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Biological framework

A network is any collection of units potentially interacting as a
system.



Biological framework
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Biological framework
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Biological framework

The typical example of network in Biology is a food web.
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Biological framework

Mutualistic networks:
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Biological framework

Metapopulation: a group of spatially separated populations of
the same species that interact at some level.
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Biological framework
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Figure: Fragmented habitat of the Iberian Linx



Biological framework

Figure: Ecological corridor



Biological framework

Figure: Patches of different qualities: sources and sinks



Biological framework

Figure: Sources and sinks: no-take zones




Objective: given a fragmented habitat, to
design the optimal connection network to
maximize the total population



Objective: given a fragmented habitat, to
design the optimal connection network to
maximize the total population

(Other objectives like sinchronization are possible )



Mathematical model

Sources:

xi=rx(1-x/K), i=1,...m
Sinks:

; :
X = —rX;, i=m+1,...,n



Mathematical model

Isolated nodes are connected through a connectivity matrix
A = (aj), giving rise to the system

n
X = fi(x)+hY_ ajx;
=

where h is a parameter for the intrinsic mobility of the species.



Mathematical model

The connectivity matrix A verifies
@ g; >0ifi#]
° ZI’-’:1 a; = 0 (no cost of dispersal)
Let us denote this family of matrices by M.



Mathematical model

Figure: Representation of a network architecture with five patches.
There exist many matrices associated with this network.



Mathematical model

Two matrices A = (a;;) and A= (aj) represent the same
network architecture when

aj>0+3a;>0

forall i # j.

A network architecture is symmetric when a; > 0 implies that
a; > 0. In other words, if there exists a link from patch j to
patch i, then there exists a link from patch i to patch j as well.
Finally, the movement is symmetric if a; = aj, that is, an
individual moves from patch i to patch j with the same
probability as from j to i. Obviously, a symmetric movement
implies a symmetric network architecture but not vice-versa.



Main problem

n
X/-/ = f,'(X,') + hz ajiX;
j=1



Main problem

n
x| = i) +hy_ ayx
j=1
For a given A € M, let p(A) = (p1, ..., Pn) be the non-trivial
equilibrium and T(A) = p1 + - - - + pn the total population. How
to maximize it?



X1, =nXxq (1 — )l%) + dbhxo — dihxy
Xé = —roXo + dihxy — dbhXxo.



X1, =nXxq (1 — )l%) + dbhxo — dihxy
Xé = —roXo + dihxy — dbhXxo.

. ro d1h d1h
T(dy, db) = ki (1 o r2+d2h> (1 +r2+d2h>




{ X1, = X (1 — )l%) + dbhxo — dy hxq

Xé = —roXo + dihxy — dbhXxo.
. ro d1h d1h
T(dy, ) = ki (1 - r1r2+d2h) (1 + r2+d2h>

If o > ry, T(dy, db) is always less than the carrying capacity of
the source.



X1, = Xy (1 — )l%) + dohxo — dihxy
Xé = —raXo + dihxy — dohxo.

o ro d1h d1h
T(d1,dz) = kq (1 .y r2+d2h> (1 + r2+d2h>

If 1 > rp, the maximum of T(dj, d) is achieved for any value of
di, ds linked by the relation
adih =D
rr+ dbh N 2

and it has the value

(r1 +f2)2‘ )

KM - k1 4I’1 ro

We stress that Ky > ky forall ry, o > 0.
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Figure: The thick line represents the values of dj, d» for which Kj, is achieved. (Left)
We employed the parameters r{ =2, = 0.5,k =3 and h = 1. In this case, p > 1.
Since the line does not cross the bisectrix, a symmetric movement can not produce the
maximum value of the metapopulation. (Right) We used the parameters
rn=2,rn=1k =3,and h= 1. Now, p < 1 and K), can be attained at a suitable
symmetric movement, namely dy = db ~ 1.



Figure: Representation of the difference between Kj, and the maximum of T(d, d)
as a function of r; and r,. We employed the parameters ky = 1 and h = 1. Observe
that the difference can be 30 times the carrying capacity of the source.



The general case: all the patches are sources

We consider the system

n
X =rxi(t=x/K)+h3 apg,  i=1..n (@)
j=1

and denote by p(h) = (p1(h), ..., pn(h)) the equilibrium (global
attractor) and by

T(h) = p1(h) + ... + pn(h).



The general case: all the patches are sources

We consider the system

n
X =rixi(1=x/K)+h} apg,  i=1..n (2
j=1

and denote by p(h) = (p1(h), ..., pn(h)) the equilibrium (global
attractor) and by

T(h) = p1(h) + ... + pn(h).




The general case: all the patches are sources

The contribution of the route from the patch j to the patch i is

1 1
i (75)



The general case: all the patches are sources

The contribution of the route from the patch j to the patch i is

1 1
i (75)

The recommendation to maximize 7’(0) is to use only routes
from the patches of higher to lower growth rates.



The general case: all the patches are sources

For weak mobility, the optimal network architecture is a
maximal acyclic directed graph with the arrows always
pointing to the patch with the lowest growth rate.




The general case: all the patches are sources
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Figure: (Left) The optimal architecture for a network of 5 sources with decreasing
value of the natural growth parameter, r; > r; if i < j. (Right) Representation of the total
population as a function of h. (Blue) The parameters employed are
rn=5r=4r=38,rn=2,r=1andk; =1 for all i. We use the network
architecture given in the previous figure where the connectivity matrix A is given by
a;=0ifi <jand a; = 1if i > j. (Red) We use the architecture given by the maximal
acyclic graph pointing to patch 1 (the worst choice). The connectivity matrix is a; = 0 if
i>janda;=1ifi<}j.




The general case: sources and sinks

We assume that of a total of n patches, the first m patches are
sources and the rest are sinks. Then,

n

05 5 an(! 1)

=1 = g

To maximize the total population size, the connection rule
between sources remains the same, i.e. connections from
higher to lower growth rates are beneficial and connections in
the opposite sense are harmful. Meanwhile, a route from a
source with growth rate r; and a sink with mortality rate r; is
recommended only if r; > r;. Connections from a sink to a
source or between sinks have no effect on the previous formula.



The general case: sources and sinks
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Figure: (Left) Pictorial illustration of a metapopulation with a source
and two sinks. (Right) Representation of T(h). Fixed parameters,
r = 2, ky = 3 (for the source); . = 0.5 and r; = 1 (for the sinks).



Strong mobility

What happens if h — +00? (perfect mixing)



Strong mobility

What happens if h — +00? (perfect mixing)

Let p(h) the equilibrium of
Xj n
] z :

and T(h) = Y0, pi(h).



Strong mobility

What happens if h — +00? (perfect mixing)

Let p(h) the equilibrium of
X; L
X; = r,-x,-(1 — ?I) + hz a,'ij,
I f—

and T(h) = Y0, pi(h).

Proposition

Forany Ae M,

n

(ZKJrJik,r, Z};’)

T(h) <

N —




Strong mobility

Proof. Adding the equations, we have the restriction

Zr,x, ( — > =0 (4)

We have to maximize F(xi,...,Xn) = >_1_4 X; in the compact set

(X1, s Xn) € K = {(Xq, ..., Xn Zr,x,( _1>_0}

By Lagrange’s method, after simple computations, the
maximum value of F is

(ZHJZK” - )

i=1



Strong mobility

Our next aim is to find a matrix A € M such that

,Jim T(h) (ZK+JZK”ZK).

i=1




Strong mobility

Given any vector v = (v, ..., vp) € R" with v; > 0 for all
i=1,...,n, there exists a matrix A € M so that v € Ker(A).

Lemma 2
If A€ Mis irreducible, then dimKer(A) = 1. Moreover, if

V=(v,...,Vn) € Ker(A) withv; > 0foralli=1,...,n, then
vi>O0foralli=1,....n.

| A

A\

For each irreducible A € M, there is a unique non-trivial vector
v = (v, ..., V) with positive values so that v € Ker(A) and v
satisfies (4).




Strong mobility

Given any vector v = (v, ..., V) € R" with v; > 0 for all
i=1,...,n, there exists a matrix A € M so that v € Ker(A).

Proof. Take ai, =1, ai1 = —, and ay; = 0 for all

j: 2,....,n—1. Take a»1 = %’, Qoo = _TZ”, and aj = 0 for
j=3,..., 5. We repeat this methodology in each row.
Specifically, in the i-th row, a; ;1 = % ajj= ‘T‘,’" and the rest
of the entries equal to zero. By construction, v € Ker(A) and
Aec M. O]



Strong mobility

For instance, taking the parameter values
rn=5nr=4r=3,n=2,rn=0.1andk; =1 for
i=1,2,3,4,5, the optimal choice for Ais

—9.95337 0 0 0 1
9.95337 —9.51856 0 0 0

Ax 0 9.51856 —8.87257 0 0
0 0 8.87257 —-8.83257 O

0 0 0 8.83257 —1



Strong mobility

This cyclic network architecture has the virtue of being the
minimal network for which the maximum can be attained, in the
sense that the suppression of any of the links would break this

property.

Figure: A cyclic network of 5 patches.



Strong mobility

This cyclic network architecture has the virtue of being the
minimal network for which the maximum can be attained, in the
sense that the suppression of any of the links would break this
property.

8.83257 9.518562

8.87257 i :

Figure: A cyclic network of 5 patches.



Strong mobility

10

Total Population

Figure: Total population size as a function of h ( the limit is ~
8.80664)



Strong mobility

Assume that a network architecture is represented by M; C M.
Then it is possible to reach the maximum with this network
architecture if and only for any vector v = (vy, ..., vy) with v; > 0
foralli=1,...,n, there is a matrix A € My so that v € Ker(A).
A particular architecture with this property is

My ={AeM:a;#0 foralli=1,..n}.

In fact, given (vy,...,vs) with v; > O0forall i =1,...,n, we can
take any matrix A such that a;v; = a;v; for all / # j and

17
i = > ajy;
"=
j#i

foralli=1,....n.



Strong mobility

Figure: the complete bidirectional network of 5 patches.



Strong mobility: simmetric movement

Assume that A € M is a symmetric matrix.Then,

ny " .r
lim T(h):%.
iAres D=1 K




Strong mobility: symmetric movement
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Figure: (Left) Pictorial description of the architectures employed in
the simulations. (Right) Representation of the total population size as
a function of h. The parameters in both curves are: r =5, n =4,
I’3:3, rn=2and ki =3, kb = 1.5, k3:1,k4=2.



Examples of practical recommendations for

ecological management

I —

. —

Figure: Optimal location of a protected area in a homogeneous landscape of three
nodes and directional movement. (Left) Reduced mobility. (Right) Highly mobile
species.



Examples of practical recommendations for
ecological management

Figure: Optimal location of a protected area for species with reduced
mobility in the absence of directional movement.



Experiment:



What more?
Experiment:




What more?

Many species interacting = Metacommunity




What more?

A. Ruiz-Herrera, P.J. Torres, Effects of diffusion on total
biomass in simple metacommunities, J. Theoretical Biology 447
(2018), 12-24.



Epidemic models in networks

SIR Model:
S =\—uS-pSI
=BSI—(v+w)l
R =~I—-uR

Basic reproduction number:

BA

Ro= ————.
O u(y +n)

If Ro > 1, the endemic equilibrium (%%, £(Ro — 1)) is a global
attractor.

If Ry < 1, the disease-free equilibrium (g, 0) is a global
attractor.



Epidemic models in networks

SIR Model:

Sj = \i — uS;i — BiSil;
li = BiSili — (i + wi)l;
Ri = ~ili — piR;

fori=1,...,n



Epidemic models in networks

SIR Model:

n
Sl =\ — uS; — BiSil; + hz a;j S

j=1
n
I = BiSili = (vi + i)l + h > byl
j=1
n
Fi',, = "y,'l,' — ,u,-Fw’,- + hz C,jRj

=1

fori=1,...,n with A,B,C € M.



Infected cannot travel (B = 0)

The relevant parameter is

Ao it p)?
=
Bi
The connection from node i to node j is recommended if and

only if
A< Aj.



Only infected travel (A = 0)

The relevant parameter is

(i + p)? _

r —
i \;

The connection from node i to node j is recommended if and
only if
M < F/-.



All the population can move

If Aj < Ajand T; < T}, the link from / to j is recommended.



All the population can move

If Aj < Ajand T; < T}, the link from / to j is recommended.

If A; < Ajand T; > T; (or viceversa), there is a balance to be
studied.



Thank you for your attention!!



