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Introduction

Methods

We will present some results about either non-existence or maximum number
of limit cycles for some families of planar vector field, reducing the problem
to the control of the sign of some function.

More concretely:

Some new applications of the “extended” Lyapunov approach for
proving non-existence of limit cycles.

Several applications of the Bendixson–Dulac method to give
non-existence and upper bounds of the number of limit cycles.

MAIN GOAL

SIGN OF A FUNCTION =⇒ NUM. OF PERIODIC ORBITS
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Introduction

Aleksandr M. Lyapunov (1857-1919)

Ivar Bendixson (1861-1935) Henri Dulac (1870-1955)
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Introduction

Results

We will study the non-existence of limit cycles for polynomial systems
having some invariant algebraic curve.

We will provide a simple 1-parametric differential system of “degree”
m + 3 for which we prove that it has limit cycles only for the values of
the parameter that are in a non empty subset of an interval which
length decreases exponentially when m grows.

We will study several Liénard systems.

We will obtain some results about number of limit cycles by using a
Dulac function related with the curvature of the orbits of the vector
field.
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Lyapunov approach

Lyapunov approach

Consider a polynomial differential system

ẋ = P(x , y), ẏ = Q(x , y), (1)

and denote by X = (P,Q) its associated vector field.
Recall that system (1) has an invariant algebraic curve f (x , y) = 0 if f is
irreducible and it holds that

ḟ (x , y) =
∂f (x , y)

∂x
P(x , y) +

∂f (x , y)

∂y
Q(x , y) = k(x , y)f (x , y), (2)

for some polynomial k(x , y), called the cofactor of f .
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Lyapunov approach

Lyapunov approach

Theorem

Consider the polynomial differential system

ẋ = P(x , y), ẏ = Q(x , y),

and assume that it has an invariant algebraic curve f (x , y) = 0 with
cofactor k(x , y). For each α ∈ R and each polynomial g(x , y) define the
new polynomial

Nα,g (x , y) = αk(x , y)g(x , y) +
∂g(x , y)

∂x
P(x , y) +

∂g(x , y)

∂y
Q(x , y).

Then, if for some α and g , Nα,g does not change sign and vanishes only
on some algebraic curve that it is not invariant by the flow, then the only
limit cycles of the system (if any) are included in the invariant algebraic
curve f (x , y) = 0.
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Lyapunov approach

Lyapunov approach. Proof:

We will use the following well know fact: If for some open set U ⊂ R2,
there exists a class C1 function such that v : U→ R, and

v̇(x , y) =
∂v(x , y)

∂x
P(x , y) +

∂v(x , y)

∂y
Q(x , y) (3)

does not vanish then the system (1) does not have periodic orbits totally
contained in U.

This is so because while the solution is in U the function t → v(x(t), y(t)),
where (x(t), y(t)) is any solution of the differential equation, is monotonous.

This fact prevents the existence of periodic orbits. If the right hand side
of (3) vanishes on some curve, but does not change it sign, then the same
holds, unless this curve is invariant by the flow.
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Lyapunov approach

Lyapunov approach. Proof:

Since f (x , y) = 0 is an invariant algebraic curve, each of the connected
components of U \ {f (x , y) = 0} is invariant.
For proving the theorem we apply the above result by taking

v(x , y) = g(x , y)|f (x , y)|α

and U any of these components.
Some computations give that

v̇(x , y) = |f (x , y)|αNα,g (x , y)

and hence the result follows under the hypotheses on Nα,g .

Clearly when Nα,g (x , y) ≡ 0 then v̇(x , y) ≡ 0 and v is a first integral of the
differential system (1).
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QS with an algebraic limit cycles

Lyapunov approach. QS with an algebraic limit cycle

Theorem

The eight families of quadratic systems detailed in the proof, and that
nowadays include all the known cases of quadratic systems with an
algebraic limit cycle, have at most one limit cycle and when it exists it is
this algebraic limit cycle.

The known families are: Qin; Yablonskii; Filiptsov; Chavarriga; Chavar-
riga, Llibre and Sorolla; Christopher, Llibre and Świrszcz (two cases); and
Alberich-Carramiñana, Ferragut and Llibre.

We do not study here the hyperbolicity of the limit cycles considered in the
above theorem. This question is studied by Giacomini and Grau.
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QS with an algebraic limit cycles

Lyapunov approach. QS with an algebraic limit cycle

Case 1: Qin system with algebraic limit cycle of degree 2:

P = −y(ax + by + c)− (x2 + y2 − 1), Q = x(ax + by + c),

f = x2 + y2 − 1, k = −2x , α = b/2, g = c + by , N = abx2.

We remark that the corresponding QS has only x2 + y2 − 1 = 0 as a limit
cycle when a 6= 0, c2 + 4(b + 1) > 0 and a2 + b2 < c2 but the proof that
there are no other limit cycles works for all values of the parameters. A
similar fact also holds for all the other cases.

Y.-X. Qin, On the algebraic limit cycles of second degree of the
differential equation dy/dx =

∑
0≤i+j≤2 aijxiyj/

∑
0≤i+j≤2 bijxiyj ,

Acta Math. Sinica 8 (1958), 23–35.
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QS with an algebraic limit cycles

Lyapunov approach. QS with an algebraic limit cycle

Case 2: Yablonskii system with algebraic limit cycle of degree 4:

P = −4abcx − (a + b)y + 3(a + b)cx2 + 4xy ,

Q = (a + b)abx − 4abcy + (4abc2 − 3(a + b)2/2 + 4ab)x2

+ 8(a + b)cxy + 8y2,

f = (y + cx2)2 + x2(x − a)(x − b), k = 4(−2abc + 3c(a + b)x + 4y),

g = 2c(a− 3b)(3a− b)(y + cx2)− ab(a + b − 4x)2,

α = −1/2, N = −c
(
2ab(a + b) + (2ab − 3a2 − 3b2)x

)2
.

A. I. Yablonskii, On the limit cycles of a certain differential
equation (in Russian), Diff. Uravneniya 2 (1966), 335–344, translated
in Differential Equations 2 (1966), 164–168.
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QS with an algebraic limit cycles

Lyapunov approach. QS with an algebraic limit cycle

Case 3: Filipstov system with algebraic limit cycle of degree 4:

P = 6(1 + a)x + 2y − 6(2 + a)x2 + 12xy ,

Q = 15(1 + a)y + 3a(1 + a)x2 − 2(9 + 5a)xy + 16y2,

f = 3(1 + a)(ax2 + y)2 + 2y2(2y − 3(1 + a)x),

k = 6(5(1 + a)− (8 + 4a)x + 8y),

α = −1/2, g = 2y + (3 + 5a)x2, N = −
(
3(1 + a)x − 4y

)2
.

V. F. Filipstov, Algebraic limit cycles (in Rusian), Diff. Uravneniya
9 (1973), 1281–1288, translated in Differential Equations 9 (1973),
983–988.
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QS with an algebraic limit cycles

Lyapunov approach. QS with an algebraic limit cycle

Case 4: Chavarriga system with algebraic limit cycle of degree 4:

P = 5x + 6x2 + 4(1 + a)xy + ay2, Q = x + 2y + 4xy + (2 + 3a)y2,

f = x2 + x3 + x2y + 2axy2 + 2axy3 + a2y4, a 6= −10/3,

k = 2
(
5 + 9x + (5 + 6a)y

)
, α = − 7 + 3a

3(10 + 3a)
,

g = −5 + (21 + 9a)x − (35 + 15a)y ,

N =
2(7 + 3a)

3(10 + 3a)

(
5 + 9x + (5 + 6a)y

)2
.

J. Chavarriga, J. Llibre, J. Sorolla, Algebraic limit cycles of
degree 4 for quadratic systems, J. Differential Equations 200 (2004),
206–244.
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QS with an algebraic limit cycles

Lyapunov approach. QS with an algebraic limit cycle

Case 5: Chavarriga, Llibre and Sorolla system with algebraic limit cycle of
degree 4:

P = 2(1 + 2x − 2ax2 + 6xy), Q = 8− 3a− 14ax − 2axy − 8y2,

f = 1/4 + x − x2 + ax3 + xy + x2y2, k = 4(2− 3ax + 2y),

α = 1/3, g = −5 + 3ax/2 + y , N = −4(2− 3ax + 2y)2/3.

J. Chavarriga, J. Llibre, J. Sorolla, Algebraic limit cycles of
degree 4 for quadratic systems, J. Differential Equations 200 (2004),
206–244.
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QS with an algebraic limit cycles

Lyapunov approach. QS with an algebraic limit cycle

Case 6: Christopher, Llibre and Świrszcz system with algebraic limit cycle
of degree 5:

P = 28x + 2(16− a2)(a + 12)x2 + 6(3a− 4)xy − 12

a + 4
y2, a 6= −4,

Q = 2(16− a2)x + 8y + (16− a2)(a + 12)xy + 2(5a− 12)y2,

f = x2 + (16− a2)x3 + (a− 2)x2y − 2

a + 4
xy2 − 1

4
(4− a)(a + 12)x2y2

+
8− a

a + 4
xy3 +

1

(a + 4)2
y4 +

a + 12

a + 4
xy4 − 6

(a + 4)2
y5,

k = 56 + 6(16− a2)(a + 12)x + 4(13a− 24)y , α = − 3 + 4a

15(3 + a)
, a 6= −3,

g = 28 + (−144− 192a + 9a2 + 12a3)x + (42 + 56a)y ,

N = −2(3 + 4a)

15(3 + a)

(
28 + (576 + 48a− 36a2 − 3a3)x + (−48 + 26a)y

)2
.
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QS with an algebraic limit cycles

Lyapunov approach. QS with an algebraic limit cycle

Case 7: Christopher, Llibre and Świrszcz system with algebraic limit cycle of
degree 6:

P = 28a(a− 30)x + y + 168a2x2 + 3xy ,

Q = 16a(a− 30)
(
14a(a− 30)x + 5y + 84a2x2

)
+ 24a(17a− 6)xy + 6y2,

f = 48a3(a− 30)4x2 + 24a2(a− 30)3xy + 3a(a− 30)2y2

+ 64a3(a− 30)3(9a− 4)x3 + 24a2(a− 30)2(9a− 4)x2y

+ 18a(a− 30)(a− 2)xy2 − 7y3 + 576a3(a− 30)2(a− 2)2x4

+ 144a2(a− 30)(a− 2)2x3y + 27a(a− 2)2x2y2

− 3456a3(a− 30)(a− 2)2(2a + 3)x5 − 432a2(a− 2)2(2a + 3)x4y

+ 3456a3(a− 2)2(a + 12)(2a + 3)x6,

k = 168a(a− 30) + 1008a2x + 18y , α = −1/3,

g = −16a(a− 30)2 − 24a(a− 30)(7a− 30)x

− 72a(360− 78a + 5a2)x2 + 3(30 + a)y ,

N = 896a2(a− 30)(a− 30 + 6ax)2.
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QS with an algebraic limit cycles

Lyapunov approach. QS with an algebraic limit cycle

Case 8: Alberich-Carramiñana, Ferragut and Llibre system with algebraic
limit cycle of degree 5:

P = −8x +
a

2
(a− 16)y − (5a− 64)x2 +

a

8
(a2 − 256)xy ,

Q = −28y +
24

a
x2 − 3(3a− 32)xy +

a

4
(a2 − 256)y2,

f = ay2 − 4x2y +
a

2
(a− 12)xy2 − a2

4
(a− 16)y3 +

4

a
x4

+ (24− a)x3y +
a

16
(a2 − 256)x2y2 − 24

a
x5 + (a + 16)x4y ,

k = −56− 2(13a− 152)x +
3a

4
(a2 − 256)y , α =

26− 4a

15(a− 2)
, a 6= 2,

g = 112 + 56(2a− 13)x + 3a(2a− 13)(a− 16)y ,

N =
2a− 13

60(a− 2)

(
− 224 + (1216− 104a)x + a(3a2 − 768)y

)2
.
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QS with an algebraic limit cycles

Lyapunov approach. QS with an algebraic limit cycle

Cases 6 and 7:

C. J. Christopher, J. Llibre, G. Świrszcz, Invariant algebraic
curves of large degree for quadratic systems, J. Math. Anal. Appl.
303(2) (2005) 450–461.

Case 8:

M. Alberich-Carramiñana, A. Ferragut, J. Llibre,
Quadratic planar differential systems with algebraic limit cycles via
quadratic plane Cremona maps, Adv. Math. 389 (2021), 107924:1–38.

In fact, for completeness, our proof studies all the eight cases, although
from the results of this last paper it can be seen that these eight cases can
be reduced to four of them because the other ones can be obtained from
these four via suitable Cremona transformations (birational automorphisms)
and changes of time.
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with an invariant parabola

QS with an invariant parabola

It is known that QS with an invariant parabola can have limit cycles. More-
over when they have a limit cycle, Kooij and Zegeling proved in 1994 that
it is unique and hyperbolic.

By using our approach, for some cases of the general family of QS with an
invariant parabola (y − x2 = 0),{

ẋ = a + bx + hy + c(y − x2) + exy ,

ẏ = 2x(a + bx + hy) + d(y − x2) + 2ey2,

we will prove a non-existence result.
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with an invariant parabola

QS with an invariant parabola. Sketch of an alternative
proof

Theorem

A quadratic system with an invariant parabola and a limit cycle can be
transformed into another quadratic system with an invariant straight line.
As a consequence, quadratic systems with an invariant parabola have at
most one limit cycle and when it exists it is hyperbolic.

This proof is based of the use of suitable birrational transformations, also
called Cremona maps and gives an alternatice proof to that of Kooij and
Zegeling.
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with an invariant parabola

Lyapunov approach. QS with an invariant parabola.

IDEA OF THE PROOF: Consider system{
ẋ = bx + hy + c(y − x2) + exy ,

ẏ = 2x(bx + hy) + d(y − x2) + 2ey2,

and let γ be one of its limit cycles. It is totally contained in one of the six
connected components of R2\(P ∪ {x = 0} ∪ {y = 0}) . This is so because
P is invariant and moreover

ẋ |x=0 = (c + h)y , and ẏ |y=0 = (2b − d)x2.
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with an invariant parabola

QS with an invariant parabola

Call V this connected component which, of course, must contain a critical
point of index +1. Hence in particular the new birrational change of variables

X =
x

y − x2
, Y =

y

y − x2

is well defined on the region V where γ lies, and its inverse is

x =
Y − 1

X
, y =

Y (Y − 1)

X 2
.

It transforms the parabola y − x2 = 0 into the straight line Y − 1 = 0. By
introducing a new time s such that ds/dt = X , and writing Z ′ = dZ/ds =
XdZ/dt = XŻ , after some computations we get thatX ′ = XẊ = −cX + eY + (b − d)X 2 + (2c + h)XY − eY 2,

Y ′ = XẎ = (Y − 1)
(
(2b − d)X + 2(c + h)Y

)
,

which is a quadratic system with the invariant straight line Y − 1 = 0, as
we wanted to prove.
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with an invariant parabola

Lyapunov approach. QS with an invariant parabola

Proposition

Consider the QS with the invariant parabola y − x2 = 0,{
ẋ = a + bx + hy + c(y − x2) + exy ,

ẏ = 2x(a + bx + hy) + d(y − x2) + 2ey2.

If

∆ =
(

16a2e3 +
(
(−8bc − 16hb − 12cd − 8dh)a + (2b − d)3

)
e2

− 2(c + h)
(
4c(c + 2h)a− 8b2c + 6bcd − 4bdh − 3cd2

)
e

+ 8c(c + h)2(bc + dh)
)(

(2b − d)e + 2c2 + 2hc
)
e ≥ 0.

the system does not have periodic orbits.
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with an invariant parabola

Lyapunov approach. QS with an invariant parabola

Proof.

The invariant parabola is f (x , y) = y − x2 = 0, and its cofactor is
k(x , y) = −2cx + 2ey + d . When ∆ ≥ 0, it can be seen that there exist
suitable α and g(x , y) = g0 + g1x + g2y such that in our theorem we get
that

Nα,g =
∑

0≤i+j≤2

ni ,jx
iy j = r

 ∑
0≤i+j≤1

wi ,jx
iy j

2

.
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A Liénard system

Lyapunov approach. A Liénard system

In this example, instead of using invariant algebraic curves we will use ex-
ponential factors, that are a particular case of generalized invariant curves.
An exponential factor is a function f (x , y) = exp(h(x , y)), with h a poly-
nomial and such that it holds that

ḟ (x , y) = k(x , y)f (x , y),

as in the condition of invariant algebraic curve, with k being also a polyno-
mial, also called its cofactor.
Our results also apply if the f of its statement is an exponential factor,
instead of an invariant algebraic curve. A simple example of exponential
factor for the Liénard system{

ẋ = y − xH(x),

ẏ = −x

is f (x , y) = exp(y), because ḟ (x , y) = −xf (x , y) and k(x , y) = −x .
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A Liénard system

Lyapunov approach. A Liénard system

Proposition

If there exists α ∈ R such that αx + 2H(x) 6≡ 0 does not change sign then
the Liénard system {

ẋ = y − xH(x),

ẏ = −x

does not have periodic orbits.

Proof.

We can apply our approach by taking f as the exponential factor
f (x , y) = exp(y). We also take g(x , y) = 2− 2αy − α2x2. Then some
computations give that

Nα,g (x , y) = α2x2
(
αx + 2H(x)

)
,

and the result follows.
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A Liénard system

Lyapunov approach. A Liénard system

Corollary

Liénard system {
ẋ = y − a1x − a2x

2 − x3,

ẏ = −x

does not have periodic solutions when a1 ≥ 0.

Proof.

By using the above Proposition with α = 4
√
a1 − 2a2 and

H(x) = a1 + a2x + x2 we get that

αx + 2H(x) = 2a1 + (α + 2a2)x + 2x2 =

= 2a1 + 4
√
a1x + 2x2 = 2

(√
a1 + x

)2 ≥ 0,

and the result follows.
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BD approach

Bendixson-Dulac theorem

Recall the version of the Bendixson–Dulac theorem for multiply connected
regions:

Theorem

Consider a C1 planar differential system

ẋ = P(x , y), ẏ = Q(x , y),

defined on U ⊂ R2, an open connected subset such that R2 \ U has
` = `(U) bounded components, and denote by X = (P,Q) its associated
vector field. Let B : U→ R be a C1 function such that

div(BX ) = (BP)x + (BQ)y

does not change sign and vanishes only on a null measure set which is not
invariant by the flow. Then the system has at most ` limit cycles in U.
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BD approach

Bendixson-Dulac theorem. Definition of L(V )

Given an open connected subset U ⊂ R2, with finitely many holes, we have
denoted by ` = `(U) this number of holes, that is, the number of bounded
components of R2 \U. Notice that if U is simply connected then `(U) = 0.

Definition

Given a function V : R2 → R of class C1 we will say that it is admissible
if:

(i) The vector ∇V vanishes on {V (x , y) = 0} at finitely many points.

(ii) The set {V (x , y) = 0} has finitely many connected components.

(iii) The set R2 \ {V (x , y) = 0} has j connected components,
Ui , i = 1, 2, . . . j , and for all of them `(Ui ) <∞.

Associated to V , we define the non negative integer number

L(V ) :=

j∑
i=1

`(Ui ).
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BD approach

Bendixson-Dulac theorem

Theorem (A version of Bendixson–Dulac theorem)

Consider a C1 planar differential system

ẋ = P(x , y), ẏ = Q(x , y),

and denote by X = (P,Q) its associated vector field. Let V : R2 → R be
an admissible function such that there exists s ∈ R+ for which the function

Ms := Ms,V =
∂V

∂x
P +

∂V

∂y
Q − s

(
∂P

∂x
+
∂Q

∂y

)
V

does not change sign and vanishes only on a null measure set, not
invariant by the flow of X . Then the system has at most
LX (V ) := N + L(V ) limit cycles, where N is the number of periodic orbits
of X contained in the set V = {V (x , y) = 0} and L(V ) the introduced
computable number that depends on the shape of the set {V (x , y) = 0}.
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BD approach

Bendixson-Dulac theorem, 2nd version. Idea of the proof

In a few words we apply the classical Bendison-Dulac theorem with B =
|V |−1/s to each of the connected components of R2 \ {V (x , y) = 0}. The
key points are:

The formula:

div
(
|V |−1/sX

)
= −1

s
sign(V )|V |−1/s−1Ms

where

Ms = Ms,V =
∂V

∂x
P +

∂V

∂y
Q − s

(
∂P

∂x
+
∂Q

∂y

)
V .

The fact that

Ms

∣∣∣
V=0

=
∂V

∂x
P +

∂V

∂y
Q

does not change sign implies that the periodic orbits of the system
not contained in {V (x , y) = 0} can not cut this set.
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A break

Break: a comparison Lyapunov/B-D

In both cases we need that a given function does not change sign. More
concretely:

Lyapunov (for systems with an invariant algebraic curve f = 0 with
cofactor k):

Nα,g = αk +
∂g

∂x
P +

∂g

∂y
Q.

Bendixson-Dulac:

Ms,V =
∂V

∂x
P +

∂V

∂y
Q − s

(
∂P

∂x
+
∂Q

∂y

)
V .
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BD approach

Bendixson-Dulac theorem. First example of application

Consider the family of differential systems introduced by Villari and Zanolin
in 2020, {

ẋ = y − λ|y |m(x3 − x).

ẏ = −x ,
(4)

where 1 < m ∈ N and λ ∈ R.

Theorem

For the differential system (4) the following holds:

(i) For |λ| 6= 0 small enough it has at least one limit cycle.

(ii) For |λ| ≥ 3√
2

( 3

m

)m/2
it has no limit cycle.

Notice that the limit cycles exist only for some values of λ contained in the
interval of length 3

√
2(3/m)m/2, centered at the origin. Notice that for m

big it is extremely thin. This interval decreases exponentially with m.
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BD approach

Bendixson-Dulac theorem. First example of application

(i) Recall that given any perturbed Hamiltonian systems,
ẋ =

∂H(x , y)

∂y
+ εR(x , y),

ẏ = −∂H(x , y)

∂x
+ εS(x , y),

(5)

where ε is a small parameter, each simple zeroe of its associated Melnikov–
Poincaré–Pontryagin function

M(h) =

∫
γ(h)

S(x , y) dx − R(x , y) dy ,

where the curves γ(h) are a continuum of ovals contained in {H(x , y) = h},
gives rise to hyperbolic limit cycle of (5) that tends, when ε→ 0, to some
of these ovals.
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BD approach

Bendixson-Dulac theorem. First example of application

Consider the differential system{
ẋ = y − λ|y |m(x3 − x).

ẏ = −x ,

with λ = ε. By applying the above result with H(x , y) = x2 + y2 = h = r2,
with r ∈ (0,∞), and taking the parameterization of the level sets as x =
r cos θ, y = r sin θ, we get that

M(r2) =

∫
x2+y2=r2

|y |m(x3 − x) dy =

∫ 2π

0
rm| sin θ|m(r4 cos4 θ − r2 cos2 θ) dθ

=

√
π

2

Γ
(
(m + 1)/2

)
Γ
(
(m + 6)/2

) rm+2
(
3r2 − (m + 4)

)
,

where Γ is the Euler Gamma function. Hence, for each m, this function has
a simple positive zero r =

√
(m + 4)/3, that gives rise to the desired limit

cycle.
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BD approach

Bendixson-Dulac theorem. First example of application

(ii) Take s = 1/3 and V (x , y) = exp
(
λ2y2m

9m

) (
3 + λxy |y |m−2

)
in Bendixson-

Dulac theorem. Some calculations give that

M1/3 = −1

9
exp

(
λ2y2m

9m

)
λx2|y |m−2

(
2λ2y2m − 27y2 + 9(m − 1)

)
.

We need that M1/3 does not change sign. Writing y2 = z we want that

zm − 27

2λ2
z +

9(m − 1)

2λ2
≥ 0 for z ≥ 0.

It can be proved that for P(z) = zm + bz + c , with m ≥ 2, it holds that

P(z) ≥ 0 for all z ≥ 0 if and only if b ≥ −m
(
c/(m − 1)

)(m−1)/m
. This

inequality gives the condition of the statement.

Since {V (x , y) = 0} does not contain ovals and all the connected compo-
nents of R2 \{V (x , y) = 0} are simply connected, we have that LX (V ) = 0
and the system does not have limit cycles, as we wanted to prove.
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BD approach

Bendixson-Dulac theorem. Second example of application

Proposition

Consider the C1 differential system{
ẋ = y − C (x)B(x),

ẏ = −C (x)C ′(x),

with C (0) = 0 and C ′(x) 6= 0 for x 6= 0. If C (x)B ′(x) does not change
sign and vanishes at isolated points, then this system has at most one limit
cycle and when it exists it is hyperbolic.

Notice that the van der Pol equation corresponds to C (x) = x and B(x) =
λ(x2/3− 1). Then C (x)B ′(x) = 2λx2/3, which does not change sign.
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BD approach

Bendixson-Dulac theorem. Second example of application

{
ẋ = y − C (x)B(x),

ẏ = −C (x)C ′(x),

Proof.

We take

V (x , y) = y2 − C (x)B(x)y + C 2(x), and s = 1

in our version of Bendixson-Dulac theorem. Then some computations give
that

M1(x) = C 3(x)B ′(x).

Hence, it does not change sign and vanishes at isolated points. Moreover
it can be seen that the set {V (x , y) = 0} has only one bounded connected
component and then LX (V ) = 1 as we wanted to prove
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BD approach

Bendixson-Dulac theorem. Second example of application

With similar ideas it can be proved:

Theorem

Consider planar differential equations of the form{
ẋ = y − |y |mF (x),

ẏ = −G ′(x)/2,

where F and G ′ are C1 functions satisfying F (0) = 0 and
G (x) = x2k + o(x2k), m ∈ N ∪ {0} and k ∈ N.
If the function

(m − 1)F (x)G ′(x) + 2F ′(x)G (x)

does not change sign and vanishes at isolated points, then the system has
at most J limit cycles, all of them hyperbolic, where J is the number of
zeroes of G ′.
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BD approach

Bendixson-Dulac theorem. Third example of application

We study a family of Liénard type equations introduced recently that in-
cludes the classical Wilson family of Liénard equatins, which gave the first
example of such equations having an algebraic limit cycle. More concretely,
we consider systems {

ẋ = y − (x2 − 1)B(x),

ẏ = −x(1 + yB(x)),

where B is a C1 function. They have the invariant algebraic curve f (x , y) =
x2 + y2 − 1 = 0, because

fx(x , y)P(x , y) + fy (x , y)Q(x , y) = −2xB(x)f (x , y).

The example studied in previous works corresponds to B(x) = x3 − bx .
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BD approach

Bendixson-Dulac theorem. Third example of application

Theorem

Consider the system {
ẋ = y − (x2 − 1)B(x),

ẏ = −x(1 + yB(x)),

with

B(x) = x

∫ x

0
W (t)/t dt − bx ,

where W is any function that does not change sign, vanishes at isolated
points, and such that B ∈ C1. Then it has at most L + 2 limit cycles,
where L is the number of bounded connected components of the set
B = {x ∈ R : (B(x) + 2x)(B(x)− 2x) ≥ 0}.

When B(x) = x3 − bx we have that W (t) = 2t2 ≥ 0.
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BD approach

Bendixson-Dulac theorem. Third example of application

Proof.

We apply our version of Bendixson-Dulac theorem with

V = (1− x2 − y2)
(
x2 + y2 + B(x)y

)
and s = 1.

Then,

M1(x , y) = x(x2 + y2 − 1)2
(
B(x)− xB ′(x)

)
= −x2(x2 + y2 − 1)2W (x).

Hence, we can apply Bendixson-Dulac theorem. To get L(V ) we must
study the bounded connected components of V. Notice that these
components are formed by the oval x2 + y2 − 1 = 0 together with the
components of x2 + y2 + B(x)y = 0. This curve also writes as

y =
−B(x)±

√
(B(x) + 2x)(B(x)− 2x)

2
.
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BD approach

Bendixson-Dulac theorem. Fourth example of application

Consider the Liénard system{
ẋ = y − bx + x3 + 4b

3 x3 − 6
5x

5,

ẏ = −x + b2x3 − b(2 + b)x5 + (1 + 2b)x7 − x9,
(6)

By taking s = 1 and V (x , y) = A(x , y)B(x , y), where

A(x , y) =− 225 + 225x2 + 25b2x6 − 30bx8 + 9x10

+ (150bx3 − 90x5)y + 225y2,

B(x , y) =225x2 − 75b2x4 + 5b(24 + 5b)x6 − 15(3 + 2b)x8 + 9x10

+ (−225bx + 25(9 + 6b)x3 − 90x5)y + 225y2,

we get that M1 = 2x4A2(x , y) ≥ 0 and BD theorem can be applied.
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BD approach

Bendixson-Dulac theorem. Fifth example of application

It is known that the function

K⊥ := Q2Px + P2Qy − PQ(Py + Qx),

that is the numerator of the curvature of the orbits of the vector field
X⊥ = (−Q,P), orthogonal to the vector field X = (P,Q), can be used
to know the stability of the periodic orbits of X . For instance, Diliberto in
1950 proved that a limit cycle is hyperbolic and stable (resp. unstable) if
and only if ∫ l

0
K⊥(γ(s))ds < 0 (resp. > 0),

where γ(s) is its parameterization by the arc length and l is its length.
We will show that the function

K := Q2Py − P2Qx + PQ(Px − Qy ),

proportional to the numerator of the curvature of the orbits of X is, together
with s = 1, a good candidate for a suitable V in Bendixson-Dulac theorem.
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BD approach

Bendixson-Dulac theorem. Fifth example of application

By taking V = K and s = 1 in Bendixson-Dulac theorem we prove:

Theorem

Consider a class C2 planar system

ẋ = P(x , y), ẏ = Q(x , y),

and assume that the function

D := P2Q
(
Pxx − 2Qxy

)
+ PQ2

(
2Pxy − Qyy

)
+ Q3Pyy − P3Qxx

does not change sign and vanishes on a null measure set not invariant by
the flow of X . Then it has at most LX (V ) limit cycles, where

V = K = Q2Py − P2Qx + PQ(Px − Qy )

and LX (V ) is defined in Bendixson-Dulac Theorem.
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BD approach

Bendixson-Dulac theorem. Fifth example of application

Consider the rigid systems{
ẋ = −y + xF (x , y),

ẏ = x + yF (x , y),
(7)

introduced by Conti. Here F is an arbitrary smooth function. Notice that
in polar coordinates θ̇ = 1. A consequence of the previous result is:

Theorem

Let X be the vector field associated to (7). If F ∈ C2,

H := FxxFyy − F 2
xy ≥ 0,

and H vanishes on a null measure set, not invariant by the flow of X ,
then (7) has at most LX (V ) limit cycles, where

V = (x2 + y2)
(
xFFx + yFFy + xFy − yFx − 1− F 2

)
and LX (V ) is defined in Bendixon-Dulac Theorem.
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BD approach

Bendixson-Dulac theorem. Fifth example of application

We apply previous theorem (BD withV = K and s = 1) when P = −y +xF
and Q = x + yF . We get that V is as in the statement and

M1 = D = (x2 + y2)
((

x2Fxx + 2xyFxy + y2Fyy
)
F 2

+ 2
(
(x2 − y2)Fxy + xy(Fyy − Fxx)

)
F

+
(
x2Fyy − 2xyFxy + y2Fxx

))
.

To control the sign of M1 we first remove the factor x2 +y2. Notice that the
discriminant of the remaining part, thinking it as a second degree polynomial
in F , AF 2+BF+C , is B2−4AC = −4(x2+y2)2H ≤ 0. Moreover, looking to
A and B as quadratic homogenous polynomials of the form ax2 +bxy +cy2,
we get that their corresponding discriminants coincide and are given by
b2 − 4ac = −4H ≤ 0. Therefore, our condition on H implies that M1 does
not change sign and vanishes only on a null measure set and hence our
result follows.
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BD approach

Bendixson-Dulac theorem. Fifth example of application

Notice that the upper bound for the number of limit cycles given in the
above theorem essentially depends on the shape of the set {V (x , y) = 0}.
To get the actual value of LX (V ) for each case this set must be carefully
studied. We present now a concrete application.

Corollary

Consider the rigid cubic systems, that have

F = a + bx + cy + dx2 + exy + hy2.

If 4dh − e2 > 0 they have at most one (hyperbolic) limit cycle.

This result is not new. It was proved by G., Prohens and Torregrosa by
transforming the system into an Abel differential equation and then by ap-
plying know results about these equations. In that work it was also proved
that when 4dh − e2 < 0 there are systems with at least two limit cycles.

(UAB-CRM) Lyapunov and Bendixson-Dulac approaches 62 / 64



An application of the study of the number of limit cycles

Do you want to know an actual application
of knowing the number of limit cycles?
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An application of the study of the number of limit cycles

Thank you very much for your attention
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