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Predator-prey model

dx

dt
= x(α− βy),

dy

dt
= −y(γ − δx) (1)

y is the number of some predator;

x is the number of its prey;
dx
dt = ẋ and dy

dt = ẏ represent the growth of the two
populations against time t.

System (1) is called Lotka-Volterra system
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May-Leonard model

May and Leonard (SIAM J. Appl. Math., 1975):

ẋ =x(1− x − αy − βz),

ẏ =y(1− βx − y − αz),

ż =z(1− αx − βy − z).

(2)

where α, β are non-negative parameters.

Some studies on classical May-Leonard system:

May and Leonard (1975), dynamic aspects;

Schuster, Sigmund and Wolf (1979), dynamic aspects;

Leach and Miritzis (2006), first integrals;

Blé, Castellanos, Llibre and Quilantán (2013), integrability.

Valery Romanovski Qualitative studies of some biochemical models



Introduction
Necessary conditions for Hopf bifurcation
Invariant surfaces in polynomial systems

Limit cycle bifurcations

A few examples of biochemical models
Basics of the elimination theory

May-Leonard model

May and Leonard (SIAM J. Appl. Math., 1975):
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May-Leonard asymmetric model

ẋ =x(1− x − α1y − β1z),

ẏ =y(1− β2x − y − α2z),

ż =z(1− α3x − β3y − z).

(3)

where αi , βi (1 ≤ i ≤ 3) are non-negative parameters.

Some studies on May-Leonard asymmetric system:

Chi, Hsu and Wu (1998), dynamic aspects;

van der Hoff, Greeff and Fay (2009), dynamic aspects;

Antonov, Dolićanin, R. and Tóth (2016), periodic solutions,
first integrals.
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Chi, Hsu and Wu (SIAM J. Appl. Math. 1998) studied (3) under
assumptions

0 < αi < 1 < βi (1 ≤ i ≤ 3). (4)

Ai = 1− αi , Bi = βi − 1, (1 ≤ i ≤ 3).

Chi, Hsu and Wu showed:

under (4) system (3) has a unique interior equilibrium P, which is
locally asymptotically stable if A1A2A3 > B1B2B3, and if
A1A2A3 < B1B2B3, then P is a saddle point with a
one-dimensional stable manifold. They also have shown that if
A1A2A3 6= B1B2B3, then the system does not have periodic
solutions, and if

A1A2A3 = B1B2B3, (5)

then there is a family of periodic solutions.
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Tanabe and Namba (2005): a model of evolution of three species
one of each is an omnivore, which can eat both a predator and a
prey, and have shown that a Hopf bifurcation and period doubling
can occur in the system.

Previte and Hoffman (2013): a similar model with a scavenger – the
third species is a scavenger who is a predator of the prey and
scavenges the carcasses of the predator. A possible triple is
hyena/lion/antelope, where the hyena scavenges lion carcasses and
preys upon antelope.

ẋ = x(1− bx − y − z), ẏ = y(−c + x), ż = z(−e + fx + gy − βz). (6)

x – the density of prey, y – the density of its predator, z – of the
scavenger population. b is the carrying capacity of the prey, β is of the
scavenger, c is the death rate of the predator in the absence of prey, e is
the death rate of the scavenger in the absence of its food (y and x), f is
the efficiency that z preys upon x , g is the degree of efficiency that the
scavenger benefits from carcasses of predator y .
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By numerical studies Previte and Hoffman have shown that
system (6) exhibits Hopf bifurcations, bistability, and chaotic
phenomena.

Al-khedhairi et al. have shown the existence of the
transcritical, Hopf, Neimark-Staker and Fold Hopf bifurcations
in system (6).

Although both May-Leonard system (3) and system (6) are
described by second degree polynomials and look similar, their
dynamical behavior is very different: the dynamics of system
(6) is much richer, than the one of (3).

In all models:

Right hand sides are polynomial or rational functions

Depend on many parameters
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Elimination of variables

How to eliminate some variables from the system:
f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0??

Sylvester resultants
Gröbner bases

The variety of the ideal I = 〈f1, . . . , fm〉 ⊂ k[x1, . . . , xn] in kn,
denoted V(I ), is the zero set of all polynomials of I ,

V(I ) = {A = (a1, . . . , an) ∈ kn|f (A) = 0 for all f ∈ I} ,
where k is a field, e.g. = Q,R C.
We want to eliminate x1, . . . , x` (` < n) from
f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0.
For an ideal I in k[x1, . . . , xn] we denote by V(I ) its variety. Let us
fix ` ∈ {0, 1, . . . , n− 1}. The `-th elimination ideal of I is the ideal
I` = I ∩ k[x`+1, . . . , xn]. Any point (a`+1, . . . , an) ∈ V(I`) is called
a partial solution of the system {f = 0 : f ∈ I}.

Theorem (Elimination Theorem)

Fix the lexicographic term order on the ring k[x1, . . . , xn] with
x1 > x2 > · · · > xn and let G be a Gröbner basis for the ideal I
with respect to this order. Then the set G` := G ∩ k[x`+1, . . . , xn]
is a Gröbner basis for the `-th elimination ideal I`.
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The projection of a variety in kn onto kn−` is not necessarily a
variety.

Theorem (Closure Theorem)

Let V = V(f1, . . . , fs) be an affine variety in Cn and let I` be the
`-th elimination ideal for the ideal I = 〈f1, . . . , fs〉. Then V(I`) is
the smallest affine variety containing π`(V ) ⊂ Cn−` (that is, V(I`)
is the Zariski closure of π`(V )).
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xy = 1, xz = 1.

Elimination ”by hand”:
x = 1/y , x = 1/z , y 6= 0, z 6= 0 =⇒ x = 1/a, y = a, z = a, a 6= 0.
Elimination using the Elimination theorem:
The reduced GB of I = 〈xy − 1, xz − 1〉 with lex x > y > z is
{xz − 1, y − z}. =⇒ I1 = 〈y − z〉. =⇒ V(I1) is the line y = z . Partial
solutions are {(a, a) : a ∈ C}. (a, a) for which a 6= 0 can be extended to
(1/a, a, a), except of (0, 0).

Theorem (Extension Theorem)

Let I = 〈f1, . . . , fs〉 be a nonzero ideal in the ring C[x1, . . . , xn] and
let I1 be the first elimination ideal for I . Write the generators of I

in the form fj = gj(x2, . . . , xn)x
Nj

1 + g̃i , where Nj ∈ {N ∪ 0},
gj ∈ C[x2, . . . , xn] are nonzero polynomials, and g̃j are the sums of
terms of fj of degree less than Nj in x1. Consider a partial solution
(a2, . . . , an) ∈ V(I1). If (a2, . . . , an) 6∈ V(g1, . . . , gs), then there
exists a1 such that (a1, a2, . . . , an) ∈ V(I ).
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exists a1 such that (a1, a2, . . . , an) ∈ V(I ).
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Conditions for existence of Hopf bifurcations

ẋ = x(1− bx − y − z), ẏ = y(−c + x), ż = z(−e + fx + gy − βz). (6)

System (6) has 6 equilibrium points, but all coordinates are positive only
at A(x0, y0, z0),

x0 = c , y0 = −bβc − β + cf − e

β + g
, z0 =

c(f − bg)− e + g

bet + g
. (7)

The Jacobian at A is

J =

 −bc −c −c
−bcβ+β+e−cf

β+g 0 0
f (−e+g+c(f−bg))

β+g
g(−e+g+c(f−bg))

β+g
β(e−cf +bcg−g)

β+g

 . (8)
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The eigenvalues of J are complicated. The characteristic
polynomial of J:

p(u) =
1

β + g
((−β−g)u3+(β(e−cf−g)+bc(β(−1+g)−g))u2+

(c(e(−1+f )+f (c−cf−g+bcg)+β(−1+b(c+e−cf−g)+b2cg)))u

− c(β(bc − 1)− e + cf )(e − cf − g + bcg). (9)

Let u1 = −b0 be a real root of p(u).

Thus, p(u) can be written in the form

p̃(u) = −(u + b0)(u2 + w2) (10)

if two eigenvalues of J are pure imaginary (u1,2 = ±iw). Equating
the coefficients of u on both sides of p(u) = p̃(u):
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bc(β(−g) + β + g) + b0(β + g) + β(cf − e + g) = 0,
β
(
bc3(bg − f ) + c2(be − 2bg + f ) + b0w

2 + c(g − e)
)

+
c3f (bg − f ) + c2(−beg + 2ef − fg) + b0gw

2 + ce(g − e) = 0,
β
(
bc2(bg − f + 1) + c(be − bg − 1) + w2

)
+

c2f (bg − f + 1) + gw2 + c(e(f − 1)− fg) = 0.

(11)

p(u) can be represented as p̃(u) = −(u + b0)(u2 + w2) only for those
values of parameters of (6) for which system (11) has a solution. To find
such values of parameters we eliminate from (9) b0,w .

• w should be different from zero.
We add to (11) the equation 1− vw = 0, where v is a new variable, and
then eliminate b0,w , v .
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We compute in Q[v ,w , b0, b, f , g , β, e, c] a Gröbner basis G̃
(consists of 30 polynomials) of the ideal with respect to the
lexicographic term order with
v � w � b0 � b � f � g � β � e � c and find that the third
elimination ideal is 〈F 〉 generated by

F = b3βc2(β(−1+g)−g)g+(e−cf−g)(βf (e−cf )+(β+e−(β+c)f )g)+

b(cg(e(1−f +g)+f (c(−1+f−g)+g))+β2(c2f 2+(e−g)2+c(1−2ef +2fg))+

βc(cf (−1+f +g−2fg)+g(1+f +2g−2fg)+e(1−g+f (−1+2g))))−
(b2c(cfg2+β2(c+e−cf−g−2eg+2cfg+2g2)+βg(e−g+c(1+g−fg)))).

(12)
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Denote by D the discriminant p(u).

Theorem

If all the coefficients of (6) and the coordinates of A are positive,
then J has a pair of pure imaginary eigenvalues if and only if
F = 0 and D < 0.

Proof. By the Closure Theorem for “almost all“ values of
parameters b, f , g , β, e, c satisfying the condition
F (b, f , g , β, e, c) = 0 our system has a solution. However it can
happen that for some values of parameters it does not hold.
We show that under the conditions of the theorem every solution
of F (b, f , g , β, e, c) = 0 can be extended to a complete solution.
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The Gröbner basis G̃ contains the polynomials
g̃1 = (g + β)b0 − bgβc + bgc + bβc + f βc + gβ − βe
g̃2 = (g + β)w2 + b2gβc2 + bfgc2 − bf βc2 − bgβc + bβec +
bβc2 − f 2c2 − fgc + fec + fc2 − βc − ec ,
g̃3 = c(−βc+bβc2+βe−ce+e2−βcf +c2f−cef−βg+bβcg−eg+
bceg)v +βcw +bβcw−βew +βcfw +βgw +cgw +bcgw−bβcgw
g̃4 = (c(β + e)(−e + cf )2(β + g)2)v + h4(β, c , e, f , g , b,w),
where h4 has a long expression.

Theorem (Extension Theorem)

Let I = 〈f1, . . . , fs〉 be a nonzero ideal in the ring C[x1, . . . , xn] and
let I1 be the first elimination ideal for I . Write the generators of I

in the form fj = gj(x2, . . . , xn)x
Nj

1 + g̃i , where Nj ∈ {N ∪ 0},
gj ∈ C[x2, . . . , xn] are nonzero polynomials, and g̃j are the sums of
terms of fj of degree less than Nj in x1. Consider a partial solution
(a2, . . . , an) ∈ V(I1). If (a2, . . . , an) 6∈ V(g1, . . . , gs), then there
exists a1 such that (a1, a2, . . . , an) ∈ V(I ).
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The coefficient of b0 in g̃1 does not vanish for the positive
values of parameters, by the Extension Theorem (ET) every
positive solution (b̂, f̂ , ĝ , β̂, ê, ĉ) of F = 0 can be extended to
(b̂0, b̂, f̂ , ĝ , β̂, ê, ĉ) in the variety of J2. From the form of g̃1

=⇒ b̂0 is real.

(g̃2 and the ET) =⇒ the partial solution (b̂0, b̂, f̂ , ĝ , β̂, ê, ĉ)
can be extended to a point (ŵ , b̂0, b̂, f̂ , ĝ , β̂, ê, ĉ) in the
variety of J1.

g̃3 = c(−βc + bβc2 + βe − ce + e2 − βcf + c2f − cef − βg + bβcg −
eg +bceg)v +βcw +bβcw −βew +βcfw +βgw + cgw +bcgw −bβcgw
g̃4 = (c(β + e)(−e + cf )2(β + g)2)v + h4(β, c , e, f , g , b,w).
(g̃3 , g̃4 and the ET) =⇒ the partial solution (ŵ , b̂0, b̂, f̂ , ĝ , β̂, ê, ĉ) can
be extended to a complete solution unless e − cf = bc − 1 = 0. However
in such case A has coordinates (c , 0, 0), which contradicts our
assumption that all coordinates of A are positive.
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Thus, if the parameters of (6) satisfy F = 0, then

p̃(u) = −(u + b0)(u2 + w2)

w can be complex (pure imaginary)!

A cubic polynomial with real coefficients has a pair of complex
conjugate roots if and only if its discriminant is negative. Since
D < 0 if the roots are α± iγ, p(u) = (u + b0)(u2 − 2αu + α2 + γ2)
we conclude p(u) has two complex roots if w = γ is real, in which
case the roots are u1,2 = ±iw . �

Remark. g̃2 = (g + β)w2 + b2gβc2 + bfgc2 − bf βc2 − bgβc + bβec +
bβc2 − f 2c2 − fgc + fec + fc2 − βc − ec .
Remark. Elimination ideals for studying such problem were used recently
in N. Kruff, S. Walcher. Coordinate-independent criteria for Hopf
bifurcations. Discrete & Continuous Dynamical Systems, doi:
10.3934/dcdss.2020075
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The condition F = 0, D < 0 is rather general. We can use
Reduce. of Mathematica for some simplification.
Example. In (6) let us set e = 5, g = 3, β = 2 and c = 4. Then

Reduce[F == 0 && D < 0 && b >0 && f > 0 && y0>0 && z0 >0, {f, b}]$

yields
1

2
< f <

1

4

(√
46− 2

)
and b is a root of the cubic equation, with respect to α,
21− 50f + 8f 2 + 16f 3 + (180− 68f − 24f 2)α+ (−168− 88f )α2 +
48α3 = 0. If these conditions are fulfilled then the corresponding
system (6) has a center manifold passing through the point A and
the Jacobian at A has a pair of pure imaginary eigenvalues.
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Remark. The approach can be used for studying similar problems.

ẋ1 =− w1x2 + h.o.t.

ẋ2 =w1x1 + h.o.t.

ẋ3 =− w2x4 + h.o.t.

ẋ2 =w2x3 + h.o.t.

......................

ẋk+4 =...............

Problem of existence of two integrals, bifurcation of invariant
tori etc.

p̃(u) = a(pku
k + · · ·+ p1u + p0)(u2 + w2

1 )(u2 + w2
2 )

Eliminate pk , . . . , p1, p0,w1,w2.
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ẋk+4 =...............

Problem of existence of two integrals, bifurcation of invariant
tori etc.

p̃(u) = a(pku
k + · · ·+ p1u + p0)(u2 + w2

1 )(u2 + w2
2 )

Eliminate pk , . . . , p1, p0,w1,w2.

Valery Romanovski Qualitative studies of some biochemical models



Introduction
Necessary conditions for Hopf bifurcation
Invariant surfaces in polynomial systems

Limit cycle bifurcations

Invariant planes in May-Leonard system
Invariant surfaces of degree 2 in May-Leonard system

To understand the dynamics of a model described by systems of
ODEs it is important to know:

Singular points

First integrals

Invariant surfaces

Valery Romanovski Qualitative studies of some biochemical models



Introduction
Necessary conditions for Hopf bifurcation
Invariant surfaces in polynomial systems

Limit cycle bifurcations

Invariant planes in May-Leonard system
Invariant surfaces of degree 2 in May-Leonard system

Invariant surfaces in polynomial systems

ẋ = P(x , y , z), ẏ = Q(x , y , z), ż = R(x , y , z), (13)

the maximal degree of polynomials P,Q,R is m.

Definition

A surface H = 0 (H is a polynomial) is an invariant surface of (13)
iff

X (H) :=
∂H

∂x
P +

∂H

∂y
Q +

∂H

∂z
R = K H (14)

K – a polynomial of degree at most m − 1.
H – a Darboux polynomial of (13)
K – a cofactor.
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Invariant planes in May-Leonard system

Problem: find all invariant planes of May-Leonard system

ẋ = x(1−x−α1y−β1z), ẏ = y(1−β2x−y−α2z), ż = z(1−α3x−β3y−z).

H(x , y , z) = h000 + h100x + h010y + h001z .

Theorem

System (3) has an invariant plane passing through the origin and
different from the planes x = 0, y = 0, and z = 0 if one of the following
conditions holds:
1) α2 = β1, β2 6= 1,
2) α1 = β3, α3 6= 1,
3) α3 = β2, β3 6= 1,
4) β3 = 2−α1−α2+α1α2−α3+α1α3+α2α3−α1α2α3−β1−β2+β1β2

(β1−1)(β2−1) ,

5) β1 = α3 = 1, (−1 + α1)(−1 + β3) 6= 0,
6) β2 = 1, α1 (−1 + α2)(−1 + β1) 6= 0.
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Proof. We look for an invariant plane in the form

H(x , y , z) = h100x + h010y + h001z . (15)

with the corresponding cofactor

K (x , y , z) = c0 + c1x + c2y + c3z . (16)

Substituting H(x , y , z) and K (x , y , z) into

X (H) = KH

and comparing the coefficients of similar terms:

g1 = g2 = · · · = g9 = 0 (17)

where

g1 =h001 − c0h001,

g2 =− h001 − c3h001, g3 = h010 − c0h010,

g4 =− h010 − c2h010, g5 = −β3h001 − c2h001 − α2h010 − c3h010,

g6 =h100 − c0h100, g7 = −h100 − c1h100,

g8 =− β2h010 − c1h010 − α1h100 − c2h100,

g9 =− α3h001 − c1h001 − β1h100 − c3h100.

(18)
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We are looking for planes passing through the origin ⇒ h0 = 0.
Denote by J = 〈g1, g2, . . . , g9〉 the ideal generated by polynomials
of system (18). To obtain the conditions for existence of invariant
planes we have to eliminate from (18) the variables hi and ci , that
is, to compute the 7-th elimination ideal of J in the ring

Q[h, c, α, β] := Q[h100, h010, h001, c0, c1, c2, c3, α1, α2, α3, β1, β2, β3].
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X (H) = KH always has the solution H = 0, K = 0 and the
solutions H1 = x ,H2 = y ,H3 = z

=⇒ system (17) always has a solution

=⇒ 7-th elimination ideal J is 〈0〉.

We impose the condition that polynomial (15) is not a constant
and it is different from H1,H2, H3.
H(x , y , z) = h100x + h010y + h001z
defines a plane different from x = 0, y = 0, z = 0 if at least two
from the coefficients h100, h010, h001 are different from zero.

In the polynomial form:

1− wh100h010 = 0,

1− wh100h001 = 0,

1− wh010h001 = 0

with w being a new variable.
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To find systems admitting invariant surfaces with h100h010 6= 0:

• compute (e.g. using the routine eliminate of Singular) the
8-th elimination ideal of the ideal

J(1) = 〈J, 1− wh100h010〉,

in the ring

Q[w , h, c , α, β] := Q[w , h100, h010, h001, c0, c1, c2, c3, α1, α2, α3, β1, β2, β3].

Denote

this elimination ideal by J
(1)
7 ;

its variety by V1 = V(J
(1)
7 ).
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To find all the possibles invariant surfaces:

• Proceeding analogously, find other two eliminations ideals

J
(2)
7 , J

(3)
7 .

Denote the corresponding varieties V2 = V(J
(2)
7 ),V3 = V(J

(3)
7 ).

• The union, V = V1 ∪ V2 ∪ V3, contains the set of all
May-Leonard asymmetric systems, (3), having invariant planes
passing through the origin.

• Since V = V(J
(1)
7 ) ∪ V(J

(2)
7 ) ∪ V(J

(3)
7 ) = V(J

(1)
7 ∩ J

(2)
7 ∩ J

(3)
7 ),

to find the irreducible decomposition of V :

compute the ideal J = J
(1)
7 ∩ J

(2)
7 ∩ J

(3)
7 (routine intersect

of Singular);
find the irreducible decomposition of V(J) (routine
minAssGTZ of Singular).

The output gives the 6 conditions of the theorem.
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Invariant surfaces of degree 2: H(x , y , z) =
1+h100x+h010y+h001z+h200x

2+h110xy+h101xz+h020y
2+h011yz+h002z

2.

The computational procedure yields 88 conditions on the parameters
αi , βi of the May-Leonard asymmetric system for existence of an
invariant surface of degree two not passing through the origin.
We say, that two conditions for existence of invariant surfaces are
conjugate if one can be obtained from another by means of one of
transformations:

α1 → α3, β1 → β3, α2 → α1, β2 → β1, α3 → α2, β3 → β2,

α1 → α2, β1 → β2, α2 → α3, β2 → β3, α3 → α1, β3 → β1,

α1 → β2, β1 → α2, α2 → β1, β2 → α1, α3 → β3, β3 → α3,

α1 → β3, β1 → α3, α2 → β2, β2 → α2, α3 → β1, β3 → α1,

α1 → β1, β1 → α1, α2 → β3, β2 → α3, α3 → β2, β3 → α2,

Theorem

System (3) has an irreducible invariant surface not passing through the
origin if one of the following conditions or conjugated to it holds:
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1 α2 = β1 = β2 − 1/2 = α1 − 3 = 0

2 α2 = β1 = β2 − 3 = α1 − 3 = 0

3 β3 = β1 = α3 + β2 − 1 = α2 + 1 = α1 − α3 − 1 = 0

4 β3 = β1 = α3 + 1 = β2 − 3 = α2 + 1 = α1 − 1/2 = 0

5 β3 = β1 = α3 − 3 = β2 − 3 = α2 − 3/2 = α1 + 1 = 0

6 β1 = β3 − 3 = α3 − 3 = β2 − 1 = α2 − 1/2 = α1 − 1 = 0

7 β1 = β3 − 3 = α3 − 1/2 = β2 − 1/2 = α2 + 1 = α1 − 3 = 0

8 β1 = β3 − 1/2 = α3 − 3 = β2 − 3 = α2 − 3/2 = α1 − 1/2 = 0

9 β1 = β3 − 3 = α3 + 3 = β2 − 3 = α2 + 1 = α1 − 3 = 0

10 β1 = β3 − 1/2 = α3 − 2 = β2 − 3 = α2 − 3/2 = α1 − 1/2 = 0

11 β1 = α3 = β2 − β3 − 1 = α2 + β3 − 2 = α1 + β3 − 1 = 0

12 β1 = β3 − 3 = α3 + β2 − 4 = α2 + 1 = α1 − α3 + 2 = 0

13 β3 − 1/2 = α3 − 1/2 = α2 − 3 = β1 − 3 = α1 + β2 − 2 = 0

14 β3 − 1/2 = α3 − 3 = β2 − 3 = α2 − 3 = β1 − 3 = α1 − 1/2 = 0

15 β3 − 1/2 = β2 − 3 = α2 − 3 = α3 + β1 − 2 = α1 − 1/2 = 0

16 β3 − 3 = α3 − 3 = α2 − 3 = β1 − 3 = α1 + β2 − 2 = 0

17 β3 − 3 = α3 + β2 − 4 = α2 − 3 = α3 + β1 − 2 = α1 − α3 + 2 = 0
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Modular computations

Computational complexity of the Gröbner basis calculations over
the field of rational numbers is an essential obstacle for using the
Gröbner basis theory for the real world applications.

For finding the surfaces of the second degree the computations
over the field Zp were used.
H(x , y , z) =
1 + h100x + h010y + h001z + h200x

2 + h110xy + h101xz + h020y
2 +

h011yz + h002z
2.

Modular computations:

Choose a prime number p and do all calculations modulo p, that
is, in Zp = Z/p.
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Reconstruct (lift) r/s ∈ Q given its image t ∈ Zp.
Algorithm by P. Wang (b·c stands for the floor function):
Step 1. u = (u1, u2, u3) := (1, 0,m), v = (v1, v2, v3) := (1, 0, c)
Step 2. While

√
m/2 ≤ v3 do

{q := bu3/v3c, r := u − qv , u := v , v := r}
Step 3. If |v2| ≥

√
m/2 then error()

Step 4. Return v3, v2

Given an integer c and a prime number p the algorithm produces
integers v3 and v2 such that v3/v2 ≡ c (mod p), that is,
v3 = v2c + pt with some t. If such a number v3/v2 does need not
exist. If this is the case, then the algorithm returns ”error()”.
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Example

f1 =8x2y2 + 5xy3 + 3x3z + x2yz ,

f2 =x5 + 2y3z2 + 13y2z3 + 5yz4,

f3 =8x3 + 12y3 + xz2 + 3,

f4 =7x2y4 + 18xy3z2 + y3z3.

(19)

Under the lexicographic ordering with x > y > z a Groebner basis
for I is

G = {x , y3 +
1

4
, z2.} (20)

Computing in the field Z32003:

G ′ = {x , y3 + 8001, z2.} (21)

Rational reconstruction yields (20).
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Calculations for the case

H(x , y , z) = h100x+h010y+h001z+h200x
2+h110xy+h101xz+h020y

2+h011yz+h002z
2.

turned out computationally unfeasible even over Zp.
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Darboux first integral

Let n be an arbitrary natural number, Hi be algebraic invariant
surfaces of

ẋ = P(x , y , z), ẏ = Q(x , y , z), ż = R(x , y , z), (22)

with the corresponding cofactors Ki (i = 1, 2, . . . , n).
A Darboux first integral of system (22) is a function of the form

Ψ(x , y , z) =
n∏

i=1

Hi (x , y , z)λi ,

where
n∑

i=1

λiKi = 0 (23)

and λi are some constants.

Using the obtained invariant surface a number of Darboux first
integrals of the May-Leonard system was constructed.
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Periodic solutions in the May-Leonard system

Chi, Hsu and Wu (SIAM J. Appl. Math. 1998) have shown that the
ML system can have a family of periodic solutions

but they mentioned that the family arises as the result of Hopf
bifurcations.

In fact there is another mechanism for existence of the family.

Under condition 4) of Theorem 2 we have:
β3 = 2−α1−α2+α1α2−α3+α1α3+α2α3−α1α2α3−β1−β2+β1β2

(β1−1)(β2−1) ,

H4 = −x+α3x+β2x−α3β2x+y−α1y−α3y+α1α3y+z−β1z−β2z+β1β2z
(24)

x = 0, y = 0, z = 0
The Darboux first integral

Ψ = xα1yα2zα3Hα4
4 (25)

α2 = −
α1(−1 + β1)

α2 − 1
, α3 =

α1(−1 + β1)(−1 + β2)

(−1 + α2)(−1 + α3)
, α4 = −

α1(1 − α2 + α2α3 − α3β1 − β2 + β1β2)

(−1 + α2)(−1 + α3)
.
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For simplicity we take the parameters
β1 = 1/4, β2 = 11/10, α1 = 5/4, α2 = 4/5, α3 = 3/2, β3 = 2/3.
In this case system (3)

ẋ = x(−x−5y

4
−z

4
+1), ẏ = y(−11x

10
−y−4z

5
+1), ż = z(

3x

2
+

2y

3
+z−1).

(26)
and the singular point P has the coordinates

x0 = 1/3, y0 = 1/2, z0 = 1/6.

Proposition

System (26) has a family of periodic solutions in a neighborhood of
the singular point P(1/3, 1/2, 1/6).
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Proof:

Moving the origin to the singular point by the substitution

u = x − x0, v = y − y0, w = z − z0

and then performing the linear change of coordinates

u =2X + 370Y /249,

v =3X − Y − 15
√

10Z/83,

w =X + 1/249(−235Y + 77
√

10Z )

we obtain from (26)
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Ẋ =− X − 6X 2 +
10450Y 2

268671
+

38048
√

10YZ

806013
− 10450Z 2

268671
,

Ẏ =
Z

3
√

10
− 6XY +

√
2

5
XZ − 2090Y 2

39923
+

16979
√

2
5YZ

39923
+

2090Z 2

39923
,

Ż =− Y

3
√

10
−
√

2

5
XY − 6XZ +

19187
√

10Y 2

119769
+

7730YZ

119769
− 19187

√
10Z 2

119769
.

By the Center Manifold Theorem ∃ an analytic center manifold
X = h(Y ,Z ) passing through X = Y = Z = 0.

Expanding the first integral (25) into power series

Ψ(X ,Y ,Z ) = Y 2 + Z 2 + h.o.t.

⇒ in a neighborhood of the origin there exists a family of periodic
orbits formed by the intersection of the graphs of X = h(Y ,Z ) and
Ψ = c (0 < c < c0).
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Lyapunov functions on the center manifold

ẋ = Ax + F (x) = G (x), (27)

x = (x , y , z), the matrix A has the eigenvalues λ1, λ2, λ3 and
λ1 < 0, λ2 = iω, λ3 = −iω, F is a vector-function, which is
analytic in a neighborhood of the origin and such that its series
expansion starts from quadratic or higher terms, and
G (x) = (G1(x),G2(x),G3(x))T .
By the Center Manifold Theorem the system has a center manifold
defined by a function x = f (y , z). After a linear transformation
and rescaling of time system:

u̇ = −v + P(u, v ,w) = P̃(u, v ,w)

v̇ = u + Q(u, v ,w) = Q̃(u, v , s)

ẇ = −λw + R(u, v ,w) = R̃(u, v ,w).

(28)
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Theorem

Suppose that for (27) there exists a function

Ψ(x) =
∞∑

k+l+m=2

aklmx
ky lzm (29)

X (Ψ) := ∂Ψ(x)
∂x G1(x) + ∂Ψ(x)

∂y G2(x) + ∂Ψ(x)
∂z G3 =

g1(y2 + z2)2 + g2(y2 + z2)3 + . . . . (30)

Let
x = f (y , z , α∗) (31)

be the center manifold of system (27) corresponding to the value α∗ of
parameters of the system and

q(x, α∗) =
∑

k+l+m=2

aklmx
ky lzm (32)

be the quadratic part of (29).
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Let q1(y , z , α∗) be q(x, α∗) evaluated on (31). Assume that
q1(y , z , α∗) is positively defined quadratic form and

g1(α∗) = g2(α∗) = · · · = gk(α∗) = 0, gk+1(α∗) 6= 0. (33)

Then,
1) if gk+1(α∗) < 0, the corresponding system (27) has a stable
focus at the origin on the center manifold, and if gk+1(α∗) > 0
then the focus is unstable.
2) if it is possible to choose perturbations of the parameters α in
system (27) such that

|g1(αk)| � |g2(αk−1)| � . . . |gk(α1)| � |gk+1(α∗)|, (34)

αj+1 is arbitrary close to αj and the signs of gs(αm) in (34)
alternate, then system (27) corresponding to the parameter αk has
at least k limit cycles on the center manifold.
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Proof. 1) Since q1 is positively defined the function Ψ restricted to
the center manifold is positively defined in a small neighborhood of
the origin. The derivative of Ψ with respect to the vector field on
the center manifold has the same sign as gk+1(α∗). Thus, by the
Lyapunov theorem the origin is a stable focus on the center
manifold if gk+1(α∗) < 0 and unstable focus if gk+1(α∗) > 0.
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2) Assume for determinacy that gk+1(α∗) < 0. Under the
condition of the theorem the equality Ψ(x, α∗) = c (c ∈ (0, c1])
defines in a small neighborhood of the origin near the center
manifold (31) a family of cylinders which are transversal to the
center manifold. Let C1 be the curve formed by the intersection of
the cylinder Ψ(x, α∗) = c1 and the center manifold M(α∗) of
system (27) defined by (31). If c1 is sufficiently small then C1 is an
oval on M(α∗) and the vector field is directed inside C1, since

X (Ψ(x, α∗)) = gk+1(α∗)(y2 + z2)k+2 + h.o.t

and gk+1(α∗) < 0.
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By the assumption of the theorem there is α1 arbitrary close to α∗ and

such that gk(α1) > 0. Then for some c2 < c1 the intersection of the

cylinder Φ(x, α1) = c2 (c2 ∈ (0, c1]) defines a curve C2 on the center

manifold x = f (y , z , α1) such that the vector field of system (27) is

directed outside of C2 (since gk(α1) > 0). Since the perturbation is

arbitrary small the curve C1 is transformed to a curve C
(1)
1 such that the

vector field on C
(1)
1 still is directed inside the curve. Then by the

Poincaré-Bendixon theorem there is a limit cycle on the center manifold

x = f (y , z , α1) in the ring bounded by C2 and C
(1)
1 . Continuing the

procedure on the center manifold corresponding to a parameter αk we

obtain k curves C
(k)
1 , C

(k−1)
2 , . . . ,Ck , such that the the vector field on

C
(k)
1 is directed inside the curve, the vector field on C

(k−1)
2 is directed

outside of the curve, the vector field on C
(k−2)
3 is directed inside the

curve and so on. Then, in each ring bounded by the curves C
(j)
i system

(27) corresponding to the parameter αk has at least one limit cycle on

the center manifold x = f (y , z , αk). �
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We now investigate Hopf and degenerate Hopf bifurcations near the
singular point A of (6). We limit consideration to the case when one of
the eigenvalues is equal to −1. For the characteristic polynomial p(u) we
have that p(−1) = 0 if

g =
β(1 + c)(−1 + bc)(−1− e + cf ) + c(e − cf )(1 + e − (1 + c)f )

(−1 + bc)(1 + β(1 + c)(−1 + bc)− ce + c(1 + c)f )
(35)

and the two other eigenvalues are

λ2,3 = µ±
√
ν, (36)

where

µ = − c(bc − 1)(bβ(c + 1) + cf − e + f − 1)

2(β(c + 1)(bc − 1) + c(cf − e + f − 1))
(37)

ν2 =
ν1

ν2
, (38)

ν1 = c(bc−1)(β2(c+1)2(bc−1)(b(b+4)c−4)+2β(c+1)(bc−1)(−c((b+4)e+b+2)+

(b+4)c(c+1)f−2e)+c(−(c+1)f +e+1)(c(−f ((b+4)c+b+3)+be+b+4e)+3e+f−1))

ν2 = 4(β(c + 1)(bc − 1) + c(cf − e + f − 1))2.Valery Romanovski Qualitative studies of some biochemical models
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From (37) we see that λ2,3 can be pure imaginary if µ = 0, that is,
if

f =
−bβ(c + 1) + e + 1

c + 1
. (39)

Theorem

Assume that for system (6) conditions (35) and (39) are fulfilled.
Then the system has a center manifold W passing through the
equilibrium point A, and A is a center or a focus for the flow of
(6) restricted to W , if and only if

β > 1∧b > 0∧
((

b <
e + 1

βc + β
∧ c > 0 ∧ ((e > 0 ∧ e + 1 ≤ β) ∨ (β < e + 1∧

ce + c ≤ βc + β))) ∨
(
c >

β

−β + e + 1
∧ e + 1 > β ∧ b <

1

c

))
.

(40)
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Proof.

When conditions (35) and (39) hold, the eigenvalues of the
Jacobian at A are −1 and ±

√
ν.

The Jacobian has a pair of purely imaginary eigenvalues if ν < 0.
To find such conditions we solve the the semialgebraic system

x0 > 0∧y0 > 0∧z0 > 0∧β > 0∧g > 0∧e > 0∧c > 0∧f > 0∧b > 0∧ν < 0,

where ν is defined by (38) and x0, y0, z0 are the coordinates of the
point A defined by (7), with respect to the variables β, e, c and b.
Solving the system with Reduce of Mathematica, we obtain the
condition given in the statement of the theorem. Thus, under the
condition the system has a center manifold passing through A and
A is either a center or a focus on the center manifold.
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We move the origin to A this point by performing the substitution
X = x − x0, Y = y − y0, Z = z − z0. Then, writing in the transformed
system x , y , z instead of X ,Y ,Z , we obtain

ẋ =− (c + x)(bx + y + z) = X (x , y , z),

ẏ =− x(bβc − bc − βy − β + 1)

β
= Y (x , y , z),

ż =((bc − βz − 1)((β − 1)x(bc − 1)(bβ(c + 1)− e − 1) + β(y(b(β − 1)c(c + 1)

+ e + 1) + (β − 1)(c + 1)z(bc − 1))))/((β − 1)β(c + 1)(bc − 1)) = Z (x , y , z).
(41)

We look for

Φ(x) =
3∑

j+l+m=2

ajlmx
jy lzm (42)

such that

X (Φ) := ∂Φ(x)
∂x X (x , y , z) + ∂Φ(x)

∂y Y (x , y , z) + ∂Φ(x)
∂z Z (x , y , z) =

g1(y2 + z2)2 + O(||x||5). (43)
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The quadratic part of (42) is

Φ2 =
1

2
a101

(
γ1y

2 + γ2x
2 + γ3xy + γ4yz + γ5z

2 + γ6xz
)
, (44)

where

γ1 =

(
β2(c + 1)(c(bc − 1)− 1)− β(c(2c(bc + b − 1)− 3) + e) + c(c + 1)(bc − 1)

)
(β − 1)2(c + 1)(bc − 1)2

γ2 =
β(c + 1)((b − 1)c − 1) + c(c − e)

βc(c + 1)

γ3 =
2(b(β − 1)c(c + 1) + e + 1)

(β − 1)(c + 1)(bc − 1)

γ4 =
2cyz

bc − 1
, γ5 =

c

bc − 1
, γ6 = 2.

a101 in (44) can be chosen any,

g1 = h1(x,y ,z)a101

h2(x,y ,z) , where h1 and h2 are long polynomials.
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We now look for a series expansion of the center manifold of system (41)

x =
∞∑

i+j=1

αijy
iz j = H(y , z) (45)

ẋ − ẏ
∂H

∂y
− ż

∂H

∂z
= 0,

where the left-hand side is evaluated for x as given by (45).
Computing the first two terms of the series expansion (45) we obtain

x =
(e + 1)y

b(β − 1)(c + 1)
− z

b
+ h.o.t. (46)

We substitute this expression into (44) obtaining

Q(y , z) =
a101

(
bβc3 + bβc2 − bc3 + bc2e − βc2 − 2βc − β + c2 − ce

)
2b2(β − 1)2βc(c + 1)3(bc − 1)2

q(x , y),

(47)
where
q = ((1 + e)2 − bc(1 + e)2 + b2βc(1 + c)(β − c + βc + e))y2 + 2(−1 +
β)(1 + c)(−1 + bc)(1 + e)yz + (−1 + β)2(1 + c)2(1− bc)z2.
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Theorem

If for some a101 6= 0 and some chosen values β∗, b∗, c∗, e∗ of
parameters β, b, c , e of system (41) at least one of partial
derivative of µ (defined by (37)) is not equal to zero, then:
(a) if the quadratic form Q(y , z) is positive definite and g1 < 0,
then the corresponding system (41) admits a supercritical Hopf
bifurcation,
(b) if Q(y , z) is positive definite and g1 > 0 then the system
admits a subcritical Hopf bifurcation,
(c) if Q(y , z) is negative definite and g1 > 0 then the system
admits a supercritical Hopf bifurcation,
(d) if Q(y , z) is negative definite and g1 < 0 then the system
admits a subcritical Hopf bifurcation.
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To study the degenerate Hopf bifurcations of system (41) we need
to compute the second focus quantity g2.
We have to computed g2 only for some particular values of the
parameters. In order to perform symbolic computations we need to
find rational values of parameters for which g1 vanishes. After
some computational experiments we found that if

β = c = 2, e = 3 (48)

the polynomial h1 factors as

h1 = (−4 + 21b)(15 + 26b + 56b2). (49)

Theorem

There are systems (6) with two limit cycles in a neighborhood of
the singular point at the origin.
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Proof. When β = c = 2, (47) takes the form

Q =
a101(2b(e + 4)− e − 7)s(y , z)

108(1− 2b)2b2
. (50)

s(y , z) =
(
y2
(
12b2(e + 4)− 2b(e + 1)2 + (e + 1)2

)
+6(2b − 1)(e + 1)yz + 9(1− 2b)z2

)
.

Computing the leading principal minors of the quadratic form in the
numerator of (50) we obtain

∆1 = −(8b−e+2be = 7)(2b−48b2−2e+4be−12b2e−e2+2be2−1)a101

and ∆2 = −108b2(−1 + 2b)(4 + e)(−7 + 8b − e + 2be)2a2
101. By

Sylvester’s criterion the quadratic form (50) is positive definite if ∆1 > 0

and ∆2 > 0. Solving with Reduce of Mathematica the semi-algebraic

system ∆1 > 0,∆2 > 0, b > 0, e > 0 with respect to b, e and a101 we

find that the solution is 0 < b < 1
2 ∧ e > 0 ∧ a101 < 0. Thus, setting

a101 = −1 we have that the quadric form (50) is positive definite for any

e > 0 and 0 < b < 1
2 .
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When condition (48) is satisfied and b = 4
21 , from (49) we have that

g1 = 0 and the computations yield

g2 = − 93395925504

205676731273
.

Thus the singular point at the origin is a stable focus on the center
manifold.
For β = c = 2 and b = 4

21 we have

g1 =
37044(e − 3)(e + 4)

(
4277e2 + 14776e + 20156

)
13(52e + 271) (8281e4 + 44772e3 + 272728e2 + 503784e + 1080004)

.

Then for e > 3 but sufficiently close to 3, |g1| � |g2| and g1 is negative,
so a stable limit cycle bifurcates from the origin.

Under the perturbation the matrix of the linear approximation still has a

pair of pure imaginary eigenvalues.
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Computing ∂µ
∂f (where µ is defined by (37)) we see that it is

non-zero if β = c = 2 and b = 4
21 . Therefore, an unstable limit

cycle bifurcates from the origin as the result of a Hopf bifurcation.
Since we can choose the perturbation to be arbitrary small, the
limit cycle L is preserved, so the perturbed system has two limit
cycles.

Figure: Two limit cycles in system (6) with parameters β = c = 2 and
b = 4/21, e = 4, f = 907/700 and g = 86/13.
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