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Concept of resonance

Resonance: All solutions are unbounded, meaning that each
solution x(t) satisfies

|x(tn)|+ |ẋ(tn)| → +∞

for some sequence {tn}.

In fact in the results we prove:

lim
t→+∞

(|x(t)|+ |ẋ(t)|)→ +∞



Resonance for the harmonic oscillator

Consider the harmonic oscillator with period 2π perturbed by a
periodic forcing

ẍ + n2x = p(t), n = 1, 2, . . .

Resonance ⇐⇒ p̂n :=
1

2π

∫ 2π

0
p(t)e−intdt 6= 0



More general isochronous oscillators

Robert Roussarie, Open Problems Session of the II Symposium
on Planar Vector Fields (Lleida, 2000)

How this phenomena generalize for nonlinear isochronous centers?



Rafael Ortega

Periodic perturbations of an isochronous center, Qualitative
Theory of Dynamical Systems 3 (2002) 83-91.

ẍ + V ′(x) = εδ#(t),

δ#(t) periodic δ − function.

Regularization: p(t) close to δ#(t) −→ ẍ + V ′(x) = εp(t),
Hypothesis: V ′ Lipschitz-continuous.



Resonance for nonlinear oscillators

Consider an oscillator with equation

ẍ + V ′(x) = 0, x ∈ R

and assume that it has an isochronous center at the origin with
period T = 2π.
We are interested in the class of 2π-periodic functions p(t) such
that all the solutions of the non-autonomous equation

ẍ + V ′(x) = εp(t)

are unbounded.

Goal
To identify a general class of forcings leading to resonance.
Our main result can be interpreted as a nonlinear version of the
condition p̂n 6= 0.



Let:

I C = (R/2πZ)× [0,∞) with coordinates (θ, r),

I ϕ(t, r) the solution of ẍ + V ′(x) = 0, x(0) = r , ẋ(0) = 0.

I ψ(t, r) the complex-valued solution of

ÿ + V ′′(ϕ(t, r))y = 0, y(0) = 1, ẏ(0) = i .

I Φp : C → C,

Φp(θ, r) :=
1

2π

∫ 2π

0
p(t − θ)ψ(t, r)dt.

Harmonic oscillator: ψ(t, r) = cos(nt) + i
n sin(nt)

=⇒ 1
n |p̂n| ≤ |Φp| ≤ |p̂n|.



Sufficient condition for resonance

Let V ∈ C 2(R) satisfying V (0) = 0, xV ′(x) > 0 if x 6= 0, with all
solutions of ẍ + V ′(x) = 0 2π-periodic.

Theorem
Assume that V ′′ is bounded over R and the condition

inf
C
|Φp(θ, r)| > 0

holds for some p ∈ L1(T). Then the perturbed equation is
resonant for small ε 6= 0.



Lets sketch the proof

Second Massera’s Theorem: If all solutions of ż = F (z , t),
z ∈ R2, F (·, t) 2π-periodic, are globally defined in the future and
at least one of them bounded then a 2π-periodic solution exists.

Take εn ↓ 0 and suppose xn 2π-periodic sol. ẍ + V ′(x) = εnp(t).
Define yn = xn − Xn, where Xn solution of ẍ + V ′(x) = 0 with
same initial conditions as xn.

yn solution of

ÿ +y

∫ 1

0
V ′′((1−λ)xn(t) +λXn(t))dλ = εnp(t), y(0) = ẏ(0) = 0.

This produce: ‖yn‖L∞(T) ≤ C |εn|‖p‖L1(T).



Also yn solution of

ÿ + V ′′(Xn(t))y = εnp(t)− qn(t)

with

qn(t) = yn(t)

∫ 1

0

[
V ′′((1− λ)xn(t) + λXn(t))− V ′′(Xn(t))

]
dλ.

Thus: 1
εn
qn(t)→ 0 and 1

|εn|‖qn‖L∞(R) ≤ C‖p‖L1(T)‖V ′′‖L∞(R).

Solutions Xn(t) write ϕ(t − θn, rn) and ψ(t − θn, rn) is a
2π-periodic nontrivial solution of ÿ + V ′′(Xn(t))y = 0.
Particularly ‖ψ‖L∞(T) ≤ C .
Fredholm alternative:

εn

∫ 2π

0
p(t)ψ(t − θn, rn)dt −

∫ 2π

0
qn(t)ψ(t − θn, rn)dt = 0.

Φp(θn, rn) =
1

2π

∫ 2π

0

qn(t)

εn
ψ(t − θn, rn)dt → 0 as n→ +∞.



There are many of those isochronous
potentials?

M. Urabe
Potential forces which yield periodic motions of a fixed period,
J. Math. and Mech. 10 (1961), 569–578.

Consider the initial value problem

dX

dx
=

2π

T

1

1 + S(X )
, X (0) = 0,

with S an analytic odd function satisfying

C0 := sup
X∈R
|S(X )| < 1, C1 := sup

X∈R
|XS ′(X )| < +∞.

The solution X (x) is defined in R and V ′(x) = X (x)X ′(x) produce
an isochronous center of period T .

Example: α arctanX , |α| < 2
π . Example with C1 = +∞: 1

2 sinX .



Necessity of the condition: only partially
Previous Theorem is a sufficient condition for resonance but it
is not too far from being also necessary. A partial converse of the
main theorem holds: a periodic solution exists when the function
Φp has a non-degenerate zero.

Proposition

Assume V in the conditions of the Theorem and Φp having a
non-degenerate zero (θ∗, r∗) with r∗ > 0. Then the perturbed
equation has a 2π-periodic solution for small ε.

I Harmonic oscillator:

Resonance ⇐⇒ p̂n :=
1

2π

∫ 2π

0
p(t)e−intdt 6= 0.

I Nonlinear oscillator:

Resonance “⇐⇒” Φp :=
1

2π

∫ 2π

0
p(t − θ)ψ(t, r)dt 6= 0.



...And isochronous potentials not globally
defined?

Until now we have talked about oscillators defined on R but there
are also oscillators producing an isochronous center and having
a singularity. A well-known example is the Pinney equation

ẍ +
1

4

(
x + 1− 1

(x + 1)3

)
= 0,

defined for all x ∈ (−1,+∞).



Theorem
Let p ∈ L1(T) be a function satisfying the resonance condition.
Then all the solutions of equation

ẍ +
1

4

(
x + 1− 1

(x + 1)3

)
= εp(t)

are unbounded for sufficiently small ε 6= 0.

This resonance result deals with the specific Pinney equation but
the method of proof can be extended to a larger class of potentials
with strong singularity.

If consider p(t) = a0 + a1 cos t + b1 sin t,

Corollary

Pinney equation is resonant if a21 + b21 > 9a20.



Even bounded isochronos centers!

I Massera’s Theorem

I Montgomery’s Fixed Point
Theorem X

But only on compact subsets...
... for the moment!



Even bounded isochronos centers!
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I Montgomery’s Fixed Point
Theorem X

But only on compact subsets...
... for the moment!



Some related open problems

(a) Either the result concerning the identification of the forcings
producing resonance for isochronous oscillators defined in the
whole plane and the construction by Ortega require the
oscillator to be Lipschitz-continuous. We expect that no
specific regularity of the potential is needed or at least weaker
properties.

(b) We give a sufficient condition of resonance for the Pinney
equation perturbed by a linear trigonometric function. It
would be interesting to study if the perturbed equation have
periodic orbits for a21 + b21 ≤ 9a20.

(c) The results presented deal with nonlinear isochronous
oscillators with one degree of freedom. In more degrees of
freedom, the notion of isochronicity is strongly related with
superintegrability, at least in the Hamiltonian framework. It
would be interesting to relate properly superintegrable
Hamiltonian systems with isochronicity and to construct
resonance of such systems.
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