Real analytic vector fields with first integral and separatrices

Fernando Sanz Sánchez Universidad de Valladolid (joint work with R. Mol, UFMG)

> AQTDE - June 2019 Castro Urdiales

General setting: separatrices

Fernando Sanz Sánchez Universidad de Valladolid (joint wover Vector fields and separatrices

General setting: separatrices

X is an analytic v. f. on a nbhd U of $0 \in \mathbb{R}^n$, X(0) = 0.

Separatrix (analytic or formal, real or complex)

A $\left\{\begin{array}{l} \text{real (or complex) analytic curve: } \Gamma_{\mathbb{R}}(\text{or }\Gamma_{\mathbb{C}}) \\ \text{formal real (or complex) curve: } \widehat{\Gamma}_{\mathbb{R}}(\text{or }\widehat{\Gamma}_{\mathbb{C}}) \end{array}\right\} \text{ which is invariant for } X.$

General setting: characteristic orbits

General setting: characteristic orbits

X is an analytic v. f. on a nbhd U of $0 \in \mathbb{R}^n$, X(0) = 0

Characteristic orbit

An integral curve (trajectory) $\gamma : [0, \infty[\rightarrow U \text{ of } X \text{ (its image)}$ such that $\lim_{t\to\infty} \gamma(t) = 0$ and

$$\lim_{t o\infty}rac{\gamma(t)}{\|\gamma(t)\|}$$
 exists

• Camacho and Sad's Theorem, 1982: There is always Γ_C.

- Camacho and Sad's Theorem, 1982: There is always Γ_C.
- There are examples with no $\Gamma_{\mathbb{R}}$ or $\widehat{\Gamma}_{\mathbb{R}}$:

- Camacho and Sad's Theorem, 1982: There is always Γ_C.
- There are examples with no $\Gamma_{\mathbb{R}}$ or $\widehat{\Gamma}_{\mathbb{R}}$:

 There are examples with F_ℝ, none convergent. Example (modified from Risler, 2001):

$$X = (y^2 + x^4)\frac{\partial}{\partial x} + A(x, y)\frac{\partial}{\partial y}.$$

- Camacho and Sad's Theorem, 1982: There is always Γ_C.
- There are examples with no $\Gamma_{\mathbb{R}}$ or $\widehat{\Gamma}_{\mathbb{R}}$:

 There are examples with F_ℝ, none convergent. Example (modified from Risler, 2001):

$$X = (y^2 + x^4)\frac{\partial}{\partial x} + A(x, y)\frac{\partial}{\partial y}$$

• There are also examples with characteristic orbits without $\widehat{\Gamma}_{\mathbb{R}}$ (Corral-Sanz, 2011).

Dimension n = 2. Indices and separatrices

Dimension n = 2. Indices and separatrices

Result.- If the *Poincaré index* is $I_0(X) = 0$ then there exists $\widehat{\Gamma}_{\mathbb{R}}$.

Dimension n = 2. Indices and separatrices

Result.- If the *Poincaré index* is $I_0(X) = 0$ then there exists $\widehat{\Gamma}_{\mathbb{R}}$. *Sketch.-*

- If X is of the type *center-focus* then $I_0(X) = 1$.
- If X has characteristic orbits, it follows from *Bendixson's* Formula

• There are examples with no $\widehat{\Gamma}_{\mathbb{C}}$ (Gomez-Mont and Luengo, 1992).

- There are examples with no $\widehat{\Gamma}_{\mathbb{C}}$ (Gomez-Mont and Luengo, 1992).
- There are examples with $\widehat{\Gamma}_{\mathbb{R}}$, none convergent.

- There are examples with no $\widehat{\Gamma}_{\mathbb{C}}$ (Gomez-Mont and Luengo, 1992).
- There are examples with $\widehat{\Gamma}_{\mathbb{R}}$, none convergent.

• Brunella's Theorem, 1998: If $Sing(X) = \{0\}$, there always exists a characteristic orbit.

General dimension n

Fernando Sanz Sánchez Universidad de Valladolid (joint wover Vector fields and separatrices

Moussu's Theorem, 1997: If $X = \nabla f$ is the gradient of an analytic function $f : (\mathbb{R}^n, 0) \to \mathbb{R}$ then X has $\Gamma_{\mathbb{R}}$.

Main result

Let *X* be a real analytic vector field at $(\mathbb{R}^3, 0)$. If *X* has a non-constant analytic *first integral f* (i.e. df(X) = 0) then *X* has a $\widehat{\Gamma}_{\mathbb{R}}$.

Let *X* be a real analytic vector field at $(\mathbb{R}^3, 0)$. If *X* has a non-constant analytic *first integral f* (i.e. df(X) = 0) then *X* has a $\widehat{\Gamma}_{\mathbb{R}}$.

Let *X* be a real analytic vector field at $(\mathbb{R}^3, 0)$. If *X* has a non-constant analytic *first integral f* (i.e. df(X) = 0) then *X* has a $\widehat{\Gamma}_{\mathbb{R}}$.

Related results of vector fields tangent to a foliation (a *flag of foliations*).

Lins Neto-Cerveau, 2017 If X is holomorphic at (C³, 0) and tangent to a (singular) codimension 1 foliation (i.e. ω(X) = 0 for some integrable 1-form ω) then X has a Γ_C.

Let *X* be a real analytic vector field at $(\mathbb{R}^3, 0)$. If *X* has a non-constant analytic *first integral f* (i.e. df(X) = 0) then *X* has a $\widehat{\Gamma}_{\mathbb{R}}$.

Related results of vector fields tangent to a foliation (a *flag of foliations*).

- Lins Neto-Cerveau, 2017 If X is holomorphic at (C³, 0) and tangent to a (singular) codimension 1 foliation (i.e. ω(X) = 0 for some integrable 1-form ω) then X has a Γ_C.
- Cano and Roche, 2014: If *X* is analytic at (K³, 0) and tangent to a foliation then it admits a *reduction of singularities* by blow-ups.

Include Risler's example in a family of planar vector fields

$$X = (y^2 + x^4 + \mathbf{z}^2)\frac{\partial}{\partial x} + A(x, y)\frac{\partial}{\partial y}.$$

As a vector field at (\mathbb{R}^3 , 0), it has a first integral f = z but no real analytic separatrix.

Include Risler's example in a family of planar vector fields

$$X = (y^2 + x^4 + \mathbf{z^2})\frac{\partial}{\partial x} + A(x, y)\frac{\partial}{\partial y}.$$

As a vector field at (\mathbb{R}^3 , 0), it has a first integral f = z but no real analytic separatrix.

Include Risler's example in a family of planar vector fields

$$X = (y^2 + x^4 + \mathbf{z^2})\frac{\partial}{\partial x} + A(x, y)\frac{\partial}{\partial y}.$$

As a vector field at (\mathbb{R}^3 , 0), it has a first integral f = z but no real analytic separatrix.

The result is only valid in dimension three:

• If
$$n = 2m$$
 is even, consider a polycenter $X = X_1 + \cdots + X_m$, where $X_j = -y_j \partial_{x_j} + x_j \partial_{y_j}$.

Include Risler's example in a family of planar vector fields

$$X = (y^2 + x^4 + \mathbf{z}^2) \frac{\partial}{\partial x} + A(x, y) \frac{\partial}{\partial y}.$$

As a vector field at (\mathbb{R}^3 , 0), it has a first integral f = z but no real analytic separatrix.

The result is only valid in dimension three:

If n = 2m is even, consider a polycenter X = X₁ + ··· + X_m, where X_j = -y_j∂_{x_j} + x_j∂_{y_j}.
If n = 2m + 1 ≥ 5 is odd, consider X = X₁ + ··· + X_{m-1} + Y, where X_j is a center and Y is Gomez-Mont and Luengo's example.

Fernando Sanz Sánchez Universidad de Valladolid (joint wove Vector fields and separatrices

Assume f(0) = 0 and put $Z = f^{-1}(0)$.

• By Brunella's Theorem, $Z \neq \{0\}$ (invariant by X).

- By Brunella's Theorem, $Z \neq \{0\}$ (invariant by X).
- Since Sing(df) is invariant by X, if dim(Sing(df)) ≥ 1 we are done.

- By Brunella's Theorem, $Z \neq \{0\}$ (invariant by X).
- Since Sing(df) is invariant by X, if dim(Sing(df)) ≥ 1 we are done.
- Assume *f* has isolated singularity. Then $Z \setminus \{0\} = L_1 \cup L_2 \cup \cdots \cup L_r$, where L_j is a connected non-singular immersed analytic surface.

- By Brunella's Theorem, $Z \neq \{0\}$ (invariant by X).
- Since Sing(df) is invariant by X, if dim(Sing(df)) ≥ 1 we are done.
- Assume *f* has isolated singularity. Then $Z \setminus \{0\} = L_1 \cup L_2 \cup \cdots \cup L_r$, where L_j is a connected non-singular immersed analytic surface.

• Put
$$C_j = L_j \cap \mathbb{S}^2_{\varepsilon}$$
 the *link* of L_j .

- By Brunella's Theorem, $Z \neq \{0\}$ (invariant by X).
- Since Sing(df) is invariant by X, if dim(Sing(df)) ≥ 1 we are done.
- Assume *f* has isolated singularity. Then $Z \setminus \{0\} = L_1 \cup L_2 \cup \cdots \cup L_r$, where L_j is a connected non-singular immersed analytic surface.
- Put $C_j = L_j \cap \mathbb{S}^2_{\varepsilon}$ the *link* of L_j .
- By the Conic Structure, *L_j* = *L_j* ∪ {0} is a cone over *C_j* with vertex at 0.

- By Brunella's Theorem, $Z \neq \{0\}$ (invariant by X).
- Since Sing(df) is invariant by X, if dim(Sing(df)) ≥ 1 we are done.
- Assume *f* has isolated singularity. Then $Z \setminus \{0\} = L_1 \cup L_2 \cup \cdots \cup L_r$, where L_j is a connected non-singular immersed analytic surface.
- Put $C_j = L_j \cap \mathbb{S}^2_{\varepsilon}$ the *link* of L_j .
- By the Conic Structure, *L_j* = *L_j* ∪ {0} is a cone over *C_j* with vertex at 0.

- By Brunella's Theorem, $Z \neq \{0\}$ (invariant by *X*).
- Since Sing(df) is invariant by X, if dim(Sing(df)) ≥ 1 we are done.
- Assume *f* has isolated singularity. Then $Z \setminus \{0\} = L_1 \cup L_2 \cup \cdots \cup L_r$, where L_j is a connected non-singular immersed analytic surface.
- Put $C_j = L_j \cap \mathbb{S}^2_{\varepsilon}$ the *link* of L_j .
- By the Conic Structure, $\overline{L_j} = L_j \cup \{0\}$ is a cone over C_j with vertex at 0.

Ideas the proof. Restricted index

Fernando Sanz Sánchez Universidad de Valladolid (joint wover Vector fields and separatrices

Ideas the proof. Restricted index

We define $I_{C_j}(X)$, the index of X along C_j by considering the two-dimensional restriction $X|_{L_j}$.

Ideas the proof. Restricted index

We define $I_{C_j}(X)$, the index of X along C_j by considering the two-dimensional restriction $X|_{L_j}$.

Ideas of the proof. Generalizing Bendixson's formula

Ideas of the proof. Generalizing Bendixson's formula

Lemma.- If $I_{C_j}(X) = 0$ then there exists an invariant $\widehat{\Gamma}_{\mathbb{R}}$ inside L_j .

Ideas of the proof. Generalizing Bendixson's formula

Lemma.- If $I_{C_j}(X) = 0$ then there exists an invariant $\widehat{\Gamma}_{\mathbb{R}}$ inside L_j .

The proof uses the same argument of existence of sectors and Bendixson's formula inside L_j , using that $(\overline{L_j}, 0) \simeq (\mathbb{R}^2, 0)$. By a process of reduction of singularities of $\overline{L_j}$, together with a reduction of singularities of the foliation generated by $X|_{L_j}$, we have the situation:

Ideas of the proof. Simply connected levels

Proposition

There exists some L_{j_0} and a nbhd basis β of $0 \in \mathbb{R}^3$ such that for every $U \in \beta$ there are simply connected fibers of $f|_U$ arbitrarily closed to $L_{j_0} \cap U$.

Proposition

There exists some L_{j_0} and a nbhd basis β of $0 \in \mathbb{R}^3$ such that for every $U \in \beta$ there are simply connected fibers of $f|_U$ arbitrarily closed to $L_{j_0} \cap U$.

Proposition

There exists some L_{j_0} and a nbhd basis β of $0 \in \mathbb{R}^3$ such that for every $U \in \beta$ there are simply connected fibers of $f|_U$ arbitrarily closed to $L_{j_0} \cap U$.

End of the proof.- We finish by showing that $I_{C_{j_0}}(X) = 0$ for such j_0 (by "pushing" the vector field $X|_{L_{j_0}}$ near C_{j_0} to a nearby simply connected fiber).

Proof of the proposition

After an embedded resolution of singularities $\pi : M \to \mathbb{R}^3$ of the function *f* (with real oriented blow-ups), we have the situation

