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Near-integrable Polynomial Systems

Consider near-integrable polynomial systems in the form of
T M_l(x7 Y, N)Hy(fﬁa Y, M) + Ep(.%', Y, &, 5)7
T _M_l(xv Y, M)H$($7 Y, M) +e€ Q(l’, Y, &, 6)7

where

0 <e< 1, uand J are vector parameters;

H(x,y,u) is an analytic function in z, y and y;

- p(z,y,e,9) and q(z,y,¢e,9) are polynomials in z and y, and
analytic in § and ¢;

M(x,y, ) is an integrating factor of the system (1)|.—o.
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We suppose that the level curves H(x,y) = h have a family of periodic
orbits Ly, C {(z,y)| H(z,y) = h,h € (he, hs)} with two boundaries:

@ an elementary center C' as the inner boundary,

@ a homoclinic loop Ly, as the outer boundary which passes through
a hyperbolic saddle S.
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We suppose that the level curves H(x,y) = h have a family of periodic
orbits Ly, C {(z,y)| H(z,y) = h,h € (he, hs)} with two boundaries:

@ an elementary center C' as the inner boundary,

@ a homoclinic loop Ly, as the outer boundary which passes through
a hyperbolic saddle S.

Limit cycles in system (1) could be produced
e around the elementary center C,
e by periodic orbits Ly with h € (he, hs),

e near the homoclinic orbit Ly, .
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Hopf Bifurcation

To find the maximum number of small limit cycles, we

> Compute and solve focus values.
o use computer algebra systems (Maple, Mathematica)
e much easier to solve focus values for the case of near-integrable
systems
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Normal Form

We obtain the normal form of (1) as follows:

d .

—dz = r[vole) +vi(e)r? +va(e)r* + -+ +vi(e)r® 4+ -],

do
= To(e) + Ti(e)r? + ma(e)rt + -+ m(e) P 4+

where

o0
vile) =Y Viee®, i=0,1,2,...,
k=1

in which Vj;, denotes the ith £*-order focus value.
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Rearrange Terms

Note that v;(¢) = O(e) since system (1)|.—o is an integrable system.

Further, because system (1) is analytic in &, we can rearrange the
terms in (2), and obtain

d
= Vi) e+ Va(r) e + o+ V() e o (3)
where -
Vi(r) =Y Vaer®™ k=1,2,.... (4)
=0
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Eliminate Time ¢

Similarly, for the normal form of system (1) we have the 6 differential
equation, given by

%f = To(r) + O(e),
with Tp(0) # 0, and thus
@_Vl(r)€+‘/§(r)€2+---+Vk(r)5k+... 5
do To(r) + O(e) :

Yun Tian



Solution of System (5)

Assume the solution (6, p,¢) of (5), satisfying the initial condition
(0, p,€) = p, is given in the form of

r(evpv 5) = TO(QHO) + Tl(e,p)g + 7'2(9,,0)52 +oet ’l“k-(e, p)sk +oe
with 0 < p < 1. Then, r¢(0, p) = p and 7(0,p) = 0 for k& > 1.

If there exists a positive integer K such that Vi (r) =0, 1 < k < K, and
Vic(r) # 0, then we get from (5)

dr Vg(r)e" +--

de N To(T‘) +O(€) ’
and then

ro(0,p) =p, 1(0,p)=0, 1<k<K, and rg(0,p) =
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Two Displacement Functions

Thus, the displacement function d(p) of system (5) can be written as

d(p) = r(2m, p.2) — p= 2w§f((5)) Lo, (6)
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Two Displacement Functions

Thus, the displacement function d(p) of system (5) can be written as

d(p) = r(2m, p.2) — p= 2#0{((5)) Lo, (6)

Another displacement function is

d(h) = My(h)e + My(h)e? + - - - + My(h)e* + - --

> For any integer K > 1, equation (6) holds if and only if
Mi(h)=0,1<k < K and Mg(h) 2 0.

> Moreover, Vi (p) for 0 < p < 1 and Mg (h) for 0 < h—h; < 1
have the same maximum number of isolated zeros.
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Maximum Number of Small Limit Cycles

Theorem 1.1

Consider system (3) and assume Vi(r) =0, 1 < k < K. Suppose that
for an integer m > 1, each Vig, 0 < i < m is linear in &, and further
the following two conditions hold:

(1) rank [D(ngj((élvgiy;;f()} =m,

(ii)) Vg(r) =0, if Vig =0,i=0,1,--- ,;m — 1.
Then, for any given N > 0, there exist €9 > 0 and a neighborhood V' of
the center such that system (1) has at most m — 1 limit cycles in V for

0 < le| < eo, |0] < N. Moreover, m — 1 limit cycles can appear in an
arbitrary neighborhood of the origin for some values of (g, 9).
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Application 1

We will apply our method to study the bifurcation of small-amplitude
limit cycles in the system

d 5 -
d;: =a+ §:c+a:y+:c3+z€kpk($7y),
¢ k=1 n (7)
CTEZ = —2az + 2y — 322 + 4y® — az® + 62y + gs’“qk(wx Y),
where

3 3
pr(x,y) = aook + > aikz'y’,  qe(e,y) =book + D bira'y!, (8)
i+j=1 i+j=1

in which a;j;, and b;;;, are eFth-order coefficients (parameters).
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The unperturbed system (7)|.—¢ has a rational Darboux integral,

_ ﬁ _ (z* 4 42 + 4y)®
T f$ T (25 + 523 + oy + bx/2 4+ a)t’

Hy

with the integrating factor M = 20ff‘f§5. For a < —2%/*, system

(7)|e=0 has a center at Eg = (—§, —GQZ“Q).

> find 11 small limit cycles around Eg by using 12 Melnikov integrals
to study the second-order Melnikov function. [Zoladek, 1995]
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The unperturbed system (7)|.—¢ has a rational Darboux integral,

_ ﬁ _ (z* 4 42 + 4y)®
T f$ T (25 + 523 + oy + bx/2 4+ a)t’

Hy

with the integrating factor M = 20ff‘f§5. For a < —2%/*, system

(7)|e=0 has a center at Eg = (—§, —GQZ“Q).

> find 11 small limit cycles around Eg by using 12 Melnikov integrals
to study the second-order Melnikov function. [Zoladek, 1995]

> Two of these 12 Melnikov integrals can be expressed as a linear
combination of the other ten integrals. [Tian & Yu, 2016]

> Questions: whether 11 small limit cycles exist in system (7) or
not? the maximum number?
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First nonzero Vi(r) #0, k=1,2,...,7

Theorem 1.2 (Tian & Yu, 2018)

(I) When Vi(r) #0 or Vi(r) =0 and Va(r) # 0, there exist at most 9
small limit cycles around Eq in system (7) for all related parameters

and e sufficiently small, and 9 small limit cycles exist for some
parameter values.
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First nonzero Vi(r) #0, k=1,2,...,7

Theorem 1.2 (Tian & Yu, 2018)

(I) When Vi(r) #0 or Vi(r) =0 and Va(r) # 0, there exist at most 9
small limit cycles around Eq in system (7) for all related parameters
and e sufficiently small, and 9 small limit cycles exist for some
parameter values.

(IT) System (7) can indeed have 11 small limit cycles around Ey under
perturbations satisfying Vi(r) =0, 1 <i <7, Vz(r) #0.

k 1

21 3 |4|5] 6 |7
Nk [ 919]10]9]9]|10]|11

Table: Maximum number N (k) of small limit cycles around Eq in system (7)
when Vi(r)=0,1<i <k, Vp(r) Z0
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Application 2

Consider the following cubic polynomial system

i = 10x(8ary — 32% — 92 — 12y — 6),
y = 24a — 16az + 90y + 152y — 16axy® 4+ 60y3,

which is determined by a Darboux first integral,

(zy? + 2 +1)°
w3(zy® + oy + 5y + Pay + P +a)?

Hy =
where a is a parameter.
When 3242 # 75, system (9) has an elementary center (z.,ye), given by

. _ 6(8a% 4 25) _ T0a
T 324275 YT 324275
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> By system (9) with a = 2, verify that there exists a class of cubic
systems with 11 limit cycles bifurcating from a critical point.
[Christopher, 2006]
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> By system (9) with a = 2, verify that there exists a class of cubic
systems with 11 limit cycles bifurcating from a critical point.
[Christopher, 2006]

> With a properly chosen value of a, system (9) can have 12 small
limit cycles bifurcating from (z, ye) by proper cubic perturbation.
[Yu & Tian, 2014]

Yun Tian 16 / 31



> By system (9) with a = 2, verify that there exists a class of cubic
systems with 11 limit cycles bifurcating from a critical point.
[Christopher, 2006]

> With a properly chosen value of a, system (9) can have 12 small
limit cycles bifurcating from (z, ye) by proper cubic perturbation.
[Yu & Tian, 2014]

For any positive integer K, when Vi (r) =0, 1 <k < K and Vk(r) £ 0,
there exist at most 12 small limit cycles bifurcating from (ze,ye) in
system (9) under cubic perturbations.
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Homoclinic Bifurcation

Next, we consider homoclinic bifurcation in near-Hamiltonian systems
of the form

i‘:I{y—i_gf(xv:%a)v y: _H$+€g(w7y7a)’ (10)

where deg(H (,)) = n and deg(f(z,y)) = deg(g(z,y)) = m, ais a
vector parameter, and € € R is small.

Then Melnikov function is given by
M(h7 G) - f;[ N g(a?, Y, a)dm - f(xa Y, a)dya

and has a series expansion

M(h,a) = bi(a)(h—he)’™, 0<h—he<1. (11)

J20

at the end point h. for Hopf bifurcation.

Yun Tian 17 / 31



Expansion of M (h,a) at h = hy

For homoclinic bifurcation, from [Dulac (1923); Roussaire (1986)]
M((h,a) has the following expansion

M(h,a) =Y lesj(a) + cajyr(a)(h — ho) In |h = hy[](h = hy)

J=20 (12)
=co(a) + c1(a)(h — hs)In|h — hs| + ca(a)(h — hy)
+ecg(a)(h — hs)?In|h — hg|+ -+, 0<hs—h<1.

» only the first four coefficients ¢;, j = 0,1, 2,3 were obtained in
[Han-Ye (1998), Han-Yang-Tarta-Gao (2008)].

» Objective: establish a new method to compute other coefficients.
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Obviously,

o(@) = M(hw,a) = §gdo — fdy.

Han-Ye obtained formulas of ¢; and ¢ as follows

1 _ _ ~
¢ = ———C, c3=¢C+ fcy,
c1 = (fz+gy)(S;a), ¢ = 7{ (fe + gy — C1)dt,
th

where 3 is a constant, and £\ are the eigenvalues of the matrix

B H.y(S) Hy,(95)
HeSS(S) = ( _wa(S’) —Hazy(S) ) '
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The formula of c3 was given by Han et al. in the form

—1
c3(a) = m{(am — 3asp — ba1 + 3bo3)

1 14

—X[(Qbm + a11)(3hoz — ha1) (14)

+(2a90 + b11)(3h30 — h12)]} + beq(a)
for some constant b, when H, f and ¢ can be written as
)\
H(l‘y)—h-f— y—:c th]xyy
flwy,a)= Y ayz'y/, glzya)= Y bya'y.
i+352>0 i+352>0
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For the Melnikov function M(h) = th gdx — fdy we have

oM
W = L, (fx a4 gy)dt.

By Lemma 2.1, (11) and (12) we have

bo(a) = Tobo(a), bo(a) = (fz +g,)(C,a), (16)

and

lim (fx+gy)dt:7{ (fotg,)dt €R & & (a) = 0,
h—)h; Lh th

where Tp > 0 is a constant, and ¢; = (fz + g4)(S,a).
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Theorem 2.2 (Tian & Han, 2017)

Suppose there exist analytic functions Pi(z,y,a) and Q:1(z,y,a) such
that for bg = ¢1 = 0, the following equality holds

f:c +gy = Hx(xay)Pl(x7y7a) + Hy(xay)Ql(x7y7a)7 (17)

for (z,y) € U Ly. Then when by = ¢; = 0, we have for by in (11)
he<h<hs
and c3 and cq4 in (12)

by = Tibi(a), cs(a) = —2|1>\|C3(a), ca(a) = %54 + pics(a),  (18)

where T1 and (1 are constants with T1 > 0, and

Bl(a) = (Plx + Qly)(C7 CL), 53(0’) = (Plx + Qly)(sa a)’

Zu(a) = ﬁ (Piy + Q1 — E3(a))dt.

(19)

s
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Theorem 2.2 (continued)

Further, if we let H(z,y) satisfy (15), and

Pi(z,y,a) = Y aga'y!, Qu(z,y.a)= Y bya'y

i+3>0 i+5>0

for (z,y) near S, then cs(a) = 6])\]

by = ¢ = 0, where

1 - ~ ~ = 1 - ~
cs(a) = X{(—3a30 — ba1 + @12 + 3bo3) — X[(2b()2 + an)

-(3hoz — ha1) + (2a20 + 511)(3}130 — h12)]}.

——¢5 + bcs for some constant b under
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Outline of Proof. Let by = ¢; = 0. We have by = ¢; = 0 from (13) and
(16). Then by (11) and (12), it is easy to get

M
a@h =201 (h — he) + 3ba(h — he)? + 4bg(h — he)® + -+ (21)
for 0 < h—h. <1, and
oM
Sn = + 2¢3(h — hs)In|h — hg| + (c3 + 2¢4)(h — hs)
+3c5(h — hs)2In |h — hs| + (c5 + 3c6) (b — hy)? (22)
cr(h — hy)Pln |h — hy| + - -
for0< hy —h < 1.
On the other hand, by Lemma 2.1 and (17) we have
oM
W = (HZ'PI + Hle)dt
o (23)
= % Qldm — Pldy = Ml(h, (I).
Ly
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Theorem 2.3 (Tian & Han, 2017)

Suppose there exist analytic functions Py, QQ1, P> and Qo such that
(17) and the following equation

—Plx + Qly = Hx(xay)PZ(x7y7a) + Hy(xay)QQ(x7y7a)7 (ﬂf,y) S U7

are satisfied for by = by = 0 and ¢, = ¢3 = 0. Then

1 1
G5, cg =~ + Boc 24
6|)\|C5, C6 606+/82C57 (24)

by = Tobs, c5 =
where
by = (P2, + Q2,)(C,a), & = (Pay + Q2,)(S, a),

o = ﬁ (P2 + Q2, — C5)dt. (25)
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Theorem 2.3 (continued)

Further, we have

erla) = ier(@) +0(@),

1 — _ 1
cr(a) = X{(—3a30 — bay + @12 + 3bp3) — ~

\ [(2602 + &11)
-(3hos — h21) + (2a20 + b11)(3h30 — h12)]},

if Pa(z,y) and Qa(z,y) are given by

PQ(xaya a) = Z ELU.CCly], Q2($’y7a) = Z B’ijly]

1+5>0 i+5=>0

for (z,y) near S.

(26)
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Application

If the Hamiltonian is given by

) = | " q(a)dz + / " p(y)dy

in system (10), it is easy to find functions

Pl(wvy) = Fq(Z;’)O)’ Ql(xay) =

F(z,y) — F(x,0)
p(y)

satisfying

faf: + Gy = Hx(xa y)Pl(I)yaa) + Hy(JUa y)Q1($7y’a)7

for (z,y) € U when by = ¢; = 0, where

F(z,y) = fe(z,y) + gy(2, ).
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Consider the following perturbed polynomial Liénard system

i=y+ef(z,y), y=z—2°+eg(z,y), (28)

with the Hamiltonian H(z,y) = %y2 - %12 + %x‘l, where 0 < ¢ < 1,
_f(xvy) = f(_xa _y) and _g(l‘a y) = g(—m, _y)

Then system (28)|.—o has

» two centers C1 = (1,0) and Cy = (—1,0),

» one saddle point S = (0,0),

» an eight-loop H(x,y) =0,

» periodic orbits Lj(h) and Lo(h) given by H(z,y) = h,
h € (—-1/4,0),
periodic orbits L(h) defined by H(x,y) = h, h € (0,00).

A\
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Figure: Phase portrait of a double homoclinic loop.

29 / 31



Theorem 2.4 (Tian & Han, 2017)

Suppose n = max(deg(f(z,y)),deg(g(x,y))). Forn=3,5,7,9, system

(28) can have [™8] limit cycles under proper perturbations with
distribution,

(2,2,1)

(4 4,1) forn =5,
(6,6,2) forn =717,
(8,8,3) forn =29,

where [-] denotes the integer part function.
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Thank you for your attention!
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