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PART ONE: BACKGROUND AND MOTIVATION



A standard example: Michaelis-Menten

Chemical reaction network (CRN) with mass action kinetics:
k
E+S k:l CREtp
-1

Differential equation for concentrations by standard procedure:

s = —kies + k_jc,

¢ = kies — (k_l + kQ)C,
é = —kies + (k-1+ ko)c,
b = k2C.

Initial values s(0) = sp, ¢(0) =0, e(0) = e, p(0) =0 and
stoichiometry (linear first integrals e + ¢ and s 4+ ¢ + p):

$ =— kieps + (kis+ k-1)c,
c = kleQS — (k1s—|—k_1+k2)c.



QSS for Michaelis-Menten: Ancient history

Differential equation

5 =— kies + (kis+ k-1)c,
c = kiegs — (k1$+k_1+k2)c.

Quasi-Steady State (QSS); Briggs and Haldane (1925):
QSS for complex C means ¢ = 0; more precisely

O:klegs—(kls—l—k,1+k2)c:>c:---

(Briggs and Haldane: Biochemical argument for QSS assumption,

for small e.)
Substitution into § = - - - yields the Michaelis-Menten equation

kikoegs
kis+ k_1+ ko



QSS for Michaelis-Menten: More recent history

Heineken, Tsuchiya und Aris (1967): Singular perturbation
reduction of

S = —kiegs+ (k15 + k_l)C,
¢ = kiegs — (kis+ k-1 + ko)c.

Small enzyme concentration; interpretation ¢y = cej, € — 0.
Scaling: Set c* := c¢/e; then

s = e(—kise§ + (kis + k_1)c*),
c* = kis— (kis + k_1 + ko)c*

ready for application of Tikhonov's theorem. Reduction yields
Michaelis-Menten equation.
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Tikhonov and Fenichel: Basic theorem

System with small parameter ¢ in standard form

x1 = f(x, x)+e(...), x1 € DCR,
Xy =ceh(x, x2)+e2(...), xo € G C RS,
Slow time 7 =ct:  ex; = A(x1, x2)+ -, x5 = h(x, x2)+ - .

Assumptions: (i) Nonempty critical manifold

7= {(yh )T €D xG; filyr, yo) = 0};

(i) there exists v > 0 such that every eigenvalue of D1fi(y1, y2),
(y1,¥2) € Z has real part < —v.

Theorem. There exist T > 0 and a neighborhood of Z in which,
as € — 0, all solutions converge uniformly to solutions of

xb = fo(x1, x2), f(x1, x2) =0 on [to, T] (to > 0 arbitrary).



Differential equations for CRN

Typical for chemical reaction networks: Parameter dependent
ordinary differential equation

%= h(x,7), xeR", weR"
with polynomial right hand side.

Why? Mass action kinetics, thermodynamical conditions fixed;
spatially homogeneous. Parameters: Rate constants, initial
concentrations.

Question: How do singular perturbation reductions enter this
picture? (A priori: No £, no slow-fast separation.)



Transfer to standard setting

Parameter dependent system

x = h(x,m)
versus
Xy = fl(Xl, X2) + € (),
X2 = ehxy, x2)+e?(...).

Preliminary step: For suitable 7 (to be determined) consider
system

Suitability of 7 implies: Scenario is singular, i.e. the vanishing set
of g(® contains a submanifold Z of dimension s > 0.
(Proof. Look at standard system when ¢ = 0.)



Tikhonov-Fenichel: Identification

Proposition. Assume dimZ = s > 0. Then
x = gO(x) + egW(x) +£2...

admits a coordinate transformation into standard form and
subsequent Tikhonov-Fenichel reduction near every point of Z if
and only if
(i) rank Dg®(x) = r :=n—s for all x € Z;
(i) for each x € Z there exists a direct sum decomposition
R" = Ker Dg(®(x) & Im Dg(®(x);
(iii) for each x € Z the nonzero eigenvalues of Dg(®)(x) have real
parts < —v < 0.

Remaining problem: Explicit computation of coordinate
transformation is generally impossible.



Tikhonov-Fenichel: Coordinate-free reduction

Singularly perturbed system
x' = 1gO(x) + gW(x) + ...

with Z C V(g(©) satisfying conditions (i), (ii) und (iii); a € Z.
Decomposition: There is a Zariski-open neighborhood U, of a
such that

g"%(x) = P(x)u(x),
with p(x) € R(x)™t, P(x) € R(x)™", rank P(a) = r,
rank Dp(a) = r, and (w.l.o.g.) V(e N U, =V(p)NU, = Z.
Reduction: The system

X' = [l = P()A(x) ' Dp(x)| gV (x),  with A(x) := Dpu(x)P(x)

is defined on U; and admits Z as invariant set. The restriction to
Z corresponds to the reduction via Tikhonov's theorem as ¢ — 0.



Finding suitable parameter values

Definition: We call © a Tikhonov-Fenichel parameter value
(TFPV) for dimension s (1 < s < n—1) of x = h(x, ) if the
following hold:
(i) The vanishing set V(h(-, 7)) of x = h(x,7) contains a
component Y of dimension s;

(ii) there is a € Y and neighborhood Z of ain Y such that
rank Dyh(x,7) =n—s and

R" = Ker Dyh(x,7) & Im Dyh(x,7), forall x € Z;

(iii) the nonzero eigenvalues of D, h(a, ) have real parts < 0.

Note: Conditions by copy-and-paste (more or less) from
characterization above. Therefore reduction works for small
perturbations T +¢ep + - - - .



TFPV: Characterization

Denote the characteristic polynomial of the Jacobian D, h(x, ) by
X(7, %, 1) = 7"+ op1(x, T)T - o1 (x, T)T + 0o(x, T).

Proposition. A parameter value 7 is a TFPV with locally
exponentially attracting critical manifold Z = Z; of dimension
s >0, and xg € Z;, if and only if the following hold:

> h(X0,7/f) =0.
» The characteristic polynomial x(7, x, ) satisfies
(i) oo(x0, ™) =+ =0s-1(x0,7) =0;

(ii) all roots of x(7, x0,7)/7° have negative real parts.

» The system X = h(x,7) admits s independent local analytic
first integrals at xp.



Why the first integrals?

Proposition. A parameter value 7 is a TFPV, and xg € Zs, if and
only if the following hold:

> ...
» The system X = h(x,7) admits s independent local analytic
first integrals at xp.

Underlying reason: Consider Poincaré—Dulac normal form for

0 O

) . B* e R)x("=5) ReSpec B* < 0.

System admits an s-dimensional local manifold of stationary points
iff there are s independent first integrals. (Convergence? QNF!)

Note. First integrals appear naturally in CRN (stoichiometry).



TFPV: Computation and structure

Properties of TFPV 7 for dimension s:

» Vanishing set Z of h(-,7) has dimension s: "“More equations
in x than variables”; elimination theory allows a start.

» All nonzero eigenvalues of Dyih(x,7), x € Z, have real parts
< 0: Hurwitz-Routh provides inequalities.

» Further conditions from existence of first integrals.

Theorem.The TFPV for dimension s of a polynomial (or rational)
system x = h(x, ) with nonnegative parameters (and x in the
nonnegative orthant) form a semi-algebraic subset s C R™.



TFPV for Michaelis-Menten
System

5§ =— kiegs + (k15 + kfl)C,
c = kleos — (kls + k_l + kQ)C
with Jacobian determinant d = ki kp(ey — ¢).

Three equations (also d = 0): Eliminate s and c.

Result: A TFPV (&, ki, k_1, k») satisfies

Small perturbations yield all relevant cases:

el & 3

€ €
kl or 6kik or kl or kl
k_1 k—1 ko1 ekZy

k2 ko ek} eki



Michaelis-Menten: Some reductions

» Small enzyme concentration ey = cej: Familiar result.

» Slow product formation:

s =— k]_eoS + (kls—l-k_l)c

c = kieops — (kis+k_1)c — ekjc.

Decomposition g0 = P - 11 with

P = (_11> , b= kiegs — (kis + k_1)c.

Reduced equation (on Z = V(u)):

s/ . 1 x kis+ k_q .
] ki(ep—c)+ kis+ kg \* ki(eo—c)

0
—k5c

) |



Further example: Competitive inhibition

Michaelis-Menten network with inhibitor:

E+5_‘C1 E+P, E+/_‘C2

Mass action kinetics and stoichiometry lead to ODE

s = k_1C1 — kls(eo — C — C2),
&t =kis(eo — a1 — @) — (k-1 + k2)ca,
C‘Q = k3(e0 —C — C2)(i0 — C2) — k_3C2.



Competitive inhibition: TFPV

System
s = k_1C1 — kls(eo —C — CQ),
& = kis(eo — a1 — @) = (k-1 + ko)ci,
Cz = k3(e0 —C — C2)(fo — C2) — k_3C2

with Jacobian determinant

d(x,m) = —kika(eo — c1 + 2)(k—3 + k3(io + e0) — k3(2c2 — c1)).

Four equations for three variables: Elimination ideal has radical
T = (egkikok_3(K3(eo — io)? + k_3(k_3 + 2k3(eg + ip)))

with single generator. This yields candidates for [1; by setting
eo =0, resp. ks =0, ...



Competitive inhibition: One of the reductions

System with “small” ey = cej. Here

kis + k_1 kis c
g = | —(kis + ko1 + ko) —kis : <c;> ;
—k3(io — ) —k3(ip — ) — k_3
—kyse;
g(l) = kise;

k3€6(i0 — C2)
Critical variety Z defined by ¢; = ¢, = 0; reduced system

5' _ k1k2k_3ef§s C/ _ C/ =0
kik s+ (ko +k)(ksio+k3) 7+ 2T

Note: “Classical” QSS reduction procedure yields the same result.
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A well-known predator - prey system
Rosenzweig and MacArthur:

B = pB(1-B)- #2%BR,

R = —0R+ {2%BR.

(B stands for prey, R stands for predator. All parameters positive.)

Questions:
» How to to derive this specific equation from “first principles”?
» Biological interpretation of the parameters?

Approach presented here:

» Start from individual-based (stochastic) model with mass
action type interactions (“first principles”).

» Pass to ODE (“large volume limit")

P> Look at singular perturbation reductions.



Start from individual based model

Three dimensional model with prey B, saturated predators S
and hungry predators H; R = H + S.

Differential equation derived from stochastic model:

B pB(1— B) — aBH
5 -nS +vBH
H = BS—6H+nS—yBH.

Parameters have clear biological interpretation;
e.g. p is birth rate of prey, 1 is rate of transition from saturated to
hungry, ...



Rosenzweig-MacArthur via reduction

Educated guess: The system

B = pB(1—B)—aBH
S = —n5+9BH
H = BS—6H+nS—~BH

admits the TFPV
#:=(0, @ 0, 3, 0, &)
thus p=n=p5=0.
Singular perturbation reduction (straightforward) yields
Rosenzweig-MacArthur.

Problem (non-mathematical): Biological interpretation of small
parameters (slow vs. fast processes).



TFPV and reductions of 3D system

Systematic approach rather than guesswork: Determine all

TFPV of ,
B = pB(1-B)—aBH

_5 = —nS++BH
H = pBS—6H+nS—~BH
for dimension s = 2 of the critical manifold.

» Necessary conditions (via elimination ideals):

pno = pyd = and = pyp = 0.

» Roughly two dozen cases, not all yielding a TF reduction.
» 15 TF reductions; among these four interesting ones.
» One of these is Rosenzweig-MacArthur (above).

> Another one to be discussed next.



A variant of Rosenzweig-MacArthur

One result of systematic approach: The differential equation

B = pB(1—B)—aBH
S = —n5+9BH
H BS —6H +nS —yBH

admits the TFPV
= (0, 0, @ 7 0, 0

with reduced equation (here p = ¢p* etc.)

B = p*B(1-B)— *%BR

i
/ *
R = —5"5lgR+ 47BR.

More satisfactory from biological (modelling) perspective.
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“Classical” QSS reduction

“Classical” QSS reduction, following Briggs/Haldane (1925) in
more general setting: Consider system

x = ay(x)+Au(x)z + e(ai(x)+ Ai(x)z)

+
z = bo(x)+ Bo(x)z + e(bi(x)+ Bi(x)z) +

and assume that By(x) is invertible for all x. (Not the most

general setting but the most relevant.)

Elimination of z via QSS assumption:
Solve “z = 0" and substitute expression for z in first equation.

Observation: Reduction is not necessarily meaningful!

Minimal requirement for consistency:

(Dbo(x) — DBo(x)(Bo(x) " bo(x)) ) (a0(x) — Ao(x)Bo(x) " bo(x)) = 0.



“Classical” QSS vs. singular perturbations

System

x = ap(x)+A(x)z + e(a1(x)+ Ai(x)z) +
z = bo(x)+ Bo(x)z + e(bi(x)+ Bi(x)z) +

with By(x) is invertible for all x.

» Minimal requirement for consistency of QSS reduction:
(Dbo - DBO(Bglbo)) (ao - AoBglbo) — 0.

(Argument x suppressed.)

» Necessary for Tikhonov—Fenichel reduction with critical
manifold Y prescribed by by(x) + Bo(x)z = 0:

ao(X) — Ao(X)Bo(X)_lbo(X) =0

for all x.



Tikhonov-Fenichel reduction

Reduction with prescribed critical manifold Y: With
w(x) := Bo(x) tho(x), thus z = —w(x) on Y

one has
bo(x) + Bo(x)z ) ( )
ao(x) + Ao(x)z = Ao(x)(w(x)+ z).

Use reduction theorem for

[ ao(x) + Ao(x)z _ [(ai(x)+ Ai(x)z
g% (x.2) = (b?)(x) + B?J(X)Z> . g = < 1 ) ’

|
2
x



Reduced systems

Abbreviation:
M := Dw Ay By + I,
Proposition.

(a) The reduced equation by singular perturbation theory, in slow
time 7 = €t, on Y yields the system

g — (], — Ay Byt M2 DW) (a1 — Arw)
~ (Ao Byt M) (b1 — Buw).

(b) The reduction by the classical QSS procedure yields, in slow
time, the system

dx _
E = (al — Alw — AoBO 1(b1 — Blw)) —f—E(' .- )



Agreement and disagreement

Corollary. The classical QSS reduction agrees with the singular
perturbation reduction (up to higher order terms in ¢) if and only if

AoBy*M™t Dw(AgByt (Biw — by) — (Aiw — a1)) = 0.

Given this, Tikhonov's theorem also applies to the QSS reduction.

The condition holds in the following scenarios:
» Dw =0, thus w is constant.
> Ap = 0: System is in Tikhonov standard form.
> AOBO_1 (Biw — b1) = Aiw — a;: Both reductions trivial.

But in general QSS heuristic and singular perturbation reduction
yield substantially different results, and reduction by QSS is
incorrect.



An incorrect QSS reduction

Popular example: Irreversible Michaelis-Menten equation

S =— kies + (k1$+ k_1)C
c = kieos — (kis+k_-1)c — ekjc
with slow product formation; ky = ck;.
Tikhonov-Fenichel reduction on critical manifold Y (given by

kiegs — (kls -+ k_1)C = 0)2

_ k2k1605(k15 + k_l)
ke + (kis+ koq)?

QSS reduction for complex:

_ k2k1€0$ _ k2k1605
k15 + k_l + k2 N k1$ + k_l

These differ significantly (and QSS is wrong)!



Reduction for parameterized critical manifolds

Recall coordinate-free reduction for system

!/

x' = 1gO(x) + gW(x) + ...

on critical manifold Z: Use decomposition g(©)(x) = P(x)u(x) to
get reduced system

X = Q()gM(x),  Q(x) = [In — P(x)A(x)Dpu(x)] -

Problem: Feasibility for the computation of projection matrix Q.

Alternative approach when parameterization known:
Given open set W C R® and smooth parameterization

¢: W — Z, rankD®(v)=s forallve W.



Reduction for parameterized CM

Observation: Every solution x(t) of the reduced system with
initial value in ®(W) can be written as x(t) = ®(v(t)). Thus

Do(v(1)) v'(t) = X(1) = Q(&(v(t))) - gD ((v(1))).

Theorem.
(a) For every v € W there exists a unique R(v) € RS*" such that

Q(®(v)) = DO(v) - R(v).

(b) The reduced system, in parameterized version, is given by

(c) For every x € Z let L(x) € R**" be of full rank s and such
that L(x)P(x) = 0. Then

-1

R(v) = (L(®(v)) DO(v)) ~L(®(v)).



Application to CRN: Fast and slow reactions

Differential equation for network with slow and fast reactions:
X = N¢ - (Keox") +eNs - (Ks 0 x™)

Notation: Nf and N; are stoichiometric matrices, and one has rate

vectors
wi(x) = Krox",  wg(x) = Ksox™

with vectors of reaction constants Kr, Ks. (Here o denotes
elementwise product, x? = [ x for vectors, similarly for matrix
exponents.)

Observation: If r denotes the rank of Dg{®)(x), x € Z, then
rank Nf > r, but inequality may be strict.

Rank condition. We impose that rank Ny = rank Dh(®)(x) = r,
for all x € Z.



Reduction for fast and slow reaction systems

Proposition. Given the system with slow and fast reactions, and a
parameterization ® of the critical manifold, assume the rank
condition holds on ®(W).

Let Ly € R**" be a matrix whose rows form a basis of the
left-kernel of N¢. Then R(v) = (L¢ D<D(v))_1Lf, and the reduced
system is given by

V = (L DO(v)) TLe Ng - (Koo d(v)Y),  veW.

Remark.

» Parameterization ® of the stationary points for the fast
system is needed. But for many relevant reaction networks
such parameterizations are known.

» Closed form reductions like the above are preferrable from an
applied perspective.



Thank you for your attention!
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