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Slow-fast families of vector fields on the plane

Definition (Slow-fast family of vector fields)

(In this talk) a slow-fast family of vector fields on the plane, with singular
parameter ε, is a smooth family of vector fields Xε,λ, with:

Xε,λ = X0,λ + εQλ + O(ε2), (1)

and
X0,λ = FλZλ,

for some smooth family of functions Fλ and a smooth family of vector
fields Zλ, where for each λ the following properties hold:

1 Zλ is a vector field without singularities,

2 Fλ is a function with a regular set of zeros Sλ: dFλ(p) ̸= 0 for
p ∈ {Fλ = 0}.
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Slow vector field on Sλ \ Cλ

QλQ̃λ

TpSλ

δλ(p)

Sλ

M
Tp(M)
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Dodging layer (D) and terminal layer (T)

(1) (2) (3) (4)
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Breaking mechanisms: Hopf (H) and Jump (J)

p

σ

v ω(v)α(v)

σ

v ω(v)α(v)

︸ ︷︷ ︸

p

Multilayer canard cycles Mallorca, 06.02.2023 5 / 61



Jump breaking mechanism
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Use of sections: layer section and target section
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Rescaled breaking parameter in Hopf case (1)

Normal form:{
ẋ = y − x2 + x3h1(x , λ)
ẏ = ε(a− x + x2h2(x , ε, λ) + yh3(x , y , ε, λ)).

(2)

Rescaled breaking parameter:

a =
√
εā.
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Rescaled breaking parameter in Hopf case (2)

γ+
γ−

y

x

R

T

Γ

T0
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Attracting sequence
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Attracting sequence and repelling sequence

attracting
sequence

repelling
sequence

JA JR
τ

σ

layer
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Transition map form layer section to target section

Technical elaboration in study of transition map

Blow-up of contact points

Center manifolds

Normal forms

Smooth functions on Admissible Monomials

Canard cycles

Part II Technical tools, pp. 97–212

Ch 12: Local transition maps, pp. 215–265
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Slow divergence integral (SDI)

Consider a closed interval γλ ⊂ Sλ \Cλ. Parameterize it by r and write the
slow vector field Q̃λ as qλ(r)

∂
∂r , for some smooth family of functions qλ.

The differential equation of Q̃λ in the coordinate r is

dr

ds
= qλ(r).

Suppose now that γλ does not contain zeros of Q̃λ, then the slow
divergence integral along γλ is defined as

I (γλ) =

∫
γλ

Vλds, (3)

where Vλ at a point p ∈ Sλ is the trace of D(X0,λ)(p).
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Structure of transition map

F J
ε,λ(v) = zA(λ) + ε

2
3ΨA(λ, ε) + θΣA

exp

(
IA(v , λ) + O(ε

1
3 )

ε

)
, (4)

where IA is the SDI of the attracting sequence A. The function ΨA is

smooth in (ε
1
3 , ε

1
3 ln ε, λ); the term O(ε

1
3 ) is smooth in (v , ε

1
3 , ε

1
3 ln ε, λ)

and θΣA
= ±1 (depending on the chosen orientation at the target section.)

FH
ε,λ(v) = zA(λ) + ε

1
2ΨA(λ, ε) + θΣA

exp

(
IA(v , λ) + O(ε

1
3 )

ε

)
, (5)

where IA is the SDI of the attracting sequence A and λ = (ā, µ). The

function ΨA is smooth in (ε
1
2 , λ), while O(ε

1
3 ) is smooth in

(v , ε
1
2 , ε

1
3 , ε

1
3 ln ε, λ) and θΣA

= ±1 (depending on the chosen orientation
at the target section.)
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Common expression for difference function

∆ε,λ(v) = α(λ, ε) + e
IA(v,λ)+oε(1)

ε − θCe
I R̄ (v,λ)+oε(1)

ε (6)

where α and the remainder terms oε(1) are smooth in an appropriate set
Ω of ε-monomials and in the other variables (v , λ). θC = ±1, depending
on θΣA

and θΣR̄
(and an appropriate choice of orientation at the target

section.)

We can take λ = (b, µ) so that the function α verifies

α((b, µ), 0) = b.
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Intrinsic meaning of θC

Side preserving connection (P) : θC = 1

Side reversing connection (R) : θC = −1
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Single dodging layer

J

H
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Single dodging layer: looking for limit cycles

The connection is side reversing. Limit cycles are given by zeroes of

∆ε,λ(v) = α(λ, ε) + e
IA(v,λ)+oε(1)

ε + e
I R̄ (v,λ)+oε(1)

ε = 0 (7)

Important remark:

Since ∂IA

∂v (v , λ) and
∂I R̄

∂v (v , λ) have opposite signs we get:

∂(IA − I R̄)

∂v
(v , λ) ̸= 0,

so that IA − I R̄ = IA + IR has at most one zero, which is simple.
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Main aim of his talk

Studying multilayer canard cycles, as much as possible in the context of
polynomial (generalized) Liénard equations{

ẋ = y − Fλ(x)
ẏ = εgλ(x)

Here λ = (λ1, . . . , λn) are parameters that are used for the individual
canard breaking mechanisms.
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Benefits of Liénard setting: easy basic understanding

The critical curve is a graph y = Fλ(x)

The fast dynamics, for ε = 0, is trivial:{
ẋ = y − Fλ(x)
ẏ = 0

The slow vector field can be expressed as:

y ′ = gλ(x)|x=F−1
λ (y)

(and x ′ = y ′/F ′
λ(x))

The contact points are found at the local extremes of Fλ(x). The
singular ones are those at which gλ = 0
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2-layer cycle: DPDP -case

a

J J

b

H

layer variable u

layer variable v

I(u)

K(u)

L(v)

J(v)

How to generalize?
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Signs θ play a role

Canard cycles p.256:

We define a coefficient θA for the whole sequence A by

θA =
k∏

i=2

θJi

k−1∏
j=1

θjf . (8)

Moreover, independently of the previous coefficients associated to A itself,
we will use the θΣ1 associated to the position of the starting section Σ in
relation to γ1s .
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DPDP -cycle

(P )

J J

(P )

H

dodging layer

dodging layer

+−

−+
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Easy check on the type of connection

Choose an orientation along the canard cycle under consideration. In a
plane take e.g. ((1, 0), (0, 1)) as positive, and represent it
counterclockwise. Check whether the passages from slow to fast, when
entering a layer, and those from fast to slow, when leaving a layer, are
positive or negative and put a + or a −.
A connection between two + or between two − is side preserving.
A connection between + and −, or − and + is side reversing.
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DRDR-cycle

J J

JJ

(R)

(R)

−+

+−
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DPTR-cycle

(P )

H

(R)

terminal layer

dodging layer

+

−

JJ

J

S

++

+
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TPTP-cycle

S

S

H

JJ

JJ

(P )

(P )

++

++

terminal
layer

terminal
layer
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TRTR-cycle

(R)

H H

(R)

S

terminal layer

terminal layer

+

− −

+
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Results on DPDP-cycle

a

J J

b

H

layer variable u

layer variable v

I(u)

K(u)

L(v)

J(v)
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Theorem for DPDP-cycle

Let D(u, v) = I (u)− J(v) + L(v)− K (u) be the (total) SDI of Γuv and
choose some (u, v) = (u0, v0).

Theorem
1 If D(u0, v0) ̸= 0, then a hyperbolic relaxation oscillation bifurcates

from Γu0v0 .

2 If D(u0, v0) = 0 and I (u0)− J(v0) ̸= 0, then a codimension 1
semi-stable relaxation oscillation bifurcates from Γu0v0 . This
semi-stable limit cycle is generically unfolded by the parameter (a, b),
for ε > 0 small enough, producing a pair of hyperbolic limit cycles.

3 If D(u0, v0) = 0 and I (u0)− J(v0) = 0 and
I ′(u0)L

′(v0)− K ′(u0)J
′(v0) ̸= 0, then a codimension 2 relaxation

oscillation bifurcates from Γu0v0 . This degenerate limit cycle is
generically unfolded by the parameter (a, b), for ε > 0 small enough,
producing systems having three hyperbolic limit cycles in the vicinity
of Γu0v0 .
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Connections in the general 2-layer case

We have to deal with{
exp( Ĩ (u,λ,ε)ε )− θ1exp(

J̃(v ,λ,ε)
ε ) = a · F (λ, ε)

exp( K̃(u,λ,ε)
ε )− θ2exp(

L̃(v ,λ,ε)
ε ) = b · G (λ, ε).

(9)

with F (λ0, 0) ̸= 0 and G (λ0, 0) ̸= 0. This can be written as :{
exp( Ĩ (u,λ,ε)ε )− θ1exp(

J̃(v ,λ,ε)
ε ) = a

exp( K̃(u,λ,ε)
ε )− θ2exp(

L̃(v ,λ,ε)
ε ) = b.

(10)

with new functions Ĩ , J̃, K̃ and L̃, which differ from the previous ones by
terms of order oϵ(1).
The equations can be changed to a similar system in which λ = (a, b)
disappears from the left hand side of the equations.
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Introducing a map from the plane to the plane

Let us consider the mapping

Φε :

{
a = exp( Ĩ (u,v ,ε)ε )− θ1exp(

J̃(u,v ,ε)
ε )

b = exp( K̃(u,v ,ε)
ε )− θ2exp(

L̃(u,v ,ε)
ε ).

(11)

We can see Φε as a family of maps from a plane with coordinates
(u, v) ∈ [α, β]2, to another plane with coordinates (a, b) near (u0, v0)
depending on a parameter ε. For each (a, b) in the image of Φε, with
ε > 0 small enough, each counter-image (u, v) corresponds to a limit cycle
Γεuv for the value ε cutting the layer sections in resp. u and v .
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Connection diagram (1)

Primary data: represent on a circle (in cyclic order) the connections
(C1, ..,Cn) by small segments and add, at the end points of each segment,
the incoming and outgoing signs near the connection.

+ −

++

−

−−

+

C1

C2

C3

C4

Multilayer canard cycles Mallorca, 06.02.2023 33 / 61



Connection diagram (2)

Complete the connection diagram by indicating the kind of connections (P
or R) and the kind of layers (D or T) we encounter between the
connections.

+ −

−

−

+

P

R

R

P

T

D
D

T

−

+ +
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Connection diagram with 2 layers

+ + ++

+ + + +

+ + + +

− − − −

+ + − −+ − + −

− + + + − − + −
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Connection diagram with 2 layers

+ + ++

+ + + +

+ + + +

− − − −

+ + − −+ − + −

− + + + − − + −

TPTP

TRTR

DPDP

DRDR

DRTP
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Realisation of connection diagrams in general

Example in a Liénard equation:

Question 1: can all connection diagrams be realized in Liénard equations?

Question 2: can all connection diagrams be realized by a polynomial
vector field?
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Adding the SDI´s to the connection diagram

We introduce a layer variable ui for the layer Li coming after Ci . We hence
have ui−1 for the layer Li−1 preceding Ci . We take i ∈ Z/nZ.

We suppose to have canard cycles Γu,0, given by u = (u1, .., un) and
λ = (a1, .., an) = (0, .., 0). In each layer Li we consider (and calculate) the
SDI´s Ii ,i (ui ), linked to Ci , and Ii+1,i (ui ) linked to Ci+1, of the canard
cycle Γu,0.

Ci−1 Ci Ci+1

Ii−1,i−1(ui−1) Ii,i−1(ui−1) Ii,i(ui) Ii+1,i(ui)
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System of equations to be solved



exp(
Ĩ1,n(un,λ,ε)

ε )− θ1exp(
Ĩ1,1(u1,λ,ε)

ε ) = a1
...

exp(
Ĩi,i−1(ui−1,λ,ε)

ε )− θiexp(
Ĩi,i (ui ,λ,ε)

ε ) = ai
...

exp(
Ĩn,n−1(un−1,λ,ε)

ε )− θnexp(
Ĩn,n(un,λ,ε)

ε ) = an.

(12)

The system can be adapted to eliminate λ from the Ĩi ,j(uj , λ, ε), in a way
that Ĩi ,j(u, 0) = Ii ,j(ui ).
The ai can be supposed to be the original (rescaled) breaking parameters
by choosing in a good way the orientation on the target sections.
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Adding the signs of the derivatives

There is still a freedom to choose an orientation on the different layer
sections. We can e.g. suppose that, for all i :

∂Ii ,i
∂ui

(ui ) > 0.

It implies

for a dodging layer:
∂Ii+1,i

∂ui
(ui ) < 0,

for a terminal layer:
∂Ii+1,i

∂ui
(ui ) > 0.
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Introducing a map from Rn to Rn

Like in the 2-layer case the system of equations defines a map Φε from the
(u1, .., un)-space to the (a1, .., an)-space. For ε > 0, counter-images of
(a1, .., an) correspond to limit cycles.

To find the singularities of Φε, for ε > 0 but small, we consider dΦε and
calculate ∆(u, ε) = det dΦε(u), with u = (u1, .., un).

The rows of the Jacobian matrix of dΦε (essentially) contain two entries:

−θi
ε
Ĩ ′i ,iexp

Ĩi ,i
ε

on the diagonal, and
1

ε
Ĩ ′i ,i−1exp

Ĩi ,i−1

ε

on the sub diagonal ( except for i = 1, in which case it is situated in the
right upper corner).

Multilayer canard cycles Mallorca, 06.02.2023 41 / 61



Matrix of det dΦε(u)



c1,1 0 0 · · · 0 0 c1,n
c2,1 c2,2 0 · · · 0 0 0
0 c3,2 c3,3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · cn−2,n−2 0 0
0 0 0 · · · cn−1,n−2 cn−1,n−1 0
0 0 0 · · · 0 cn,n−1 cn,n



(ci ,i−1, ci ,i ) = (
1

ε
Ĩ ′i ,i−1exp

Ĩi ,i−1

ε
,−θi

ε
Ĩ ′i ,iexp

Ĩi ,i
ε
)
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Matrix of det dΦε(u)
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Calculating ∆(u, ε) = det dΦε(u)

Seen the structure of the matrix, it is easy to get:

(−1)nεn∆(u, ε) = (−1)nεndet dΦε(u) =

n∏
i

θi Ĩ
′
i ,iexp

Ĩi ,i
ε

−
n∏
i

Ĩ ′i ,i−1exp
Ĩi ,i−1

ε
=

(
n∏
i

θi Ĩ
′
i ,i ).exp

∑n
i Ĩi ,i
ε

− (
n∏
i

Ĩ ′i ,i−1).exp

∑n
i Ĩi ,i−1

ε
=

(
n∏
i

θi Ĩ
′
i ,i ).exp

∑n
i Ĩi ,i−1

ε
.(exp

D̃

ε
−

n∏
i

Ĩ ′i ,i−1

θi Ĩ ′i ,i
),

with

D̃ =
n∑
i

(Ĩi ,i − Ĩi ,i−1).
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′
i ,i ).exp

∑n
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Reducing the equation ∆ = 0

We get that ∆(u, ε) = 0 if and only if

exp
D̃

ε
−

n∏
i

Ĩ ′i ,i−1

θi Ĩ ′i ,i
= 0,

where

D̃(u, ε) =
n∑
i

(Ĩi ,i − Ĩi ,i−1)

and

D(u) = D̃(u, 0) =
n∑
i

(Ii ,i − Ii ,i−1),

expresses the total SDI of the canard cycles Γu.

Multilayer canard cycles Mallorca, 06.02.2023 44 / 61



Regularizing the equation ∆ = 0

We will now show that
n∏
i

Ĩ ′i ,i−1

θi Ĩ ′i ,i
> 0,

implying that we can regularize the equation ∆(u, ε) = 0 to

D̃(u, ε)− εlog

n∏
i

Ĩ ′i ,i−1

θi Ĩ ′i ,i
= 0,

i.e.
D(u) + oε(1) = 0,

with oε(1) smooth in (u,Ω, λ), and Ω = (ε
1
2 , ε

1
3 , ε

1
3 ln ε).
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Checking that the product is positive

Consider
n∏
i

Ĩ ′i ,i−1

θi Ĩ ′i ,i
=

n∏
i

Ĩ ′i+1,i

θi Ĩ ′i ,i
.

Proving that the product is positive amounts to prove that, for each
connection diagram, we have

nD + nR = 0 (mod 2),

where nD is the number of dodging layers and nR is the number of
side-reversing connections.
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nD + nR is even

The connection diagram is divided in 2n segments and at each of the 2n
endpoints there is a sign (+ or - ).

Between a succession of two equal signs there is either a terminal layer or
a side preserving connection. Between a succession of two different signs
there is either a side reversing connection or a dodging layer.

Starting at some point (e.g. with a +) we come back to that point after a
full turn, implying that the number of switches has to be even.
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Canard cycles Γu with D(u) ̸= 0.

At canard cycles where the total SDI D(u) is different from zero we
already know that Hausdorff-close to the canard cycle there can be at
most one limit cycle and it is necessarily hyperbolic.

P. De Maesschalck, F. Dumortier, R.Roussarie: Cyclicity of common
slow-fast cycles. Indag. Math. (N.S.) 22 (2011), no. 3-4, 165–206.

Thanks to the breaking parameters we see, with the help of Φε, that there
is a limit cycle.
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Canard cycles Γu with D(u) = 0.

We can rely on the theory of singularities of maps from n-space to
n-space. Like in the 2-layer case we work at points of

S = {∆(u, ε) = 0},

and analyse the relative position between TpS and Ker(dΦε). It can easily
be seen that Ker(dΦε) is 1-dimensional.
The equations are given by:

ui = θi
Ĩ ′i ,i−1

Ĩ ′i ,i
exp(

Ĩi ,i−1 − Ĩi ,i
ε

)ui−1.
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SN-bifurcation of limit cycles

We get a saddle-node bifurcation of limit cycles at the points where Φε

has a fold. This happens under the condition that for all i :

Ii ,i−1 − Ii ,i ̸= 0, and

Ĩ ′i+1,i − Ĩ ′i ,i ̸= 0.

The first conditions are related to the connections, the second ones to the
layers.

The conditions on the derivatives surely hold in the dodging layers.

We can violate up to n − 1 conditions, seen that we have n parameters.
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Elementary catastrophes of limit cycles

The only stable singularities of the map Φε are singularities of type
Σ1,..,1,0 = Σ1r ,0.

Up to smooth right-left equivalence they have a normal form:
X1 = x1

...

Xn−1 = xn−1

Y = y r+1 + x1.y
r−1 + x2.y

r−2 + · · ·+ xr−1.y ,

(13)

with 1 ≤ r ≤ n.
The codimension is r , leading to elementary catastrophes of limit cycles
and phase portraits with r + 1 limit cycles. Most degenerate is r = n.
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Balanced canard cycles

A canard cycle Γu0,0 is called (totally) balanced if, for all i :

Ii ,i = Ii ,i−1

Under the generic condition that

n∏
i=1

Ĩ ′i ,i−1

Ĩ ′i ,i
̸= 1,

these canard cycles have been studied for the cases where all connections
are side-preserving.

F. Dumortier & R. Roussarie, Multi-layer canard cycles and translated
power functions. J. Differential Equations 244 (2008), no. 6, 1329–1358.
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Balanced canard cycles: curve of maximal degeneracy

If the canard cycle Γu0 is balanced and generic, then there exists an
application : ε→ u(ε) = (u1(ε), · · · , un(ε)), with u(0) = u0 such that

Ĩi ,i (ui (ε), ε) = Ĩi ,i−1(ui−1(ε), ε), (14)

for all ε > 0 small enough. The application is smooth in (u,Ω, λ).

We write:
I 0i (ε) = Ĩi ,i (ui (ε), ε) = Ĩi ,i−1(ui−1(ε), ε)
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Balanced canard cycles: rescaling

We consider the rescaled layer variables Ui , defined by

ui = ui (ε) + εUi .

where Ui ∈ [−Ki ,Ki ], with Ki > 0. The constants Ki can be chosen
arbitrarily large, but must verify some compatibility conditions.

We introduce Vi = expUi and ãi = ai exp(−
I 0i (ε)
ε ) and continue working in

a rescaled layer with these new parameters ãi as exponentially rescaled
parameters.
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Balanced canard cycles: rescaled equations

The equations to solve take the form :

Li : ãi = V
τi (ε)
i (1 + εψi ,i (Vi , ε))− V

νi−1(ε)
i−1 (1 + εψi ,i−1(Vi−1, ε)) (15)

where the functions ψi ,i (Vi , ε) and ψi ,i−1(Vi−1, ε) are smooth in
(V ,Ω, ãi ),, with V = (V1, · · · ,Vn).
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Balanced canard cycles and translated power functions

If ε is small enough one can solve the equation Li as a ãi -parametrized
map φi

ε(Vi−1, ãi ) :

φi
ε,ãi

(·) = φi
ε(·, ãi ) : Vi−1 → Vi = (ãi +V

νi−1

i−1 )
1
τi +εθi−1(Vi−1, ãi , ε) (16)

defined on an appropriate domain and with θi−1(Vi−1, ãi , ε) smooth in
(Vi−1,Ω, ãi ).

The composition of these maps, for ε = 0 is:

φ0,ã : Vn → (ãn + (ãn−1 + (ãn−2 + . . .+ (ã1 + V νn
n )

ν1
τ1 ) . . .)

νn−1
τn−1 )

1
τn .
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Extending the field of application

1. Other breaking mechanisms , besides the Hopf- and jump breaking
mechanisms, can also be accepted. An example is the transcritical
breaking mechanism.

2. To the attracting and repelling sequences can be added passages along
some persistent slow curves with contact points.
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Transcritical breaking mechanism

−
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+ −

+ +

H

Tr
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Thank you for your attention.
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Question to ChatGPT

What are the most important results about slow-fast systems?

Answer of ChatGPT:

Slow-fast systems refer to dynamical systems that have both slow and fast
variables. Some important results about slow-fast systems include:

1. The existence of multiple time scales in the system can lead to the
formation of ”canards,” which are special solutions that behave differently
from typical solutions.
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2. Slow-fast systems can exhibit bifurcations, or qualitative changes in
behavior, as a parameter in the system is varied. This can lead to the
appearance of new types of behavior, such as periodic orbits or chaos.
3. The presence of a slow variable can lead to the emergence of a reduced
or ”averaged” system, which captures the essential dynamics of the full
system but is simpler to analyze.
4. In some cases, slow-fast systems can exhibit ”geometric singular
perturbations,” where the fast variables behave like a perturbation of the
slow variables, leading to the development of geometric and topological
methods to study such systems.
5. Slow-fast systems can exhibit a phenomenon known as ”relaxation
oscillations”, which is characterized by slow, large amplitude oscillations
that are superimposed on a fast, small amplitude oscillation.
6. In the context of neuroscience, slow-fast systems are used to model the
dynamics of neural circuits, and have been used to explain phenomena
such as the generation of rhythmic patterns of activity in the brain.
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