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�For smooth scalar valued Lagrangian function L(t, q, q̇),
t ∈ R, q, q̇ ∈ Rn, Euler-Lagrange equation
d

dt
∂q̇L
(
t, q(t), q̇(t)

)
− ∂qL

(
t, q(t), q̇(t)

)
= 0

�Theorem. Let q(t) be a sol. to the Euler-Lagrange eq.
and let qλ(t), λ ∈ R, be a smooth family of perturbed
motions, such that q0(t) ≡ q(t).
Then the following function of t is constant

∂q̇L
(
t, q(t), q̇(t)

)
· ∂λqλ(t)

∣∣
λ=0 −

∫ t

t0

∂

∂λ
L
(
s, qλ(s), q̇λ(s)

)∣∣
λ=0ds .
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�The constant of motion can be unuseful or trivial. In
general it is nonlocal, i.e. its value at a time t depends
not only on the state (q(t), q̇(t)) at time t, but also on the
whole history between t0 and t.



Theorem in the variational case 3

We call it the constant of motion associated to the fam-
ily qλ(t).

�The constant of motion can be unuseful or trivial. In
general it is nonlocal, i.e. its value at a time t depends
not only on the state (q(t), q̇(t)) at time t, but also on the
whole history between t0 and t.
◦ Proof. Taking the time derivative we have

d

dt

(
∂q̇L

(
t, q(t), q̇(t)

)
· ∂λqλ(t)

∣∣
λ=0

)
− ∂

∂λ
L
(
t, qλ(t), q̇λ(t)

)∣∣∣
λ=0

=

= d

dt
∂q̇L

(
t, q(t), q̇(t)

)
· ∂λqλ(t)

∣∣
λ=0 + ∂q̇L

(
t, q(t), q̇(t)

)
· d
dt
∂λqλ(t)

∣∣
λ=0+

−∂qL
(
t, q(t), q̇(t)

)
· ∂λqλ(t)

∣∣
λ=0 − ∂q̇L

(
t, q(t), q̇(t)

)
· ∂λq̇λ(t)

∣∣
λ=0 = 0

since the sum of the red terms vanishes by means of the Euler-Lagrange equation and the blu terms
are equal by reversing the derivation order. q.e.d.
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�The perturbed motions qλ(t) were originally inspired by the mechanism that
Noether’s theorem uses to deduce conservation laws whenever the Lagrangian
function L enjoys certain invariance properties. A simple classical example,
particle of mass m in the plane that is driven by a central force field

L(t, q, q̇) := 1
2
m|q̇|2 − U

(
t, |q|

)
, q = (q1, q2) ∈ R2.
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To exploit the rotational symmetry of L it is natural to take the rotated family
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Noether’s theorem uses to deduce conservation laws whenever the Lagrangian
function L enjoys certain invariance properties. A simple classical example,
particle of mass m in the plane that is driven by a central force field

L(t, q, q̇) := 1
2
m|q̇|2 − U

(
t, |q|

)
, q = (q1, q2) ∈ R2.

To exploit the rotational symmetry of L it is natural to take the rotated family

qλ(t) :=
(

cosλ − sinλ
sinλ cosλ

)(
q1(t)
q2(t)

)
, ∂λqλ(t)

∣∣
λ=0 =

(
−q2(t), q1(t)

)
.

It is clear that L(t, qλ(t), q̇λ(t)) does not depend on λ. The constant of motion
associated to the rotation family reduces to Noether’s theorem and gives the
angular momentum as constant of motion:

∂q̇L · ∂λqλ
∣∣
λ=0 = mq̇ · (−q2, q1) = m(q1q̇2 − q2q̇1).
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�Next, we revisit another classical example, from our point of view. For time
indep. L(t, q, q̇) = L(q, q̇), q ∈ Rn, and the time-shift family qλ(t) = q(t+λ):

∂λL
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)∣∣
λ=0 = ∂qL · q̇(t) + ∂q̇L · q̈(t) = d

dt
L(q(t), q̇(t)).
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Energy E(q, q̇) = ∂q̇L (q, q̇) · q̇ − L (q, q̇) up to a trivial additive const.
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indep. L(t, q, q̇) = L(q, q̇), q ∈ Rn, and the time-shift family qλ(t) = q(t+λ):

∂λL
(
t, qλ(t), q̇λ(t)

)∣∣
λ=0 = ∂qL · q̇(t) + ∂q̇L · q̈(t) = d

dt
L(q(t), q̇(t)).

The constant of motion is

∂q̇L · q̇(t)−
∫ t

t0

d

ds
L(q(s), q̇(s))ds =

= ∂q̇L (q(t), q̇(t)) · q̇(t)− L (q(t), q̇(t)) + L (q(t0), q̇(t0)) =

= E (q(t), q̇(t)) + L (q(t0), q̇(t0)) .
Energy E(q, q̇) = ∂q̇L (q, q̇) · q̇ − L (q, q̇) up to a trivial additive const.
For instance L(q, q̇) = 1

2m|q̇|
2 − U(q) gives E(q, q̇) = 1

2m|q̇|
2 + U(q)
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�From now on, our results. Lagrangian
L(t, q, q̇) = L(q, q̇) := 1

2m|q̇|
2 − U(q), q ∈ Rn,

potential U positively homogeneous of degree α
U(sq) = sαU(q), s > 0.
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�From now on, our results. Lagrangian
L(t, q, q̇) = L(q, q̇) := 1

2m|q̇|
2 − U(q), q ∈ Rn,

potential U positively homogeneous of degree α
U(sq) = sαU(q), s > 0.

Well known that: if q(t) is solution to Euler-Lagrange eq. q̈ = −∇U(q) then
qλ(t) = eλ q

(
eλ(α/2−1)t

)
, λ ∈ R,

solution too. Our theorem with this family, and some computations, give the
constant of motion

mq̇(t) · q(t) + t
(
α
2 − 1

)
E(q(t), q̇(t))−

(
α
2 + 1

) ∫ t
t0
L(q(s), q̇(s))ds.

with E := 1
2m|q̇|

2 + U(q), the energy conserved too.
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In the special case α = −2 we get a time-dependent first integral in the usual
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F (q, q̇) := mq̇ · q − 2t E(q, q̇)



Homogeneous potentials 7

In the special case α = −2 we get a time-dependent first integral in the usual
sense

F (q, q̇) := mq̇ · q − 2t E(q, q̇)
�Examples central U(q) = −k/|q|2 and Calogero’s

U(q1, . . . , qn) = g2
∑

1≤j<k≤n

(qj − qk)−2,

for qj ∈ R, qj 6= qk when j 6= k.



Homogeneous potentials 7

In the special case α = −2 we get a time-dependent first integral in the usual
sense

F (q, q̇) := mq̇ · q − 2t E(q, q̇)
�Examples central U(q) = −k/|q|2 and Calogero’s

U(q1, . . . , qn) = g2
∑

1≤j<k≤n

(qj − qk)−2,

for qj ∈ R, qj 6= qk when j 6= k.
�Notice that for α = −2 the integrand in the formula of the theorem does not
vanish.
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�Take the antiderivative in time of 0 = mq(t) · q̇(t)− 2tE − F and obtain one
more time-dependent constant of motion

F1 = 1
2
m|q(t)|2 − t2E − tF .

We can also solve for |q(t)|:
|q(t)| = 2

m

√
t2E + tF + F1 .

This formula gives the time-dependence of distance from the origin even though
we don’t know the shape of the orbit. So we generalized a formula known in
the central case.
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mq̈ = −kq̇ −∇U(q), q ∈ Rn.



Dissipative mech. syst., viscous resist. 9

�Consider k > 0, a smooth U : Rn→ R,
mq̈ = −kq̇ −∇U(q), q ∈ Rn.

�Energy first integral for k = 0
E(q, q̇) = 1

2m |q̇|
2 + U(q)
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�Consider k > 0, a smooth U : Rn→ R,
mq̈ = −kq̇ −∇U(q), q ∈ Rn.

�Energy first integral for k = 0
E(q, q̇) = 1

2m |q̇|
2 + U(q)

for k > 0 decreases along solutions

Ė = mq̇ · 1
m

(
−kq̇ −∇U(q)

)
+∇U(q) · q̇ = −k |q̇|2≤ 0.

� In the sequel U bounded from below, say U ≥ 0. For a
solution to the o.d.e. q̇(t) is bounded in the future:
1
2m
∣∣q̇(t)∣∣2 ≤ 1

2m
∣∣q̇(t)∣∣2 + U(q(t)) ≤ 1

2m
∣∣q̇(t0)∣∣2 + U

(
q(t0)

)
, t ≥ t0,
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so q(t) is bounded for bounded t and we get
global existence in the future. What about the past?
Notice that for k = 0, with no dissipation, we have
global existence since the above argument holds in the
past too.
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◦ Then
∂

∂λ
L
(
t, qλ(t), q̇λ(t)

)∣∣∣
λ=0

=

= d

dt

(
−2e(a+ k

m)tU (q (t))
)

+ e(a+ k
m)t
((
a− k

m

)
m |q̇(t)|2 + 2

(
a + k

m

)
U (q (t))

)
.

(we eliminated q̈(t) using the diff. eq.).

For a = k/m it simplifies and we have
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λ=0

=

= d
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(
−2e(a+ k

m)tU (q (t))
)

+ e(a+ k
m)t
((
a− k

m

)
m |q̇(t)|2 + 2

(
a + k

m

)
U (q (t))

)
.

(we eliminated q̈(t) using the diff. eq.).

For a = k/m it simplifies and we have
� the constant of motion

t 7→ ∂q̇L
(
t, q(t), q̇(t)

)
· ∂λqλ(t)

∣∣
λ=0 −

∫ t

t0

∂

∂λ
L
(
s, qλ(s), q̇λ(s)

)∣∣∣
λ=0
ds =

= e2kt/m
(
m|q̇(t)|2 + 2U

(
q(t)
))

+ 4 k
m

∫ t0

t

e2ks/mU
(
q(s)

)
ds.
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◦ Then
∂
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)∣∣∣
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= d
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(
−2e(a+ k

m)tU (q (t))
)

+ e(a+ k
m)t
((
a− k

m

)
m |q̇(t)|2 + 2

(
a + k

m

)
U (q (t))

)
.

(we eliminated q̈(t) using the diff. eq.).

For a = k/m it simplifies and we have
� the constant of motion

t 7→ ∂q̇L
(
t, q(t), q̇(t)

)
· ∂λqλ(t)

∣∣
λ=0 −

∫ t

t0

∂

∂λ
L
(
s, qλ(s), q̇λ(s)

)∣∣∣
λ=0
ds =

= e2kt/m
(
m|q̇(t)|2 + 2U

(
q(t)
))

+ 4 k
m

∫ t0

t

e2ks/mU
(
q(s)

)
ds.

Since U ≥ 0, the blue integral decreases for t ≤ t0 and
t 7→ e2kt/m

(
m |q̇(t)|2 + 2U(q(t))

)
increases with t for all t ≤ t0 .
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Finally, we have the estimate for t ≤ t0:

m
∣∣q̇(t)∣∣2 ≤ e2k(t0−t)/m

(
m
∣∣q̇(t0)∣∣2 + 2U

(
q(t0)

))
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Finally, we have the estimate for t ≤ t0:

m
∣∣q̇(t)∣∣2 ≤ e2k(t0−t)/m

(
m
∣∣q̇(t0)∣∣2 + 2U

(
q(t0)

))
In a bounded interval (t1, t0] the velocity q̇(t) is bounded,
so also q(t) and we have global existence of solutions.
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�Maxwell-Bloch eq. model laser dynamics (Arecchi and
Bonifacio 1965)

ẋ1 = y1, ẏ1 = x1z,
ẋ2 = y2, ẏ2 = x2z,

ż = −(x1y1 + x2y2).
Physical meaning: (x1 + ix2)/2 complex amplitude of the
electric field; (y1+iy2)/2 polarization of the atomic medium;
z real population inversion.
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�Maxwell-Bloch eq. model laser dynamics (Arecchi and
Bonifacio 1965)

ẋ1 = y1, ẏ1 = x1z,
ẋ2 = y2, ẏ2 = x2z,

ż = −(x1y1 + x2y2).
Physical meaning: (x1 + ix2)/2 complex amplitude of the
electric field; (y1+iy2)/2 polarization of the atomic medium;
z real population inversion.
By

q1 = x1, q2 = x2, q̇3 = z,

Maxwell-Bloch 5-dim. is embedded into the 6-dim.
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variational Lagrangian system

L = 1
2

(
q̇2

1 + q̇2
2 + q̇2

3 + q̇3
(
q2

1 + q2
2)
)
.

q̈1 = q1 q̇3

q̈2 = q2 q̇3

q̈3 = −
(
q1q̇1 + q2q̇2

)
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variational Lagrangian system

L = 1
2

(
q̇2

1 + q̇2
2 + q̇2

3 + q̇3
(
q2

1 + q2
2)
)
.

q̈1 = q1 q̇3

q̈2 = q2 q̇3

q̈3 = −
(
q1q̇1 + q2q̇2

)
�3 known first integrals

E = 1
2
(q̇2

1 + q̇2
2 + q̇2

3), B = q̇3 + 1
2
(q2

1 + q2
2), J = q1q̇2 − q2q̇1.

Invariance under t transl. gives E, under q3 transl. gives
B, and under rotations in the (q1, q2) plane gives J.
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The corresponding Hamiltonian system is
completely integrable.

�Non-uniform scaling family
qλ(t) :=

(
eλq1(t), eλq2(t), eaλq3(t)

)
where a is a parameter. We compute
�

∂

∂λ
L
(
t, qλ(t), q̇λ(t)

)∣∣∣
λ=0

= q̇1(t)2 + q̇2(t)2+

+ aq̇3(t)2 +
(

1 + a

2

)
q̇3(t)

(
q1(t)2 + q2(t)2).

The choice a = −2 simplifies the formula:
∂

∂λ
L
(
t, qλ(t), q̇λ(t)

)∣∣∣
λ=0

= q̇1(t)2 + q̇2(t)2 − 2z(t)2 = 2E − 3q̇3(t)2.
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Using B, the associated constant of motion is

−q̈3(t)− 2Bq3(t)− 2Et + 3
∫ t

t0

q̇3(s)2ds

with only q3. By derivation we get a diff. eq. of order 2 for z(t) = q̇3(t)
z̈(t) + 2Bz(t) + 2E − 3z2 = 0, the so called fish.
Its energy constant of motion
1
2ż

2 + 2Ez +Bz2 − z3 = 2BE − J2/2
is solved for z by quadratures. Using Euler-Lagrange eq. we have

K = 2BE − J2/2
Given initial data q1(0), q̇1(0), q2(0), q̇2(0), q̇3(0) we calculate E,B, J , and
these determine the particular level set to which (z(t), ż(t)) = (q̇3(t), q̈3(t))
belongs for all t.
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Parts are inaccessible, outside the stripe |z| ≤ (2E)1/2, a region forbitten by
energy conservation

q..3

q 3

a. Generic case

q..3

q 3

b. Homoclinic case
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We do not only separate z since eliminating q̇3 by the first 2 Lagrange eq.
q̈1 = q1q̇3, q̈2 = q2q̇3,

by means of the conservation law

B = q̇3 + 1
2
(q2

1 + q2
2),
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We do not only separate z since eliminating q̇3 by the first 2 Lagrange eq.
q̈1 = q1q̇3, q̈2 = q2q̇3,

by means of the conservation law

B = q̇3 + 1
2
(q2

1 + q2
2),

we have the separated central force dynamics

~̈r = −1
2
(
4B − r2) ~r,

~r = (q1, q2), r = |~r|. Here is an orbit of (q1, q2):
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q1

q2

Θ

rmaxrmin
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�For smooth L(t, q, q̇), Q(t, q, q̇), t ∈ R, q, q̇ ∈ Rn, nonvaria-
tional Lagrange equation
d

dt
∂q̇L
(
t, q(t), q̇(t)

)
− ∂qL

(
t, q(t), q̇(t)

)
= Q

(
t, q(t), q̇(t)

)
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�For smooth L(t, q, q̇), Q(t, q, q̇), t ∈ R, q, q̇ ∈ Rn, nonvaria-
tional Lagrange equation
d

dt
∂q̇L
(
t, q(t), q̇(t)

)
− ∂qL

(
t, q(t), q̇(t)

)
= Q

(
t, q(t), q̇(t)

)
�Theorem. Let qλ(t) be a smooth family of perturbed
motions of the solution q(t) to the Lagrange equation.
Then the following func. of t is constant

∂q̇L
(
t, q(t), q̇(t)

)
· ∂λqλ(t)

∣∣
λ=0 −

∫ t

t0

∂

∂λ
L
(
s, qλ(s), q̇λ(s)

)∣∣
λ=0ds

−
∫ t

t0

Q
(
s, q(s), q̇(s)

)
· ∂λqλ(s)

∣∣
λ=0ds .
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�Hydraulic resistance in a bounded potential field:
mq̈ = −k|q̇|q̇ −∇U

(
q(t)
)
, q ∈ Rn,

m, k > 0 parameters, and the smooth potential is bounded:
0 ≤ U(q) ≤ Usup < +∞ ∀q ∈ Rn.

Global existence in the future by the same argument on
energy used for viscous resistance where U ≥ 0.
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�Hydraulic resistance in a bounded potential field:
mq̈ = −k|q̇|q̇ −∇U

(
q(t)
)
, q ∈ Rn,

m, k > 0 parameters, and the smooth potential is bounded:
0 ≤ U(q) ≤ Usup < +∞ ∀q ∈ Rn.

Global existence in the future by the same argument on
energy used for viscous resistance where U ≥ 0.

Scalar example mq̈ = −k|q̇|q̇, q ∈ R, nonconstant solutions
q(t) = m

k log(ω(t− t0)), parameters ω > 0, t0 ∈ R, defined for
t > t0, non-global in the past.
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�Lagrange nonvariational formulation with

L(t, q, q̇) := 1
2
m|q̇|2 − U(q), Q(t, q, q̇) := −kq̇|q̇|.
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�Lagrange nonvariational formulation with

L(t, q, q̇) := 1
2
m|q̇|2 − U(q), Q(t, q, q̇) := −kq̇|q̇|.

Family qλ(t) := q(t + λe−at), with a > 0 parameter, from the theorem, and
integration by parts we get
m

2
e−at|q̇(t)|2 + e−atU

(
q(t)
)
− e−at0U

(
q(t0)

)
+

+ 1
2

∫ t

t0

e−as
(

2k|q̇(s)|3 + am|q̇(s)|2 + 2aU
(
q(s)

))
ds ≡ m

2
e−at0|q̇(t0)|2.

This fact, and 0 ≤ U(q) ≤ Usup < +∞, give the following inequality
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� for t < t0:
m

2
e−at0|q̇(t0)|2 ≤

m

2
e−at|q̇(t)|2+e−atUsup+1

2

∫ t

t0

e−as
(

2k|q̇(s)|3+am|q̇(s)|2
)
ds
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� for t < t0:
m

2
e−at0|q̇(t0)|2 ≤

m

2
e−at|q̇(t)|2+e−atUsup+1

2

∫ t

t0

e−as
(

2k|q̇(s)|3+am|q̇(s)|2
)
ds

An a priori estimate, for all values of the parameter a > 0, gives

Conclusion: All the solutions such that the initial kinetic energy satisfies
m

2
|q̇(t0)|2 > Usup

explode in the past in finite time.
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� for t < t0:
m

2
e−at0|q̇(t0)|2 ≤

m

2
e−at|q̇(t)|2+e−atUsup+1

2

∫ t

t0

e−as
(

2k|q̇(s)|3+am|q̇(s)|2
)
ds

An a priori estimate, for all values of the parameter a > 0, gives

Conclusion: All the solutions such that the initial kinetic energy satisfies
m

2
|q̇(t0)|2 > Usup

explode in the past in finite time.
We also applied the nonvariational theorem to the (more complicated) dissipative Maxwell-Bloch eq.
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Thank you
for your attention
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