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Near-integrable Polynomial Systems

Consider near-integrable polynomial systems in the form of

dx

dt
= M−1(x, y, µ)Hy(x, y, µ) + ε p(x, y, ε, δ),

dy

dt
= −M−1(x, y, µ)Hx(x, y, µ) + ε q(x, y, ε, δ),

(1)

where

- 0 < ε� 1, µ and δ are vector parameters;

- H(x, y, µ) is an analytic function in x, y and µ;

- p(x, y, ε, δ) and q(x, y, ε, δ) are polynomials in x and y, and
analytic in δ and ε;

- M(x, y, µ) is an integrating factor of the system (1)|ε=0.
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We suppose that the level curves H(x, y) = h have a family of periodic
orbits Lh ⊂ {(x, y)| H(x, y) = h, h ∈ (hc, hs)} with two boundaries:

an elementary center C as the inner boundary,

a homoclinic loop Lhs as the outer boundary which passes through
a hyperbolic saddle S.

Limit cycles in system (1) could be produced

around the elementary center C,

by periodic orbits Lh with h ∈ (hc, hs),

near the homoclinic orbit Lhs .
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Hopf Bifurcation

To find the maximum number of small limit cycles, we

â Compute and solve focus values.

use computer algebra systems (Maple, Mathematica)
much easier to solve focus values for the case of near-integrable
systems
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Normal Form

We obtain the normal form of (1) as follows:

dr

dt
= r

[
v0(ε) + v1(ε)r

2 + v2(ε)r
4 + · · ·+ vi(ε)r

2i + · · ·
]
,

dθ

dt
= τ0(ε) + τ1(ε) r

2 + τ2(ε) r
4 + · · ·+ τk(ε) r

2k + · · · ,
(2)

where

vi(ε) =

∞∑
k=1

Vikε
k, i = 0, 1, 2, . . . ,

in which Vik denotes the ith εk-order focus value.
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Rearrange Terms

Note that vi(ε) = O(ε) since system (1)|ε=0 is an integrable system.

Further, because system (1) is analytic in ε, we can rearrange the
terms in (2), and obtain

dr

dt
= V1(r) ε+ V2(r) ε

2 + · · ·+ Vk(r) ε
k + · · · , (3)

where

Vk(r) =

∞∑
i=0

Vik r
2i+1, k = 1, 2, . . . . (4)
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Eliminate Time t

Similarly, for the normal form of system (1) we have the θ differential
equation, given by

dθ

dt
= T0(r) +O(ε),

with T0(0) 6= 0, and thus

dr

dθ
=
V1(r) ε+ V2(r) ε

2 + · · ·+ Vk(r) ε
k + · · ·

T0(r) +O(ε)
. (5)
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Solution of System (5)

Assume the solution r(θ, ρ, ε) of (5), satisfying the initial condition
r(0, ρ, ε) = ρ, is given in the form of

r(θ, ρ, ε) = r0(θ, ρ) + r1(θ, ρ)ε+ r2(θ, ρ)ε2 + · · ·+ rk(θ, ρ)εk + · · · ,

with 0 < ρ� 1. Then, r0(0, ρ) = ρ and rk(0, ρ) = 0 for k ≥ 1.

If there exists a positive integer K such that Vk(r) ≡ 0, 1 ≤ k < K, and
VK(r) 6≡ 0, then we get from (5)

dr

dθ
=
VK(r) εK + · · ·
T0(r) +O(ε)

,

and then

r0(θ, ρ) = ρ, rk(θ, ρ) = 0, 1 ≤ k < K, and rK(θ, ρ) =
VK(ρ)

T0(ρ)
θ.
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Two Displacement Functions

Thus, the displacement function d(ρ) of system (5) can be written as

d(ρ) = r(2π, ρ, ε)− ρ = 2π
VK(ρ)

T0(ρ)
εK +O(εK+1). (6)

Another displacement function is

d(h) = M1(h)ε+M2(h)ε2 + · · ·+Mk(h)εk + · · · .

â For any integer K ≥ 1, equation (6) holds if and only if
Mk(h) ≡ 0, 1 ≤ k < K and MK(h) 6≡ 0.

â Moreover, VK(ρ) for 0 < ρ� 1 and MK(h) for 0 < h− h1 � 1
have the same maximum number of isolated zeros.
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Maximum Number of Small Limit Cycles

Theorem 1.1

Consider system (3) and assume Vk(r) ≡ 0, 1 ≤ k < K. Suppose that
for an integer m ≥ 1, each ViK , 0 ≤ i < m is linear in δ, and further
the following two conditions hold:

(i) rank
[
∂(V0K ,··· ,Vm−1,K)

∂(δ1,··· ,δm)

]
= m,

(ii) VK(r) ≡ 0, if ViK = 0, i = 0, 1, · · · ,m− 1.

Then, for any given N > 0, there exist ε0 > 0 and a neighborhood V of
the center such that system (1) has at most m− 1 limit cycles in V for
0 < |ε| < ε0, |δ| ≤ N . Moreover, m− 1 limit cycles can appear in an
arbitrary neighborhood of the origin for some values of (ε, δ).
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Application 1

We will apply our method to study the bifurcation of small-amplitude
limit cycles in the system

dx

dt
= a+

5

2
x+ xy + x3 +

n∑
k=1

εkpk(x, y),

dy

dt
= −2ax+ 2y − 3x2 + 4y2 − ax3 + 6x2y +

n∑
k=1

εkqk(x, y),
(7)

where

pk(x, y) = a00k +

3∑
i+j=1

aijk x
iyj , qk(x, y) = b00k +

3∑
i+j=1

bijk x
iyj , (8)

in which aijk and bijk are εkth-order coefficients (parameters).
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The unperturbed system (7)|ε=0 has a rational Darboux integral,

H0 =
f5
1

f4
2

=
(x4 + 4x2 + 4y)5

(x5 + 5x3 + 5xy + 5x/2 + a)4
,

with the integrating factor M = 20f41 f
−5
2 . For a < −25/4, system

(7)|ε=0 has a center at E0 = (−a
2 ,−

a2+2
4 ).

â find 11 small limit cycles around E0 by using 12 Melnikov integrals
to study the second-order Melnikov function. [Żo la̧dek, 1995]

â Two of these 12 Melnikov integrals can be expressed as a linear
combination of the other ten integrals. [Tian & Yu, 2016]

â Questions: whether 11 small limit cycles exist in system (7) or
not? the maximum number?
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First nonzero Vk(r) 6≡ 0, k = 1, 2, . . . , 7

Theorem 1.2 (Tian & Yu, 2018)

(I) When V1(r) 6≡ 0 or V1(r) ≡ 0 and V2(r) 6≡ 0, there exist at most 9
small limit cycles around E0 in system (7) for all related parameters
and ε sufficiently small, and 9 small limit cycles exist for some
parameter values.
(II) System (7) can indeed have 11 small limit cycles around E0 under
perturbations satisfying Vi(r) ≡ 0, 1 ≤ i < 7, V7(r) 6≡ 0.

k 1 2 3 4 5 6 7

N(k) 9 9 10 9 9 10 11

Table: Maximum number N(k) of small limit cycles around E0 in system (7)
when Vi(r) ≡ 0, 1 ≤ i < k, Vk(r) 6≡ 0
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Application 2

Consider the following cubic polynomial system

ẋ = 10x(8axy − 3x2 − 9x− 12y2 − 6),
ẏ = 24a− 16ax+ 90y + 15xy − 16axy2 + 60y3,

(9)

which is determined by a Darboux first integral,

H0 =
(xy2 + x+ 1)5

x3(xy5 + 5
2xy

3 + 5
2y

3 + 15
8 xy + 15

4 + a)2
,

where a is a parameter.
When 32a2 6= 75, system (9) has an elementary center (xe, ye), given by

xe =
6(8a2 + 25)

32a2 − 75
, ye =

70 a

32a2 − 75
.
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â By system (9) with a = 2, verify that there exists a class of cubic
systems with 11 limit cycles bifurcating from a critical point.
[Christopher, 2006]

â With a properly chosen value of a, system (9) can have 12 small
limit cycles bifurcating from (xe, ye) by proper cubic perturbation.
[Yu & Tian, 2014]

Theorem 1.3

For any positive integer K, when Vk(r) ≡ 0, 1 ≤ k < K and VK(r) 6≡ 0,
there exist at most 12 small limit cycles bifurcating from (xe, ye) in
system (9) under cubic perturbations.
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Homoclinic Bifurcation

Next, we consider homoclinic bifurcation in near-Hamiltonian systems
of the form

ẋ = Hy + εf(x, y, a), ẏ = −Hx + εg(x, y, a), (10)

where deg(H(x, y)) = n and deg(f(x, y)) = deg(g(x, y)) = m, a is a
vector parameter, and ε ∈ R is small.

Then Melnikov function is given by

M(h, a) =

∮
H=h

g(x, y, a)dx− f(x, y, a)dy,

and has a series expansion

M(h, a) =
∑
j≥0

bj(a)(h− hc)j+1, 0 ≤ h− hc � 1. (11)

at the end point hc for Hopf bifurcation.
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Expansion of M(h, a) at h = hs

For homoclinic bifurcation, from [Dulac (1923); Roussaire (1986)]
M(h, a) has the following expansion

M(h, a) =
∑
j≥0

[c2j(a) + c2j+1(a)(h− hs) ln |h− hs|](h− hs)j

= c0(a) + c1(a)(h− hs) ln |h− hs|+ c2(a)(h− hs)
+c3(a)(h− hs)2 ln |h− hs|+ · · · , 0 < hs − h� 1.

(12)

ä only the first four coefficients cj , j = 0, 1, 2, 3 were obtained in
[Han-Ye (1998), Han-Yang-Tarta-Gao (2008)].

ä Objective: establish a new method to compute other coefficients.
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Obviously,

c0(a) = M(hs, a) =

∮
Lhs

gdx− fdy.

Han-Ye obtained formulas of c1 and c2 as follows

c1 = − 1

|λ|
c̄1, c2 = c̄2 + βc̄1,

c̄1 = (fx + gy)(S, a), c̄2 =

∮
Lhs

(fx + gy − c̄1)dt,
(13)

where β is a constant, and ±λ are the eigenvalues of the matrix

Hess(S) =

(
Hxy(S) Hyy(S)
−Hxx(S) −Hxy(S)

)
.
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The formula of c3 was given by Han et al. in the form

c3(a) =
−1

2|λ|λ
{(a12 − 3a30 − b21 + 3b03)

− 1

λ
[(2b02 + a11)(3h03 − h21)

+(2a20 + b11)(3h30 − h12)]}+ bc1(a)

(14)

for some constant b, when H, f and g can be written as

H(x, y) = hs +
λ

2
(y2 − x2) +

∑
i+j≥3

hijx
iyj ,

f(x, y, a) =
∑
i+j≥0

aijx
iyj , g(x, y, a) =

∑
i+j≥0

bijx
iyj .

(15)
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Lemma 2.1

For the Melnikov function M(h) =
∮
Lh
gdx− fdy we have

∂M

∂h
=

∮
Lh

(fx + gy)dt.

By Lemma 2.1, (11) and (12) we have

b0(a) = T0b̄0(a), b̄0(a) = (fx + gy)(C, a), (16)

and

lim
h→h−s

∮
Lh

(fx + gy)dt =

∮
Lhs

(fx + gy)dt ∈ R ⇔ c̄1(a) = 0,

where T0 > 0 is a constant, and c̄1 = (fx + gy)(S, a).
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Theorem 2.2 (Tian & Han, 2017)

Suppose there exist analytic functions P1(x, y, a) and Q1(x, y, a) such
that for b̄0 = c̄1 = 0, the following equality holds

fx + gy = Hx(x, y)P1(x, y, a) +Hy(x, y)Q1(x, y, a), (17)

for (x, y) ∈
⋃

hc≤h≤hs

Lh. Then when b̄0 = c̄1 = 0, we have for b1 in (11)

and c3 and c4 in (12)

b1 = T1b̄1(a), c3(a) = − 1

2|λ|
c̄3(a), c4(a) =

1

2
c̄4 + β1c̄3(a), (18)

where T1 and β1 are constants with T1 > 0, and

b̄1(a) = (P1x +Q1y)(C, a), c̄3(a) = (P1x +Q1y)(S, a),

c̄4(a) =

∮
Lhs

(P1x +Q1y − c̄3(a))dt. (19)
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Theorem 2.2 (continued)

Further, if we let H(x, y) satisfy (15), and

P1(x, y, a) =
∑
i+j≥0

ãijx
iyj , Q1(x, y, a) =

∑
i+j≥0

b̃ijx
iyj

for (x, y) near S, then c5(a) =
−1

6|λ|
c̄5 + bc̄3 for some constant b under

b̄0 = c̄1 = 0, where

c̄5(a) =
1

λ
{(−3ã30 − b̃21 + ã12 + 3b̃03)−

1

λ
[(2b̃02 + ã11)

·(3h03 − h21) + (2ã20 + b̃11)(3h30 − h12)]}.
(20)
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Outline of Proof. Let b̄0 = c̄1 = 0. We have b0 = c1 = 0 from (13) and
(16). Then by (11) and (12), it is easy to get

∂M

∂h
= 2b1(h− hc) + 3b2(h− hc)2 + 4b3(h− hc)3 + · · · , (21)

for 0 ≤ h− hc � 1, and

∂M

∂h
= c2 + 2c3(h− hs) ln |h− hs|+ (c3 + 2c4)(h− hs)

+3c5(h− hs)2 ln |h− hs|+ (c5 + 3c6)(h− hs)2
+4c7(h− hs)3 ln |h− hs|+ · · ·

(22)

for 0 < hs − h� 1.

On the other hand, by Lemma 2.1 and (17) we have

∂M

∂h
=

∮
Lh

(HxP1 +HyQ1)dt

=

∮
Lh

Q1dx− P1dy ≡M1(h, a).
(23)
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Theorem 2.3 (Tian & Han, 2017)

Suppose there exist analytic functions P1, Q1, P2 and Q2 such that
(17) and the following equation

P1x +Q1y = Hx(x, y)P2(x, y, a) +Hy(x, y)Q2(x, y, a), (x, y) ∈ U,

are satisfied for b̄0 = b̄1 = 0 and c̄1 = c̄3 = 0. Then

b2 = T2b̄2, c5 = − 1

6|λ|
c̄5, c6 =

1

6
c̄6 + β2c̄5, (24)

where

b̄2 = (P2x +Q2y)(C, a), c̄5 = (P2x +Q2y)(S, a),

c̄6 =

∮
Lhs

(P2x +Q2y − c̄5)dt.
(25)

Yun Tian 25 / 31



Theorem 2.3 (continued)

Further, we have

c7(a) =
−1

24|λ|
c̄7(a) +O(c̄5),

c̄7(a) =
1

λ
{(−3ā30 − b̄21 + ā12 + 3b̄03)−

1

λ
[(2b̄02 + ā11)

·(3h03 − h21) + (2ā20 + b̄11)(3h30 − h12)]},

(26)

if P2(x, y) and Q2(x, y) are given by

P2(x, y, a) =
∑
i+j≥0

āijx
iyj , Q2(x, y, a) =

∑
i+j≥0

b̄ijx
iyj

for (x, y) near S.
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Application

If the Hamiltonian is given by

H(x, y) =

∫ x

0
q(x)dx+

∫ y

0
p(y)dy

in system (10), it is easy to find functions

P1(x, y) =
F (x, 0)

q(x)
, Q1(x, y) =

F (x, y)− F (x, 0)

p(y)
, (27)

satisfying

fx + gy = Hx(x, y)P1(x, y, a) +Hy(x, y)Q1(x, y, a),

for (x, y) ∈ U when b̄0 = c̄1 = 0, where

F (x, y) = fx(x, y) + gy(x, y).
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Example

Consider the following perturbed polynomial Liénard system

ẋ = y + εf(x, y), ẏ = x− x3 + εg(x, y), (28)

with the Hamiltonian H(x, y) = 1
2y

2 − 1
2x

2 + 1
4x

4, where 0 < ε� 1,
−f(x, y) = f(−x,−y) and −g(x, y) = g(−x,−y).

Then system (28)|ε=0 has

ä two centers C1 = (1, 0) and C2 = (−1, 0),

ä one saddle point S = (0, 0),

ä an eight-loop H(x, y) = 0,

ä periodic orbits L1(h) and L2(h) given by H(x, y) = h,
h ∈ (−1/4, 0),

ä periodic orbits L(h) defined by H(x, y) = h, h ∈ (0,∞).
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Figure: Phase portrait of a double homoclinic loop.
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Theorem 2.4 (Tian & Han, 2017)

Suppose n = max(deg(f(x, y)), deg(g(x, y))). For n = 3, 5, 7, 9, system
(28) can have [7n−63 ] limit cycles under proper perturbations with
distribution, 

(2, 2, 1) for n = 3,

(4, 4, 1) for n = 5,

(6, 6, 2) for n = 7,

(8, 8, 3) for n = 9,

where [·] denotes the integer part function.
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Thank you for your attention!

Yun Tian 31 / 31


