be of the form

$$\begin{split} \phi_X(\mathbf{x}) &= -\mathbf{x} + \alpha_X \mathbf{x}^2 - \alpha_X^2 \mathbf{x}^3 + \mathcal{O}_4(\mathbf{x}) \text{ and} \\ \phi_Y(\mathbf{x}) &= -\mathbf{x} + \alpha_Y \mathbf{x}^2 - \alpha_Y^2 \mathbf{x}^3 + \mathcal{O}_4(\mathbf{x}), \text{ for certain } \alpha_X, \alpha_Y \in \mathbb{R}. \end{split}$$

Which allows us to define a return map  $\phi_Z$  by

$$\phi_{Z}(\mathbf{x}) = \phi_{Y} \circ \phi_{X}(\mathbf{x}) = \mathbf{x} + (\alpha_{Y} - \alpha_{X})\mathbf{x}^{2} + (\alpha_{Y} - \alpha_{X})^{2}\mathbf{x}^{3} + \mathcal{O}_{4}(\mathbf{x}).$$

Let  $p \in \Sigma$  be an elliptic fold–fold point of Z and consider a local chart x of  $\Sigma$  for which x = 0 corresponds to  $p \in \Sigma$ .

The vector field X induces on  $\Sigma$  an involution given by  $\phi_X(x)$ .  $\phi_X(x)$  is the point where the trajectory of X passing by x meets  $\Sigma$ .

Analogously, we denote by  $\phi_{Y}$  the involution induced by Y. These involutions must be of the form

$$\begin{split} \phi_X(\mathbf{x}) &= -\mathbf{x} + \alpha_X \mathbf{x}^2 - \alpha_X^2 \mathbf{x}^3 + \mathcal{O}_4(\mathbf{x}) \text{ and } \\ \phi_Y(\mathbf{x}) &= -\mathbf{x} + \alpha_Y \mathbf{x}^2 - \alpha_Y^2 \mathbf{x}^3 + \mathcal{O}_4(\mathbf{x}), \text{ for certain } \alpha_X, \alpha_Y \in \mathbb{R}. \end{split}$$

Which allows us to define a return map  $\phi_Z$  by

$$\phi_{Z}(\mathbf{x}) = \phi_{Y} \circ \phi_{X}(\mathbf{x}) = \mathbf{x} + (\alpha_{Y} - \alpha_{X})\mathbf{x}^{2} + (\alpha_{Y} - \alpha_{X})^{2}\mathbf{x}^{3} + \mathcal{O}_{4}(\mathbf{x}).$$

The generic condition (G), impose that  $\phi''_X(0) \neq \phi''_Y(0)$ . This condition implies that none of the trajectories of Z, in a neighborhood of p, is a closed trajectory.

We say that a continuous curve  $\Gamma$  formed by regular trajectory arcs of X and Y such that the transition between these arcs is made across the crossing region is a *poly-trajectory* of Z.
We say that a continuous curve  $\Gamma$  formed by regular trajectory arcs of X and Y such that the transition between these arcs is made across the crossing region is a *poly-trajectory* of Z.

If  $\Gamma$  is a closed poly-trajectory of Z we say that  $\Gamma$  is of the type I if  $\Gamma$  reaches  $\Sigma$  just in crossing points and that  $\Gamma$  is of the type II if it passes through at least one fold-fold point of Z.

We say that a continuous curve  $\Gamma$  formed by regular trajectory arcs of X and Y such that the transition between these arcs is made across the crossing region is a *poly-trajectory* of Z.

If  $\Gamma$  is a closed poly-trajectory of Z we say that  $\Gamma$  is of the type I if  $\Gamma$  reaches  $\Sigma$  just in crossing points and that  $\Gamma$  is of the type II if it passes through at least one fold-fold point of Z.

Besides, we say that a closed poly-trajectory  $\Gamma$  of Z is generic (or elementary) if it is of the type I and its first return map  $\pi : \Sigma \to \Sigma$  satisfies  $\pi'(p) \neq 1$ , for all  $p \in \Sigma \cap \Gamma$ .

We say that a continuous curve  $\Gamma$  formed by regular trajectory arcs of X and Y such that the transition between these arcs is made across the crossing region is a *poly-trajectory* of Z.

If  $\Gamma$  is a closed poly-trajectory of Z we say that  $\Gamma$  is of the type I if  $\Gamma$  reaches  $\Sigma$  just in crossing points and that  $\Gamma$  is of the type II if it passes through at least one fold-fold point of Z.

Besides, we say that a closed poly-trajectory  $\Gamma$  of Z is generic (or elementary) if it is of the type I and its first return map  $\pi : \Sigma \to \Sigma$  satisfies  $\pi'(p) \neq 1$ , for all  $p \in \Sigma \cap \Gamma$ .

We also say that  $\Gamma$  is a quasi-generic poly-trajectory of type I if  $\pi: \Sigma \to \Sigma$  with  $\pi'(p) = 1$  and  $\pi''(q) \neq 0$ , for all  $p \in \Sigma \cap \Gamma$ .

伺 ト イ ヨ ト イ ヨ ト

**Fold–Saddle point.** Let  $p_0 = (0, 0)$  be a fold–saddle point of Z = (X, Y).

**Fold–Saddle point.** Let  $p_0 = (0,0)$  be a fold–saddle point of Z = (X, Y). In this case we need to impose some extra non-degeneracy conditions.

**Fold–Saddle point.** Let  $p_0 = (0,0)$  be a fold–saddle point of Z = (X, Y). In this case we need to impose some extra non-degeneracy conditions. First the saddle is an isolated hyperbolic equilibrium point of Y and its eigenspaces are transversal to  $\Sigma$ .

**Fold–Saddle point.** Let  $p_0 = (0,0)$  be a fold–saddle point of Z = (X, Y). In this case we need to impose some extra non-degeneracy conditions. First the saddle is an isolated hyperbolic equilibrium point of Y and its eigenspaces are transversal to  $\Sigma$ . If the fold point of X is invisible, we need two more conditions. The elliptic fold–fold point that can appear on the bifurcation diagram is generic and there is no self-connection of saddle separatrices.

**Fold–Saddle point.** Let  $p_0 = (0,0)$  be a fold–saddle point of Z = (X, Y). In this case we need to impose some extra non-degeneracy conditions. First the saddle is an isolated hyperbolic equilibrium point of Y and its eigenspaces are transversal to  $\Sigma$ . If the fold point of X is invisible, we need two more conditions. The elliptic fold–fold point that can appear on the bifurcation diagram is generic and there is no self-connection of saddle separatrices.



**Fold-node point.** Let  $p_0 = (0,0)$  be a fold-node point of Z = (X, Y).

**Fold–node point.** Let  $p_0 = (0,0)$  be a fold–node point of Z = (X, Y). Extra non-degeneracy conditions:

**Fold–node point.** Let  $p_0 = (0,0)$  be a fold–node point of Z = (X, Y). Extra non-degeneracy conditions: First the node is an isolated hyperbolic equilibrium point of Y and its eigenspaces are transversal to  $\Sigma$ .

**Fold-node point.** Let  $p_0 = (0,0)$  be a fold-node point of Z = (X, Y). Extra non-degeneracy conditions: First the node is an isolated hyperbolic equilibrium point of Y and its eigenspaces are transversal to  $\Sigma$ . If the fold point of X is invisible, the elliptic fold-fold point that can appear on the bifurcation diagram needs to be generic.

**Fold-node point.** Let  $p_0 = (0,0)$  be a fold-node point of Z = (X, Y). Extra non-degeneracy conditions: First the node is an isolated hyperbolic equilibrium point of Y and its eigenspaces are transversal to  $\Sigma$ . If the fold point of X is invisible, the elliptic fold-fold point that can appear on the bifurcation diagram needs to be generic. The fold-node points and their unfoldings can be seen in



**Fold–Focus point.** Let  $p_0 = (0, 0)$  be a fold–focus point of Z = (X, Y).

/⊒ > < ∃ >

**Fold–Focus point.** Let  $p_0 = (0,0)$  be a fold–focus point of Z = (X, Y). In this case we need to impose one extra non-degeneracy condition:

伺 ト イ ヨ ト イ ヨ ト

**Fold–Focus point.** Let  $p_0 = (0,0)$  be a fold–focus point of Z = (X, Y). In this case we need to impose one extra non-degeneracy condition: the focus is an isolated hyperbolic equilibrium point of Y.

**Fold–Focus point.** Let  $p_0 = (0,0)$  be a fold–focus point of Z = (X, Y). In this case we need to impose one extra non-degeneracy condition: the focus is an isolated hyperbolic equilibrium point of Y. It means that the trace and determinant of  $DY(p_0)$  are nonzero and positive, respectively.

**Fold–Focus point.** Let  $p_0 = (0,0)$  be a fold–focus point of Z = (X, Y). In this case we need to impose one extra non-degeneracy condition: the focus is an isolated hyperbolic equilibrium point of Y. It means that the trace and determinant of  $DY(p_0)$  are nonzero and positive, respectively.



FIGURE 5. Fold-focus points and their unfoldings.

**Quasi-generic elliptic fold-fold.** Let  $p_0 = (0,0)$  be a fold-fold point of Z = (X, Y).

**Quasi-generic elliptic fold–fold.** Let  $p_0 = (0,0)$  be a fold–fold point of Z = (X, Y). It is a well-known result that the first return map of an elliptic fold–fold point is written in the form

$$\phi_Z(x_0) = x_0 + \alpha x_0^2 - \alpha^2 x_0^3 + \beta x_0^4 + \mathcal{O}_5(x_0).$$

**Quasi-generic elliptic fold–fold.** Let  $p_0 = (0,0)$  be a fold–fold point of Z = (X, Y). It is a well-known result that the first return map of an elliptic fold–fold point is written in the form

$$\phi_Z(x_0) = x_0 + \alpha x_0^2 - \alpha^2 x_0^3 + \beta x_0^4 + \mathcal{O}_5(x_0).$$

Then we need to impose the non-degeneracy condition  $\alpha = 0$  and  $\beta \neq 0$ .

Besides, when  $\beta < 0$  ( $\beta > 0$ ) the quasi-generic elliptic fold–fold point is stable (unstable, respect.). When  $\alpha < 0$  ( $\alpha > 0$ , respect.) the origin is a generic stable (unstable) elliptic fold–fold point and when  $\alpha > 0$  ( $\alpha < 0$ , respect.) the stability of the fold–fold point changes from stable to unstable (unstable to stable, respect.) giving rise to a small amplitude poly-trajectory of type I.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

**Quasi-generic elliptic fold–fold.** Let  $p_0 = (0,0)$  be a fold–fold point of Z = (X, Y). It is a well-known result that the first return map of an elliptic fold–fold point is written in the form

$$\phi_Z(x_0) = x_0 + \alpha x_0^2 - \alpha^2 x_0^3 + \beta x_0^4 + \mathcal{O}_5(x_0).$$

Then we need to impose the non-degeneracy condition  $\alpha = 0$  and  $\beta \neq 0$ .

Besides, when  $\beta < 0$  ( $\beta > 0$ ) the quasi-generic elliptic fold–fold point is stable (unstable, respect.). When  $\alpha < 0$  ( $\alpha > 0$ , respect.) the origin is a generic stable (unstable) elliptic fold–fold point and when  $\alpha > 0$  ( $\alpha < 0$ , respect.) the stability of the fold–fold point changes from stable to unstable (unstable to stable, respect.) giving rise to a small amplitude poly-trajectory of type I.



**Simple cusp-cusp.** Let  $p_0 = (0,0)$  be a cusp-cusp point of Z = (X, Y).

**Simple cusp-cusp.** Let  $p_0 = (0,0)$  be a cusp-cusp point of Z = (X, Y).

The case with two parabolic fold-fold points on the unfolding we do not need additional non-degeneracy conditions.

**Simple cusp-cusp.** Let  $p_0 = (0,0)$  be a cusp-cusp point of Z = (X, Y).

The case with two parabolic fold-fold points on the unfolding we do not need additional non-degeneracy conditions.

The case there with one elliptic and one hyperbolic fold-fold point on the unfolding we need to impose that these elliptic fold-fold point is generic

**Simple cusp-cusp.** Let  $p_0 = (0,0)$  be a cusp-cusp point of Z = (X, Y).

The case with two parabolic fold-fold points on the unfolding we do not need additional non-degeneracy conditions.

The case there with one elliptic and one hyperbolic fold-fold point on the unfolding we need to impose that these elliptic fold-fold point is generic and that there is no self-connections between the separatrices of the hyperbolic fold-fold point.

**Simple cusp-cusp.** Let  $p_0 = (0,0)$  be a cusp-cusp point of Z = (X, Y).

The case with two parabolic fold–fold points on the unfolding we do not need additional non-degeneracy conditions.

The case there with one elliptic and one hyperbolic fold-fold point on the unfolding we need to impose that these elliptic fold-fold point is generic and that there is no self-connections between the separatrices of the hyperbolic fold-fold point.



FIGURE 7. Cups-Cusp points and their unfolding.

#### Definition

 $Z = (X, Y) \in \Sigma_0^{S_\lambda}$  if, and only if,

Buzzi, C. A. Structural stability in refractive partially integrable systems

- ∢ ≣ ▶

#### Definition

 $Z = (X, Y) \in \Sigma_0^{S_\lambda}$  if, and only if,

 (a) All equilibrium points of X and Y are hyperbolic and away from Σ;

#### Definition

 $Z = (X, Y) \in \Sigma_0^{S_\lambda}$  if, and only if,

- (a) All equilibrium points of X and Y are hyperbolic and away from Σ;
- (b) All periodic orbits are hyperbolic and away from  $\Sigma$ ;

#### Definition

- (a) All equilibrium points of X and Y are hyperbolic and away from Σ;
- (b) All periodic orbits are hyperbolic and away from  $\Sigma$ ;
- (c) All closed poly-trajectories are elementary;

#### Definition

- (a) All equilibrium points of X and Y are hyperbolic and away from Σ;
- (b) All periodic orbits are hyperbolic and away from  $\Sigma$ ;
- (c) All closed poly-trajectories are elementary;
- (d) The singularities on  $\Sigma$  are just generic fold-fold points;

#### Definition

- (a) All equilibrium points of X and Y are hyperbolic and away from Σ;
- (b) All periodic orbits are hyperbolic and away from  $\Sigma$ ;
- (c) All closed poly-trajectories are elementary;
- (d) The singularities on  $\Sigma$  are just generic fold-fold points;
- (e) There is no separatrices connections.

#### Definition

- (a) All equilibrium points of X and Y are hyperbolic and away from Σ;
- (b) All periodic orbits are hyperbolic and away from  $\Sigma$ ;
- (c) All closed poly-trajectories are elementary;
- (d) The singularities on  $\Sigma$  are just generic fold-fold points;
- (e) There is no separatrices connections.
- (f) There is no non-trivially recurrent orbits.

#### Definition

- (a) All equilibrium points of X and Y are hyperbolic and away from Σ;
- (b) All periodic orbits are hyperbolic and away from  $\Sigma$ ;
- (c) All closed poly-trajectories are elementary;
- (d) The singularities on  $\Sigma$  are just generic fold-fold points;
- (e) There is no separatrices connections.
- (f) There is no non-trivially recurrent orbits.



#### Theorem A

There exists a subset  $\Sigma_0^{S_\lambda} \subset \mathfrak{R}^{S_\lambda} \subset \mathcal{X}^{S_\lambda}$  satisfying:

(i) It has a simple and comprehensive description.

(ii)  $Z \in \mathfrak{R}^{S_{\lambda}}$  is structurally stable if, and only if,  $Z \in \Sigma_0^{S_{\lambda}}$ .

(iii)  $\Sigma_0^{S_{\lambda}}$  is open and dense in  $\mathfrak{R}^{S_{\lambda}}$ .
$\text{Consider the bifurcation set} \quad \mathfrak{R}_1^{S_\lambda} = \mathfrak{R}^{S_\lambda} \setminus \Sigma_0^{S_\lambda}.$ 

Buzzi, C. A. Structural stability in refractive partially integrable systems

 $\text{Consider the bifurcation set} \quad \mathfrak{R}_1^{S_\lambda} = \mathfrak{R}^{S_\lambda} \setminus \Sigma_0^{S_\lambda}.$ 

We define the set

 $\Sigma_1^{S_\lambda}$ 

Buzzi, C. A. Structural stability in refractive partially integrable systems

 $\text{Consider the bifurcation set} \quad \mathfrak{R}_1^{\mathcal{S}_\lambda} = \mathfrak{R}^{\mathcal{S}_\lambda} \setminus \Sigma_0^{\mathcal{S}_\lambda}.$ 

We define the set

$$\begin{split} \Sigma_1^{S_\lambda} = & \Sigma_1^{S_\lambda}(a_1) \cup \Sigma_1^{S_\lambda}(a_2) \cup \Sigma_1^{S_\lambda}(b_1) \cup \Sigma_1^{S_\lambda}(b_2) \cup \Sigma_1^{S_\lambda}(c_1) \cup \Sigma_1^{S_\lambda}(c_2) \cup \\ & \Sigma_1^{S_\lambda}(d_1) \cup \Sigma_1^{S_\lambda}(d_2) \cup \Sigma_1^{S_\lambda}(e), \end{split}$$

 $\text{Consider the bifurcation set} \quad \mathfrak{R}_1^{\mathcal{S}_\lambda} = \mathfrak{R}^{\mathcal{S}_\lambda} \setminus \Sigma_0^{\mathcal{S}_\lambda}.$ 

We define the set

$$\Sigma_1^{S_\lambda} = \Sigma_1^{S_\lambda}(a_1) \cup \Sigma_1^{S_\lambda}(a_2) \cup \Sigma_1^{S_\lambda}(b_1) \cup \Sigma_1^{S_\lambda}(b_2) \cup \Sigma_1^{S_\lambda}(c_1) \cup \Sigma_1^{S_\lambda}(c_2) \cup \Sigma_1^{S_\lambda}(d_1) \cup \Sigma_1^{S_\lambda}(d_2) \cup \Sigma_1^{S_\lambda}(e),$$

where,

Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(a<sub>1</sub>) if all equilibrium points of X and Y are hyperbolic except one of them that is either a saddle-node or a Hopf equilibrium point. All of them are away from Σ. Moreover, the conditions (b), (c), (d), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.

$$\text{Consider the bifurcation set} \quad \mathfrak{R}_1^{\mathcal{S}_\lambda} = \mathfrak{R}^{\mathcal{S}_\lambda} \setminus \Sigma_0^{\mathcal{S}_\lambda}.$$

We define the set

$$\Sigma_1^{S_\lambda} = \Sigma_1^{S_\lambda}(a_1) \cup \Sigma_1^{S_\lambda}(a_2) \cup \Sigma_1^{S_\lambda}(b_1) \cup \Sigma_1^{S_\lambda}(b_2) \cup \Sigma_1^{S_\lambda}(c_1) \cup \Sigma_1^{S_\lambda}(c_2) \cup \Sigma_1^{S_\lambda}(d_1) \cup \Sigma_1^{S_\lambda}(d_2) \cup \Sigma_1^{S_\lambda}(e),$$

where,

- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(a<sub>1</sub>) if all equilibrium points of X and Y are hyperbolic except one of them that is either a saddle-node or a Hopf equilibrium point. All of them are away from Σ. Moreover, the conditions (b), (c), (d), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.
- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(a<sub>2</sub>) if Z has only one equilibrium-fold (or fold-equilibrium) point p ∈ Σ. In addition we consider the non-degeneracy conditions given previously. Moreover, the conditions (b), (c), (d), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.

Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(b<sub>1</sub>) if all periodic orbits of X and Y are hyperbolic except one of them which is of saddle-node type. None of them is tangent to Σ. Moreover, the conditions (a), (c), (d), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.

- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(b<sub>1</sub>) if all periodic orbits of X and Y are hyperbolic except one of them which is of saddle-node type. None of them is tangent to Σ. Moreover, the conditions (a), (c), (d), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.
- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(b<sub>2</sub>) if all periodic orbits are hyperbolic and just one of them is generically tangent to Σ. Moreover, the conditions (a), (c), (d), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.

- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(b<sub>1</sub>) if all periodic orbits of X and Y are hyperbolic except one of them which is of saddle-node type. None of them is tangent to Σ. Moreover, the conditions (a), (c), (d), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.
- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(b<sub>2</sub>) if all periodic orbits are hyperbolic and just one of them is generically tangent to Σ. Moreover, the conditions (a), (c), (d), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.
- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(c<sub>1</sub>) if all poly-trajectories of Z are elementary except one, Γ, of type I such that π'(q) = 1 and π''(q) = d''(q) ≠ 0, for all q ∈ Σ ∩ Γ. Moreover, the conditions (a), (b), (d), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.

- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(b<sub>1</sub>) if all periodic orbits of X and Y are hyperbolic except one of them which is of saddle-node type. None of them is tangent to Σ. Moreover, the conditions (a), (c), (d), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.
- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(b<sub>2</sub>) if all periodic orbits are hyperbolic and just one of them is generically tangent to Σ. Moreover, the conditions (a), (c), (d), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.
- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(c<sub>1</sub>) if all poly-trajectories of Z are elementary except one, Γ, of type I such that π'(q) = 1 and π''(q) = d''(q) ≠ 0, for all q ∈ Σ ∩ Γ. Moreover, the conditions (a), (b), (d), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.
- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(c<sub>2</sub>) if all poly-trajectories of Z are elementary except one of them which is of type II with just one hyperbolic fold-fold point. Moreover, the conditions (a), (b), (d), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied. (E) = ∞ ∞

Buzzi, C. A.

Structural stability in refractive partially integrable systems

Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(d<sub>1</sub>) if all tangency points are generic fold-fold points except one of them which is a quasi-generic fold-fold point. Moreover, the conditions (a), (b), (c), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.

- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(d<sub>1</sub>) if all tangency points are generic fold-fold points except one of them which is a quasi-generic fold-fold point. Moreover, the conditions (a), (b), (c), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.
- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(d<sub>2</sub>) if all tangency points are generic fold-fold points except one of them which is a simple (or generic) cusp-cusp. Moreover, the conditions (a), (b), (c), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.

- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(d<sub>1</sub>) if all tangency points are generic fold-fold points except one of them which is a quasi-generic fold-fold point. Moreover, the conditions (a), (b), (c), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.
- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(d<sub>2</sub>) if all tangency points are generic fold-fold points except one of them which is a simple (or generic) cusp-cusp. Moreover, the conditions (a), (b), (c), (e) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.
- Z = (X, Y) ∈ Σ<sub>1</sub><sup>S<sub>λ</sub></sup>(e) if there is just one separatrix connection which is *quasi generic*. Moreover, the conditions (a), (b), (c), (d) and (f) of Definition of Σ<sub>0</sub><sup>S<sub>λ</sub></sup> are satisfied.

### Theorem B

There exists a immersed codimension-one submanifold  $\Sigma_1^{S_\lambda} \subset \mathfrak{R}^{S_\lambda}$  satisfying:

Buzzi, C. A. Structural stability in refractive partially integrable systems

< ∃ >

### Theorem B

There exists a immersed codimension-one submanifold  $\Sigma_1^{S_\lambda} \subset \mathfrak{R}^{S_\lambda}$  satisfying:

(i) 
$$\Sigma_1^{S_{\lambda}}$$
 is characterized.

Buzzi, C. A. Structural stability in refractive partially integrable systems

< ∃ >

### Theorem B

There exists a immersed codimension-one submanifold  $\Sigma_1^{S_\lambda} \subset \mathfrak{R}^{S_\lambda}$  satisfying:

(i)  $\Sigma_1^{S_{\lambda}}$  is characterized.

(ii) For any  $Z_0 \in \Sigma_1^{S_\lambda}$ , there exists a neighborhood  $\mathcal{B}(Z_0) \subset \Sigma_1^{S_\lambda}$ such that any  $Z \in \mathcal{B}$  is  $\Sigma$ -equivalent to  $Z_0$  (in the intrinsic topology of  $\mathfrak{R}_1$ ). Thus,  $\Sigma_1^{S_\lambda}$  is open in  $\mathfrak{R}_1$  with the intrinsic topology.

### Theorem B

There exists a immersed codimension-one submanifold  $\Sigma_1^{S_\lambda} \subset \mathfrak{R}^{S_\lambda}$  satisfying:

(i)  $\Sigma_1^{S_{\lambda}}$  is characterized.

(ii) For any  $Z_0 \in \Sigma_1^{S_\lambda}$ , there exists a neighborhood  $\mathcal{B}(Z_0) \subset \Sigma_1^{S_\lambda}$ such that any  $Z \in \mathcal{B}$  is  $\Sigma$ -equivalent to  $Z_0$  (in the intrinsic topology of  $\mathfrak{R}_1$ ). Thus,  $\Sigma_1^{S_\lambda}$  is open in  $\mathfrak{R}_1$  with the intrinsic topology.

(iii) 
$$\Sigma_1^{S_{\lambda}}$$
 is dense in  $\mathfrak{R}_1$ 

### Theorem B

There exists a immersed codimension-one submanifold  $\Sigma_1^{S_\lambda} \subset \mathfrak{R}^{S_\lambda}$  satisfying:

(i)  $\Sigma_1^{S_{\lambda}}$  is characterized.

(ii) For any  $Z_0 \in \Sigma_1^{S_\lambda}$ , there exists a neighborhood  $\mathcal{B}(Z_0) \subset \Sigma_1^{S_\lambda}$ such that any  $Z \in \mathcal{B}$  is  $\Sigma$ -equivalent to  $Z_0$  (in the intrinsic topology of  $\mathfrak{R}_1$ ). Thus,  $\Sigma_1^{S_\lambda}$  is open in  $\mathfrak{R}_1$  with the intrinsic topology.

(iii) 
$$\Sigma_1^{S_\lambda}$$
 is dense in  $\mathfrak{R}_1$ 

### Remark

It is important to note that we use the intrinsic topology in item (ii) of Theorem B because it is finer (i.e. it has more open sets) than the ambient topology.

< ロ > < 同 > < 回 > < 回 >

We use spherical coordinates to consider  $Z = (X, Y) \in \mathfrak{R}$  as a 1parameter family of refractive piecewise smooth vector fields  $Z_{\lambda} \in \mathfrak{R}^{S_{\lambda}}$ .

We use spherical coordinates to consider  $Z = (X, Y) \in \mathfrak{R}$  as a 1parameter family of refractive piecewise smooth vector fields  $Z_{\lambda} \in \mathfrak{R}^{S_{\lambda}}$ .

The spherical coordinates on  $\mathbb{R}^3$  is given by  $x = \rho \cos \theta \sin \phi, \ y = \rho \sin \theta \sin \phi, \ z = \rho \cos \phi,$ 

We use spherical coordinates to consider  $Z = (X, Y) \in \mathfrak{R}$  as a 1parameter family of refractive piecewise smooth vector fields  $Z_{\lambda} \in \mathfrak{R}^{S_{\lambda}}$ .

The spherical coordinates on  $\mathbb{R}^3$  is given by  $x = \rho \cos \theta \sin \phi$ ,  $y = \rho \sin \theta \sin \phi$ ,  $z = \rho \cos \phi$ , where  $0 \le \theta \le 2\pi$ ,  $0 \le \phi \le \pi$  and  $\rho \ge 0$ ,

We use spherical coordinates to consider  $Z = (X, Y) \in \mathfrak{R}$  as a 1parameter family of refractive piecewise smooth vector fields  $Z_{\lambda} \in \mathfrak{R}^{S_{\lambda}}$ .

The spherical coordinates on  $\mathbb{R}^3$  is given by  $x = \rho \cos \theta \sin \phi, \ y = \rho \sin \theta \sin \phi, \ z = \rho \cos \phi$ , where  $0 \le \theta \le 2\pi$ ,  $0 \le \phi \le \pi$  and  $\rho \ge 0$ , in which we can write  $X(\rho, \theta, \phi) = (R_1(\rho, \theta, \phi), \Theta_1(\rho, \theta, \phi), \Phi_1(\rho, \theta, \phi)),$  $Y(\rho, \theta, \phi) = (R_2(\rho, \theta, \phi), \Theta_2(\rho, \theta, \phi), \Phi_2(\rho, \theta, \phi)),$ 

We use spherical coordinates to consider  $Z = (X, Y) \in \mathfrak{R}$  as a 1parameter family of refractive piecewise smooth vector fields  $Z_{\lambda} \in \mathfrak{R}^{S_{\lambda}}$ .

The spherical coordinates on  $\mathbb{R}^3$  is given by  $x = \rho \cos \theta \sin \phi, \ y = \rho \sin \theta \sin \phi, \ z = \rho \cos \phi$ , where  $0 \le \theta \le 2\pi$ ,  $0 \le \phi \le \pi$  and  $\rho \ge 0$ , in which we can write  $X(\rho, \theta, \phi) = (R_1(\rho, \theta, \phi), \Theta_1(\rho, \theta, \phi), \Phi_1(\rho, \theta, \phi)),$   $Y(\rho, \theta, \phi) = (R_2(\rho, \theta, \phi), \Theta_2(\rho, \theta, \phi), \Phi_2(\rho, \theta, \phi)),$  and the discontinuity set  $\Sigma = \{(\rho, \theta, \phi); \phi = \pi/2\}$ . So, the refractive vector field  $Z : U \subset \mathbb{R}^3 \to \mathbb{R}^3$  is given by

$$Z(\rho, \theta, \phi) = \begin{cases} X(\rho, \theta, \phi), \ 0 \le \phi \le \pi/2, \\ Y(\rho, \theta, \phi), \ \pi/2 \le \phi \le \pi. \end{cases}$$
(2)

Note that if all the spheres are invariant by the flow of Z, i.e., if  $Z \in \mathfrak{R}$ , then  $R_i(\rho, \theta, \phi) \equiv 0$ , i = 1, 2.

Note that if all the spheres are invariant by the flow of Z, i.e., if  $Z \in \mathfrak{R}$ , then  $R_i(\rho, \theta, \phi) \equiv 0$ , i = 1, 2.

We can define a 1-parameter family of refractive vector fields in  $\mathfrak{R}^{S_{\lambda}}$ ,  $Z_{\mu}: I \times \mathbb{S}^2_{\lambda} \to T\mathbb{S}^2_{\lambda}$ , writing

$$Z_{\mu}(\mu,\theta,\phi) = (X_{\mu}(\mu,\theta,\phi), Y_{\mu}(\mu,\theta,\phi)), \qquad (3)$$

with  $Z_{\mu} \in \mathfrak{R}^{S_{\lambda}}$  for all  $\mu \in I$ .

Note that if all the spheres are invariant by the flow of Z, i.e., if  $Z \in \mathfrak{R}$ , then  $R_i(\rho, \theta, \phi) \equiv 0$ , i = 1, 2.

We can define a 1-parameter family of refractive vector fields in  $\mathfrak{R}^{S_{\lambda}}$ ,  $Z_{\mu}: I \times \mathbb{S}_{\lambda}^2 \to T \mathbb{S}_{\lambda}^2$ , writing

$$Z_{\mu}(\mu,\theta,\phi) = (X_{\mu}(\mu,\theta,\phi), Y_{\mu}(\mu,\theta,\phi)), \qquad (3)$$

with  $Z_{\mu} \in \mathfrak{R}^{S_{\lambda}}$  for all  $\mu \in I$ .

Thus, it is possible to make a correspondence between a 1-parameter family  $Z_{\mu} \in \Re^{S_{\lambda}}$ , with  $\mu \in I$ ,

Note that if all the spheres are invariant by the flow of Z, i.e., if  $Z \in \mathfrak{R}$ , then  $R_i(\rho, \theta, \phi) \equiv 0$ , i = 1, 2.

We can define a 1-parameter family of refractive vector fields in  $\mathfrak{R}^{S_{\lambda}}$ ,  $Z_{\mu}: I \times \mathbb{S}_{\lambda}^2 \to T \mathbb{S}_{\lambda}^2$ , writing

$$Z_{\mu}(\mu,\theta,\phi) = (X_{\mu}(\mu,\theta,\phi), Y_{\mu}(\mu,\theta,\phi)), \qquad (3)$$

with  $Z_{\mu} \in \mathfrak{R}^{S_{\lambda}}$  for all  $\mu \in I$ .

Thus, it is possible to make a correspondence between a 1-parameter family  $Z_{\mu} \in \mathfrak{R}^{S_{\lambda}}$ , with  $\mu \in I$ , and a unique  $Z : V_{\lambda_0} \to \mathbb{R}^3 \in \mathfrak{R}$ ,

Note that if all the spheres are invariant by the flow of Z, i.e., if  $Z \in \mathfrak{R}$ , then  $R_i(\rho, \theta, \phi) \equiv 0$ , i = 1, 2.

We can define a 1-parameter family of refractive vector fields in  $\mathfrak{R}^{S_{\lambda}}$ ,  $Z_{\mu}: I \times \mathbb{S}_{\lambda}^2 \to T \mathbb{S}_{\lambda}^2$ , writing

$$Z_{\mu}(\mu,\theta,\phi) = (X_{\mu}(\mu,\theta,\phi), Y_{\mu}(\mu,\theta,\phi)), \qquad (3)$$

with  $Z_{\mu} \in \mathfrak{R}^{S_{\lambda}}$  for all  $\mu \in I$ .

Thus, it is possible to make a correspondence between a 1-parameter family  $Z_{\mu} \in \Re^{S_{\lambda}}$ , with  $\mu \in I$ , and a unique  $Z : V_{\lambda_0} \to \mathbb{R}^3 \in \Re$ , where  $V_{\lambda_0}$  is a tubular neighborhood of  $\mathbb{S}^2_{\lambda_0}$  given by  $V_{\lambda_0} = \{(\mu, \theta, \phi) \in \mathbb{R}^3; \mu \in I, 0 \le \theta \le 2\pi, 0 \le \phi \le \pi\}.$ 

Note that if all the spheres are invariant by the flow of Z, i.e., if  $Z \in \mathfrak{R}$ , then  $R_i(\rho, \theta, \phi) \equiv 0$ , i = 1, 2.

We can define a 1-parameter family of refractive vector fields in  $\mathfrak{R}^{S_{\lambda}}$ ,  $Z_{\mu}: I \times \mathbb{S}^2_{\lambda} \to T\mathbb{S}^2_{\lambda}$ , writing

$$Z_{\mu}(\mu,\theta,\phi) = (X_{\mu}(\mu,\theta,\phi), Y_{\mu}(\mu,\theta,\phi)), \qquad (3)$$

with  $Z_{\mu} \in \mathfrak{R}^{S_{\lambda}}$  for all  $\mu \in I$ .

Thus, it is possible to make a correspondence between a 1-parameter family  $Z_{\mu} \in \mathfrak{R}^{S_{\lambda}}$ , with  $\mu \in I$ , and a unique  $Z : V_{\lambda_0} \to \mathbb{R}^3 \in \mathfrak{R}$ , where  $V_{\lambda_0}$  is a tubular neighborhood of  $\mathbb{S}^2_{\lambda_0}$ given by  $V_{\lambda_0} = \{(\mu, \theta, \phi) \in \mathbb{R}^3; \mu \in I, 0 \le \theta \le 2\pi, 0 \le \phi \le \pi\}$ . To do that, for each  $Z_{\mu}(\mu, \theta, \phi) = (X_{\mu}(\mu, \theta, \phi), Y_{\mu}(\mu, \theta, \phi))$ defined by (3) we associate  $Z(\mu, \theta, \phi) = (X(\mu, \theta, \phi), Y(\mu, \theta, \phi))$ defined by (2).

On the following we consider  $Z = (X, Y) \in \mathfrak{R}$  and the restriction  $Z_{\lambda} = Z_{|_{\mathbb{S}^2_{\lambda}}}$  to the sphere  $\mathbb{S}^2_{\lambda}$ .

同 ト イ ヨ ト イ ヨ ト

On the following we consider  $Z = (X, Y) \in \mathfrak{R}$  and the restriction  $Z_{\lambda} = Z_{|_{\mathbb{S}^2_{\lambda}}}$  to the sphere  $\mathbb{S}^2_{\lambda}$ .

Given a vector field  $Z \in \mathfrak{R}$  we consider it as a 1-parameter family of refractive vector fields  $Z_{\lambda} \in \mathfrak{R}^{S_{\lambda}}$ .

On the following we consider  $Z = (X, Y) \in \mathfrak{R}$  and the restriction  $Z_{\lambda} = Z_{|_{\mathbb{S}^2_{\lambda}}}$  to the sphere  $\mathbb{S}^2_{\lambda}$ .

Given a vector field  $Z \in \mathfrak{R}$  we consider it as a 1-parameter family of refractive vector fields  $Z_{\lambda} \in \mathfrak{R}^{S_{\lambda}}$ .

#### Definition

We say that  $Z \in \Sigma_0 \subset \mathfrak{R}$  if, and only if,

On the following we consider  $Z = (X, Y) \in \mathfrak{R}$  and the restriction  $Z_{\lambda} = Z_{|_{\mathbb{S}^2_{\lambda}}}$  to the sphere  $\mathbb{S}^2_{\lambda}$ .

Given a vector field  $Z \in \mathfrak{R}$  we consider it as a 1-parameter family of refractive vector fields  $Z_{\lambda} \in \mathfrak{R}^{S_{\lambda}}$ .

#### Definition

(a) 
$$Z_{\lambda} \in \Sigma_0^{S_{\lambda}}$$
 for all  $\lambda \in V_{\lambda_0}$ ;

On the following we consider  $Z = (X, Y) \in \mathfrak{R}$  and the restriction  $Z_{\lambda} = Z_{|_{\mathbb{S}^2_{\lambda}}}$  to the sphere  $\mathbb{S}^2_{\lambda}$ .

Given a vector field  $Z \in \mathfrak{R}$  we consider it as a 1-parameter family of refractive vector fields  $Z_{\lambda} \in \mathfrak{R}^{S_{\lambda}}$ .

#### Definition

(a) 
$$Z_{\lambda} \in \Sigma_{0}^{S_{\lambda}}$$
 for all  $\lambda \in V_{\lambda_{0}}$ ;  
(b)  $Z_{\lambda_{0}} \in \Sigma_{1}^{S_{\lambda}}$  and  $Z_{\lambda} \in \Sigma_{0}^{S_{\lambda}}$  for all  $\lambda \in V_{\lambda_{0}} \setminus \{\lambda_{0}\}$ ;

### Definition

### Definition

(a) 
$$Z_{\lambda_0} \in \Sigma_1^{S_{\lambda}}(b_1) \cup \Sigma_1^{S_{\lambda}}(b_2)$$
, there exist a sequence  $(\lambda_n)_{n \in \mathbb{N}} \subset V_{\lambda_0}$  such that  $\lambda_n \to \lambda_0$  with  $\lambda_n \neq \lambda_0$  and  $Z_{\lambda_n} \in \Sigma_1^{S_{\lambda}}(ss) \cup \Sigma_1^{S_{\lambda}}(fs) \cup \Sigma_1^{S_{\lambda}}(ff)$  for all  $n \in \mathbb{N}$ , and  $Z_{\lambda} \in \Sigma_0^{S_{\lambda}}$  for all  $\lambda \in V_{\lambda_0} \setminus \{\lambda_0, \lambda_1, \ldots\}$ ;

### Definition
#### Definition

We say that  $Z \in \Sigma_0 \subset \mathfrak{R}$  if, and only if, for each  $\lambda_0$  there exists a neighborhood  $V_{\lambda_0}$  of  $\lambda_0$  in which one of the following conditions is satisfied:

### Theorem C

Buzzi, C. A. Structural stability in refractive partially integrable systems

<ロ> <同> <同> < 同> < 同>

3

#### Theorem C

#### If $Z \in \mathfrak{R}$ is structurally stable, then $Z \in \Sigma_0$ .

Buzzi, C. A. Structural stability in refractive partially integrable systems

/⊒ > < ∃ >

-

## Idea of the proof

Let  $Z \in \mathfrak{R} \setminus \Sigma_0$ .

Buzzi, C. A. Structural stability in refractive partially integrable systems

< ∃ →

-

Then there exists  $\lambda_0$  such that  $Z_{\lambda_0} \notin \Sigma_0^{S_{\lambda}} \cup \Sigma_1^{S_{\lambda}}$ .

Buzzi, C. A. Structural stability in refractive partially integrable systems

- **→** → **→** 

Then there exists  $\lambda_0$  such that  $Z_{\lambda_0} \notin \Sigma_0^{S_\lambda} \cup \Sigma_1^{S_\lambda}$ . Let  $\mathcal{U} \subset \mathfrak{R}$  be an arbitrarily neighborhood of Z.

Then there exists  $\lambda_0$  such that  $Z_{\lambda_0} \notin \Sigma_0^{S_{\lambda}} \cup \Sigma_1^{S_{\lambda}}$ .Let  $\mathcal{U} \subset \mathfrak{R}$  be an arbitrarily neighborhood of Z. Thus we can write  $\mathcal{U} = \mathcal{V} \times \mathcal{B}$ , with  $\mathcal{B} \subset \mathfrak{R}^{S_{\lambda_0}}$  a neighborhood of  $Z_{\lambda_0}$ .

Then there exists  $\lambda_0$  such that  $Z_{\lambda_0} \notin \Sigma_0^{S_{\lambda}} \cup \Sigma_1^{S_{\lambda}}$ .Let  $\mathcal{U} \subset \mathfrak{R}$  be an arbitrarily neighborhood of Z. Thus we can write  $\mathcal{U} = \mathcal{V} \times \mathcal{B}$ , with  $\mathcal{B} \subset \mathfrak{R}^{S_{\lambda_0}}$  a neighborhood of  $Z_{\lambda_0}$ .

As 
$$Z_{\lambda_0} \notin \Sigma_0^{S_\lambda} \cup \Sigma_1^{S_\lambda}$$
 and  $\Sigma_0^{S_\lambda}$  is dense in  $\mathfrak{R}^{S_{\lambda_0}}$ , there exist  $\widetilde{Z}_{\lambda_0} \in \mathcal{B} \cap \Sigma_0^{S_\lambda}$ ,

Then there exists  $\lambda_0$  such that  $Z_{\lambda_0} \notin \Sigma_0^{S_{\lambda}} \cup \Sigma_1^{S_{\lambda}}$ .Let  $\mathcal{U} \subset \mathfrak{R}$  be an arbitrarily neighborhood of Z. Thus we can write  $\mathcal{U} = \mathcal{V} \times \mathcal{B}$ , with  $\mathcal{B} \subset \mathfrak{R}^{S_{\lambda_0}}$  a neighborhood of  $Z_{\lambda_0}$ .

As  $Z_{\lambda_0} \notin \Sigma_0^{S_{\lambda}} \cup \Sigma_1^{S_{\lambda}}$  and  $\Sigma_0^{S_{\lambda}}$  is dense in  $\mathfrak{R}^{S_{\lambda_0}}$ , there exist  $\widetilde{Z}_{\lambda_0} \in \mathcal{B} \cap \Sigma_0^{S_{\lambda}}$ , which can be extended to a refractive piecewise vector field  $\widetilde{Z} \in \mathcal{U} \subset \mathfrak{R}$ .

Then there exists  $\lambda_0$  such that  $Z_{\lambda_0} \notin \Sigma_0^{S_{\lambda}} \cup \Sigma_1^{S_{\lambda}}$ .Let  $\mathcal{U} \subset \mathfrak{R}$  be an arbitrarily neighborhood of Z. Thus we can write  $\mathcal{U} = \mathcal{V} \times \mathcal{B}$ , with  $\mathcal{B} \subset \mathfrak{R}^{S_{\lambda_0}}$  a neighborhood of  $Z_{\lambda_0}$ .

As  $Z_{\lambda_0} \notin \Sigma_0^{S_{\lambda}} \cup \Sigma_1^{S_{\lambda}}$  and  $\Sigma_0^{S_{\lambda}}$  is dense in  $\mathfrak{R}^{S_{\lambda_0}}$ , there exist  $\widetilde{Z}_{\lambda_0} \in \mathcal{B} \cap \Sigma_0^{S_{\lambda}}$ , which can be extended to a refractive piecewise vector field  $\widetilde{Z} \in \mathcal{U} \subset \mathfrak{R}$ .

As  $\widetilde{Z}_{\lambda_0}$  is structurally stable in  $\mathfrak{R}^{S_{\lambda_0}}$ , there exist  $\varepsilon_0 > 0$  and a tubular neighborhood  $V_{\lambda_0} = \{(\lambda, \theta, \phi) \in \mathbb{R}^3; \lambda_0 - \varepsilon_0 \leq \lambda \leq \lambda_0 + \varepsilon_0, \ 0 \leq \theta \leq 2\pi, \ 0 \leq \phi \leq \pi\}$  of  $\mathbb{S}^2_{\lambda_0}$  such that  $\widetilde{Z}_{\lambda}$  is  $\Sigma$ -equivalent to  $\widetilde{Z}_{\lambda_0}$  for all  $\lambda \in (\lambda_0 - \varepsilon_0, \lambda_0 + \varepsilon_0)$ .

## In this case $\widetilde{Z}$ is not $\Sigma$ -equivalent to Z in $\mathfrak{R}$ .

Buzzi, C. A. Structural stability in refractive partially integrable systems

-

In this case  $\widetilde{Z}$  is not  $\Sigma$ -equivalent to Z in  $\mathfrak{R}$ .

So, we have proved that if Z is such that  $Z_{\lambda_0} \notin \Sigma_0^{S_{\lambda}} \cup \Sigma_1^{S_{\lambda}}$ , given any neighborhood  $\mathcal{U} \subset \mathfrak{R}$  of Z there exists  $\widetilde{Z} \in \mathcal{U}$  such that  $\widetilde{Z}$  is not  $\Sigma$ -equivalent to Z. In this case  $\widetilde{Z}$  is not  $\Sigma$ -equivalent to Z in  $\mathfrak{R}$ .

So, we have proved that if Z is such that  $Z_{\lambda_0} \notin \Sigma_0^{S_{\lambda}} \cup \Sigma_1^{S_{\lambda}}$ , given any neighborhood  $\mathcal{U} \subset \mathfrak{R}$  of Z there exists  $\widetilde{Z} \in \mathcal{U}$  such that  $\widetilde{Z}$  is not  $\Sigma$ -equivalent to Z.

This implies that Z is not structurally stable.

# Thank you for your attention!

claudio.buzzi@unesp.br

Buzzi, C. A. Structural stability in refractive partially integrable systems