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Introduction

For the weaken Hilbert’s 16th problem, many researchers studied the
perturbations of the integrable non-Hamiltonian system:{

ẋ = yh(x, y) + εp(x, y),
ẏ = −xh(x, y) + εq(x, y),

(0.1)

where h(x, y) is a polynomial in x and y with h(0, 0) 6= 0, p(x, y)
and q(x, y) are polynomials of degree n. We remark σ the maxi-
mum number of limit cycles bifurcating from the periodic orbits of the
unperturbed system (0.1).
Giacomini et al. [3] obtained σ = [n−1

2 ] for (0.1) h(x, y) ≡ 1 up to
first order in ε. Llibre et al. [5, 6] studied system (0.1) with h(x) =
1+x and obtained n limit cycles by using the averaging theory of first
order, and obtained at most 2n−1 limit cycles by using the averaging
theory of second order. Xiang and Han [7] studied system (0.1) with
h(x) = (1−x)m and they obtained the upper bound of the number of
limit cycles is n+m− 1 by using the Melnikov function of first order,
and when m = 1, the upper bound is reached. Gasull et al. [4] studied
system (0.1) with h(y) = (1−y)m and obtained σ ≤ [m+n

2 ]−1 when
n < m − 1 and σ ≤ n when n ≥ m − 1 by using the Melnikov
function of first order.
There are many works about (0.1), eg. Buică Coll and libre et al.
studied the case with h(x, y) = y2+ax2+bx+c or (x+a)(y+b)(x+c)
etc. by using the averaging theory or Melnikov function of first order.
Because of the complexity of calculating and studying the Melnikov
function of high order, there are few papers studying the perturbations
of integrable systems by the Melnikov function of any high orders.
Francoise [2] provided a algorithm to calculate the Melnikov function
of high order, and Iliev gave a method for calculating the Melnikov
function of second order with elliptic or hyperellipitic Hamiltonians
under polynomial perturbations, and it also gave an explicit expression
of M2(h). Recently Gavrilov and Iliev studied a cubic system in the
plane which is a polynomial Hamiltonian system of degree 4 under
cubic polynomial perturbations by using the Melnikov function of high
order.
At the same time, there are also few papers that studied system (0.1)
by using the Melnikov function of high order. Buică et al. [1] studied
system (0.1) with h(x, y) = 1 + x under quadratic perturbations and
they proved the upper bound of the number of limit cycles is 3 by the
Melnikov function of the first three order.

1. Main results

In this paper, we consider system (0.1) with h(x, y) = (1 +ax+ by)2

with b 6= 0. Doing some linear changes of variables, system could be
written as, {

ẋ = y(1 + x)2 − εP (x, y),

ẏ = −x(1 + x)2 + εQ(x, y),
(0.2)

where ε > 0 is a small parameter and

P (x, y) = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2,

Q(x, y) = b00 + b10x + b01y + b20x
2 + b11xy + b02y

2.

The unperturbed system has the first integral H(x, y) = 1
2(x2+y2) =

h with h0 ∈ (0, 1/2) in the region 0 < x2 + y2 < 1. If we fix a
transversal segment to the flow in (0.2) and use the energy level h to
parameterise it, we can get the corresponding displacement function,

d(h, ε) = εM1(h) + ε2M2(h) + ε3M3(h) + · · · , h ∈ (0,
1

2
), (0.3)

where Mk(h) is called the Melnikov function of k−th order of system
(0.2). It’s well known that the Melnikov function of first order of
system(0.2) has the form

M1(h) =

∮
Γ(h)

Q(x, y)

(1 + x)2
dx +

P (x, y)

(1 + x)2
dy,

Theorem 0.1 For k ≥ 1, let Mk(h) be the Melnikov functions as-
sociated to system (0.2). Then M1(h) has at most 2 zeros, tak-
ing into account their multiplicities. If M1(h) ≡ 0, then M2 has
also at most 2 zeros, taking into account their multiplicities. If
M1(h) ≡ M2(h) ≡ 0, then M3 has also at most 2 zeros, taking
into account their multiplicities. If M1(h) ≡ M2(h) ≡ M3(h) ≡ 0,
then M4 has at most 3 zeros, taking into account their multiplicities.
If M1(h) ≡ M2(h) ≡ M3(h) ≡ M4(h) ≡ 0, then Mk(h) ≡ 0 for all
k ≥ 5, namely, the perturbation is integrable. Therefore, taking into
account the expansion of the displacement map (0.3) of any order in
ε, the system (0.2) has at most three limit cycles which bifurcate from
the period annulus of the unperturbed system and this upper bound
of the number of limit cycles is reached.

Theorem 0.2 The perturbation (0.2) is integrable if and only if at
least one set of the following conditions is satisfied:
1) a00 = a02 = a10 = a20 = b01 = b11 = 0;
2) a00 = a10 = −b01, a01 = a11 = −2b02, a02 = a20 = b11 = 0;
3) a00 = a20 − b01, a01 = a11, a10 = 2a20 − b01, b02 =
−1

2a11, a02 = b11 = 0;
4) a00 = a10 = a20 = b00 = b01 = b02 = 0, a02 = b11, b10 =
a01, b20 = a11.

Remark 0.1 Consider the system (0.1) with h(x) = (1 + x)m, Buică
et al. [1] studied case m = 1 and the perturbation polynomials of
degree n = 2 by using the Melnikov functions up to three order. And
they obtained three limit cycles by the Melnikov function of third order.
They stopped at the Melnikov function of fourth order because of its
complexity. With regard to the results of the two articles, we can
clearly observe the differences between them in the following

M1(h) M2(h) M3(h) M4(h) M5(h)
(1 + x) 2 2 3 – –

(1 + x)2 2 2 2 3 0

Remark 0.2 Gasull et al. [4] considered system (0.1) with h(x, y) =
(1+x)m under perturbations of polynomials in degree n and obtained
the upper bound of the number of limit cycles is n when n ≥ m− 1
by the Melnikov function of first order. That means the value m in
(1+x)m has no influence on the number of limit cycles by the Melnikov
function of first order when n ≥ m− 1. While by using the Melnikov
function of high order, the upper bound of the number of limit cycles
is related to the degree m. For m = 2 and n = 2, in the present
paper we find the upper bound of the number of limit cycles is 3 by
the Melnikov function of the 4th high order.

2. Preliminaries

The algorithm of calculating Mk(h) is given by Francoise [2] and Iliev.

Lemma 0.1 Assume Γh are the period annulus defined by H(x, y) =
h, the polynomial function H(x, y) and the 1−form ω satisfy

∮
Γh
ω ≡

0, if and only if there are two analytic functions q(x, y) and Q(x, y)
in a neighborhood of Γh such that

ω = qdH + dQ.

�

Rewrite ω as

ω =
Q(x, y)

(1 + x)2
dx +

P (x, y)

(1 + x)2
dy,

then the system (0.2) can be written in a Pfaffian form dH = εω. Fol-
lowing Francoise’s algorithm [2] and Lemma 0.1, we give the following
lemma:

Lemma 0.2 The Melnikov function of first order is given by M1(h) =∮
Γh
ω, rewrite ω in the form ω = q̄0dH + dQ̄0 + N0, then M1(h) =∮

H=h ω =
∮
H=hN0;

If M1(h) ≡ 0, that is
∮

Γh
N0 ≡ 0, according to Lemma 0.1, we

have N0 = q̃0dH + dQ̃0. Denote by q0 = q̄0 + q̃0, Q0 = Q̄0 + Q̃0.
In this way, ω = q0dH + dQ0, write q0ω in the decomposed form
q0ω = q̄1dH + dQ̄1 + N1, then M2(h) =

∮
Γh
q0ω =

∮
Γh
N1;

if M1(h) = M2(h) = · · · = Mi−1(h) ≡ 0, according to Lemma 0.1,
qjω, j ≤ i− 2 can be written as qjω = qj+1dH + dQj+1, and when
j = −1, we assume q−1 = 1. Then we have Mi(h) =

∮
Γh
qi−2ω =∮

Γh
Ni−1, where qi−2ω = q̄i−1dH + dQ̄i−1 + Ni−1. �

Denote by

ωkij =
xiyj

(1 + x)k
dx, δkij =

xiyj

(1 + x)k
dy, 0 ≤ i + j ≤ k, k ≥ 1

and

Jk(h) =

∮
H(x, y)=h

δk00, k ≥ 1. (0.4)

Then we claim that Jk(h) are the generators ofMi(h). In the following
we decompose ωkij, δ

k
ij into the combination of δk00, hkij(x, H)dH

and dQkij(x, H), where dQkij are the forms of perfect differential of
functions in variable of x and H.

Lemma 0.3 All the 1-forms ωij and δij can be expressed as follows:
(i) For 0 ≤ i + j ≤ 2 with k = 2, we have

ω2
00 = d(− 1

1 + x
), ω2

01 = d(− y

1 + x
) + δ1

00,

ω2
02 =

2

1 + x
dH + d(− 2H

1 + x
− x +

1

1 + x
+ 2ln(1 + x)),

ω2
11 =

y

(1 + x)2
dH − 2Hδ2

00 + δ2
00 − 2δ1

00 + dy,

ω2
10 = d(ln(1 + x)− x

1 + x
), ω2

20 = d(x− 1

1 + x
− 2ln(1 + x)),

δ2
01 =

1

(1 + x)2
dH − d(ln(1 + x)− x

1 + x
), δ2

10 = δ1
00 − δ

2
00,

δ2
11 =

x

(1 + x)2
dH − d(x− 1

1 + x
− 2ln(1 + x)),

δ2
20 = δ2

00 − 2δ1
00 + dy, δ2

02 = 2Hδ2
00 − δ

2
00 + 2δ1

00 − dy.

(ii) For 0 ≤ i + j < k with k > 2, we have
if j is even,

ωkij = hkij(x, H)dH + d(Qkij(x, H)),

δkij =

j/2∑
r=0

(2H)rL(δ
k−i−j+2r
00 , · · · , δk00),

if j is odd, · · ·
where hkij and Qkij are functions of x and H, and L(δ1

00, · · · , δ
k
00) is

the linear combination of δl00(l = 1, 2, · · · , k) in Z.

3. Outline of Proof

With the above notations, ω can be written as the following form,

ω = a00δ
2
00 + a10δ

2
10 + a01δ

2
01 + a20δ

2
20 + a11δ

2
11 + a02δ

2
02

+ b00ω
2
00 + b10ω

2
10 + b01ω

2
01 + b20ω

2
20 + b11ω

2
11 + b02ω

2
02.

The first Melnikov function is

M1(h) =

∮
H(x, y)

N0 = A1J1(h) + A2J2(h) + A3hJ2(h),

where J1, J2, hJ2 are independent,

A1 = b01 − 2b11 + a10 − 2a20 + 2a02

A2 = b11 + a00 − a10 + a20 − a02

A3 = 2a02 − 2b11.

Theorem 0.3M1(h) has at most two zeros, namely, system (0.2)
has at most two limit cycles by the Melnikov function of first order,
which can be reached.

If M1(h) ≡ 0, then A1 = A2 = A3 = 0, that is,

a00 = a20 − b01, a10 = 2a20 − b01, a02 = b11.

From Lemma 0.2, we have

M2(h) =

∮
H(x, y)=h

N1 = B1J1(h)+B2J2(h)+B3J3(h)+B4hJ3(h),

Theorem 0.4 If M1(h) ≡ 0, M2(h) has at most two zeros, namely,
system (0.2) has at most two limit cycles by the Melnikov function of
second order, which can be reached.

If M1(h) = M2(h) ≡ 0, we have

−B1 = B1 −B2 +
3

4
B4 = B2 −

3

2
B3 −

3

2
B4 =

3

2
B3 +

3

4
B4 = 0.

that is, one of (1)-(3) in Theorem 0.2 and the following case A holds

b11 6= 0, a00 = a20 − b01, a02 = b11, a10 = 2a20 − b01,

b00b11 = −2a01a20 + 2a01b01 + a11a20 − a11b01 − 2a20b02 + 2b01b02,

b10b11 = −2a01a20 + a01b11 + a11b01 − 4a20b02 + 2b01b02 + b02b11,

b20b11 = −a11a20 + a11b11 − 2a20b02 + b02b11.

Theorem 0.5 If one of cases (1)-(3) holds, then Mk(h) ≡ 0, k ≥
3, that is the perturbation (0.2) is integrable.

Theorem 0.6 If M1(h) = M2(h) ≡ 0, and case A holds, M3(h) has
at most two zeros, namely, system (0.2) has at most two limit cycles
by the Melnikov function of third order, which can be reached.

In fact, we obtain

M3 = C1J2(h) + C2J3(h) + C3J4(h) + C4hJ4(h) + C5J5(h) + C6hJ5(h),

= − π

(
√

1− 2h)9
h(2h− 1)(c2h

2 + c1h + c0).

Now if M1(h) = M2(h) = M3(h) ≡ 0, we get the case (4) in
Theorem 0.2 and other three cases (4b), (4c) and (4d).

Theorem 0.7 Assume that (4) in Theorem 0.2 holds, which implies
M1(h) = M2(h) = M3(h) ≡ 0, we have Mk(h) ≡ 0, k ≥ 4, that is
the perturbation (0.2) is integrable.

We obtain the fourth Melnikov function M4 from Lemma 0.3

D1J3+D2J4+D3J5+D4hJ5+D5J6+D6hJ6+D7J7+D8hJ7+D9h
2J7.

Theorem 0.8 Assume M1(h) = M2(h) = M3(h) ≡ 0, then

(i) if case 4b holds, M4(h) has at most one zero,

(ii) if case 4c holds, M4(h) has at most two zeros,

(iii) if case 4d holds, M4(h) has at most three zeros.
Moreover, the zeros of M4(h) can be reached, and M4(h) 6≡ 0.

In fact, for the case (4d), we have

M4(h) = ∗(d̄3h
3 + d̄2h

2 + d̄1h + d̄0).

Its coefficients are depend on two parameters. Its three zeros are
obtained by asymptotic analysis.
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