Classifications of parabolic Dulac germs

Maja Resman
(joint with P. Mardešić, J. P. Rolin, V. Županović)

University of Zagreb, Croatia

AQTDE2019, Castro Urdiales

June 17, 2019
Dulac or almost regular germs

Definition [Ilyashenko].

Parabolic almost regular germ (Dulac germ):

- $f \in C^\infty(0, d)$
- extends to a holomorphic germ f to a *standard quadratic domain* Q:

 $$Q = \Phi\left(\mathbb{C}_+ \setminus \overline{K(0, R)} \right), \quad \Phi(\eta) = \eta + C(\eta + 1)^{\frac{1}{2}}, \quad C, \quad R > 0,$$

 in the *logarithmic chart* $\xi = -\log z$.
Standard quadratic domain

\[r_k := r(\varphi_k) \sim e^{-C \sqrt{\frac{|k| \pi}{2}}}, \ k \to \pm \infty, \]

\[\varphi_k \in \left((k - 1)\pi, (k + 1)\pi\right) \]
\(f \) admits the *Dulac* asymptotic expansion:

\[
f(z) \sim_{z \to 0} 1 \cdot z + \sum_{k=1}^{\infty} z^{\alpha_i} P_i(-\log z),
\]

i.e.

\[
f(z) - z - \sum_{i=1}^{n} z^{\alpha_i} P_i(-\log z) = O(z^{\alpha_n}), \quad n \in \mathbb{N},
\]

\(\alpha_i > 1 \), strictly increasing to \(+\infty\),
\(\alpha_i \) finitely generated \(^1\),
\(P_i \) polynomials.

\(\mathbb{R}_+ \) invariant under \(f \) (i.e. coefficients of \(\hat{f} \) real!)

\(^1\)There exist \(\beta_k, \ k = 1 \ldots n \), such that: \(\alpha_i \in \mathbb{N}\beta_1 + \ldots + \mathbb{N}\beta_n \).
Motivation and history

- *first return maps* for polycycles with hyperbolic saddle singular points – *n* saddle vertices with hyperbolicity ratios $\beta_i > 0$ (Dulac)

- locally at the saddle

\[
\begin{align*}
\dot{x} &= x + \text{h.o.t.} \\
\dot{y} &= -\beta_i y + \text{h.o.t.}
\end{align*}
\]
Motivation and history

- **Dulac’s problem**: accumulation of limit cycles on a hyperbolic polycycle possible?
- Limit cycles = fixed points of the first return map
- Dulac: accumulation \Rightarrow trivial power-log asymptotic expansion of the first return map \Rightarrow trivial germ on \mathbb{R}_+ (Dulac’s mistake)
- The problem: Dulac asymptotic expansion does not uniquely determine f on \mathbb{R}_+ (add any exponentially small term w.r.t. x!), e.g.

$$f(x) \sim x + x^2 - \log x, \quad f(x) + e^{-1/x} \sim x + x^2 - \log x, \ x \to 0$$

- Ilyashenko’s solution: first return maps extendable to a SQD
- SQD **sufficiently large complex domain**: by a variant of maximum modulus principle (*Phragmen-Lindelöf*), Dulac’s expansion uniquely determines the germ on a SQD!
Questions

* goal: theory like the standard theory of Birkhoff, Ecalle, Voronin, Kimura, Leau etc. for parabolic analytic germs Diff(\(\mathbb{C}, 0\))

- **formal classification** of parabolic Dulac germs – by a sequence (!!! not necessarily convergent) of formal power-logarithmic changes of variables

\[
\hat{g} = \hat{\varphi}^{-1} \circ \hat{f} \circ \hat{\varphi},
\]

\(\hat{f}, \hat{g}\) Dulac expansions,
\(\hat{\varphi}(z) = z + h.o.t.\) diffeo- with power-log asymptotic expansion

- **analytic classification** of parabolic Dulac germs

\[
g = \varphi^{-1} \circ f \circ \varphi,
\]

\(f, g\) Dulac germs on \(Q\), \(\varphi(z) = z + o(z)\) analytic on \(Q\)

- \(\varphi\) admits \(\hat{\varphi}\) as its asymptotic expansion?
simpler question: is a Dulac germ **analytically embeddable** in a flow of an analytic vector field $\xi(z) \frac{d}{dz}$ defined on a standard quadratic domain? (= describe *trivial* analytic class)

$$g = \varphi^{-1} \circ f_0 \circ \varphi,$$

f, f_0 Dulac germs,

f_0 time-one map of an analytic vector field,

φ analytic.

Example

$$f(z) = z + z^2 + z^3 + \ldots = \frac{z}{1-z} \text{ time-one map of } z^2 \frac{d}{dy}.$$
Historical results - germs of parabolic analytic diffeomorphisms

(Fatou ∼ end of 19th century; Birkhoff ∼ 1950; Ecalle, Voronin ∼ 1980, ...)

\[f \in \text{Diff}(\mathbb{C}, 0), \quad f(z) = z + a_1 z^{k+1} + a_2 z^{k+2} + \ldots, \quad k \in \mathbb{N} \]

- Formal embedding
 = formal reduction to a time-one map of a vector field:

\[f_0(z) = \exp\left(\frac{z^{k+1}}{1 + \rho z^k} \frac{d}{dx} \right) \cdot \text{id} = z + z^{k+1} + (\rho + \frac{k + 1}{2}) z^{2k+1} + \ldots \]

Step-by-step elimination of monomials from \(f \):

\[\varphi_\ell(z) = \begin{cases} a z, & a \neq 1, \\ z + c z^\ell, & \ell \in \mathbb{N} \end{cases} \quad \leftrightarrow \quad \hat{\varphi}(z) = a z + \sum_{k=2}^{\infty} c_k z^k \in \mathbb{C}[[z]] \]

(formal changes of variables)

\[\Rightarrow (k, \rho), \quad k \in \mathbb{N}, \quad \rho \in \mathbb{C} \ldots \text{formal invariants for } f. \]
Historical results - germs of *analytic diffeomorphisms*

- Is f analytically embeddable, or just formally?
 \iff Does $\hat{\varphi}$ converge to an analytic function at 0?

Leau-Fatou flower theorem (1987):
- $2k$ analytic conjugacies φ_i of f to f_0, all expanding in $\hat{\varphi}$
- defined on $2k$ *petals* invariant under local discrete dynamics
- k attracting directions: $(-a_1)^{-\frac{1}{k}}$; k repelling directions: $a_1^{-\frac{1}{k}}$

$k = 3 \rightarrow 6$ petals, $f(z) = z + z^4 + \ldots$

→ in general, analytic embedding in a flow only on open sectors
→ the analytic class of f in direct relation with this question
FORMAL CLASSIFICATION OF DULAC GERMS
Formal embedding into flows for Dulac germs (non-analytic at 0)

- elimination **term-by-term** by an *adapted* 'sequence' of non-analytic elementary changes of variables:

\[\varphi(z) = az; \quad \varphi_{\alpha,m}(z) = z + cz^\alpha \ell^m, \quad m \in \mathbb{Z}, \quad \alpha > 0, \quad (\alpha, m) \succ (1, 0). \]

Example (MRRZ, 2016)

0. \[f(z) = z - z^2 \ell^{-1} + z^2 + z^3, \]
1. \[\varphi_1(z) = z + c_1 z \ell, \quad c_1 \in \mathbb{C}, \]
 \[f_1(z) = \varphi_1^{-1} \circ f \circ \varphi_1(z) = z - z^2 \ell^{-1} + a_1 z^2 \ell + h.o.t, \]
2. \[\varphi_2(z) = z + c_2 z \ell^2, \quad c_2 \in \mathbb{R}, \]
 \[f_2(z) = \varphi_2^{-1} \circ f \circ \varphi_2(z) = z + z^2 \ell^{-1} + a_2 z^2 \ell^2 + h.o.t, \]
3. \[\varphi_3(z) = z + c_3 z \ell^3, \quad c_3 \in \mathbb{R}, \]
 \[f_3(z) = \varphi_3^{-1} \circ f \circ \varphi_3(z) = z + z^2 \ell^{-1} + a_2 z^2 \ell^3 + h.o.t, \]
 :
The visualisation of the reduction procedure

drawn the control of the support!
The description of the formal change of variables

- more than just a *formal series composition* of changes of variables: a *transfinite composition*, \(\rightarrow \) produces a *transseries* \(\hat{\varphi} \):
 - in the process, prove that *every change has its successor change*
 - prove the *formal convergence* of composition of changes of variables: by *transfinite induction*\(^1\) in the *formal topology*\(^2\)

\(^1\) a generalization of the mathematical induction from \(\mathbb{N} \) to ordinal numbers: existence of a *successor element* and a *limit element*,
\(^2\) i.e. in each step of composition the support remains well-ordered; the coefficient of each monomial in the support stabilizes in the course of composition.
A broader class closed to embeddings: the class of power-log transseries $\hat{\mathcal{L}}$

...contains both the Dulac germ expansions $f \mapsto \hat{f}$ and the formal changes of variables

\[\hat{\mathcal{L}} \ldots \hat{f}(z) = \sum_{\alpha \in S} \sum_{k=N_\alpha}^{\infty} a_{\alpha,k} z^{\alpha} \ell^k, \quad a_{\alpha,k} \in \mathbb{R}, \quad N_\alpha \in \mathbb{Z}, \]

$S \subseteq (0, \infty)$ well-ordered (here: finitely gen.)

Similarly we define $\hat{\mathcal{L}}_2$, $\hat{\mathcal{L}}_3$, etc. and

\[\hat{\mathcal{L}} := \bigcup_{k \in \mathbb{N}} \hat{\mathcal{L}}_k. \]

(iterated logarithms admitted!)
Theorem (Formal embedding theorem for Dulac germs, MRRZ 2016)

\(\hat{f}(z) = z - az^\alpha \ell^m + h.o.t. \) parabolic Dulac, \(a > 0, \alpha > 1, m \in \mathbb{N}_- \).

\[\Rightarrow \text{formally in } \hat{\mathcal{L}} \text{ conjugated to:} \]

\[
f_0(z) = \exp \left(\frac{-z^\alpha \ell^m}{1 - \frac{\alpha}{2} z^{\alpha-1} \ell^k + (\frac{k}{2} - \rho) z^{\alpha-1} \ell^{k+1}} \frac{d}{dz} \right). \text{id} =
\]

\[= z - z^{\alpha} \ell^m + \rho z^{2\alpha-1} \ell^{2m+1} + h.o.t. \]

\[\star (\alpha, m, \rho) \in \mathbb{R} \ldots \text{formal invariants for Dulac germ} \]

\[\star f_0(z) \text{ a time-one map of an analytic vector field on SQD } (\mathbb{Q}_+) \]
Example continued

Example (continued)

\[f_0(z) = \exp \left(- \frac{z^2 \ell^{-1}}{1 - z \ell^{-1} + (b - \frac{1}{2})z} \right) \cdot \text{id} = \]

\[= z - z^2 \ell^{-1} + b z^3 \ell^{-1} + h.o.t., \]

\[f_0 = \hat{\varphi}^{-1} \circ \hat{f} \circ \hat{\varphi}, \quad \hat{\varphi} \in \hat{\mathcal{L}} - \text{a transfinite change of variables} \]
ANALYTIC CLASSIFICATION OF DULAC GERMS
Choice of analytic conjugacy - analytic on standard quadratic domain

Definition [MRR, in progress] f and g Dulac on SQD Q are \textit{analytically conjugated} if there exists

$\varphi(z) = z + o(z)$ analytic on Q

$g = \varphi^{-1} \circ f \circ \varphi$ on Q.

$\implies \varphi$ admits asymptotic expansion in $\hat{\mathcal{L}}$

$\implies f$ and g formally conjugated in $\hat{\mathcal{L}} \implies$ expansion in $\hat{\mathcal{L}} \subset \hat{\hat{\mathcal{L}}}$.

Another possible classification: $\varphi \in \mathbb{R}\{z\}$ (non-ramified)
'Equivalent' problems:

1. (formal) conjugation of f to f_0 (time-one map of an analytic vector field)

2. (formal) Fatou coordinate for f

$$\Psi(f(z)) - \Psi(z) = 1 \quad \text{(Abel equation)}$$
$$\hat{\Psi}(\hat{f}(z)) - \hat{\Psi}(z) = 1 \quad \text{(formal Abel equation)}$$

$$\Psi = \Psi_0 \circ \varphi, \ \hat{\Psi} = \Psi_0 \circ \hat{\varphi}$$
Historical results - construction of the Ecalle-Voronin moduli of analytic classification for Diff(\mathbb{C}, 0)

★ simplest formal class \((k = 1, \rho = 0)\);
\[f_0(z) = \text{Exp}(z^2 \frac{d}{dz}) = \frac{z}{1-z} \]

★ \(f \in \text{Diff}(\mathbb{C}, 0), \ f(z) = z + z^2 + z^3 + o(z^3) \)

\[\Psi(f(z)) - \Psi(z) = 1 \quad \text{(Abel equation)} \]

Fatou, 1919:

▶ unique (up to additive constant) formal solution
\[\hat{\Psi}(z) \in -1/z + z\mathbb{C}[[z]], \]

▶ unique (up to additive constant) analytic solutions \(\Psi_{\pm}(z) \) on petals \(V_{\pm} \)

▶ \(\Psi_{\pm} \) admit \(\hat{\Psi}(z) \) as asymptotic expansion

→ Fatou coordinates, sectorial trivialisations
Ecalle-Voronoï moduli of analytic classification for $\text{Diff}(\mathbb{C}, 0)$

Ecalle, Voronoï: spaces of attr./repelling orbits (spheres!) ”glued” at closed orbits (poles!) by 2 germs of diffeomorphisms:

$$\varphi_0(t) := e^{-2\pi i \Psi_- \circ (\Psi^+)^{-1}(-\frac{\log t}{2\pi i})}, \; t \approx 0,$$

$$\varphi_{\infty}(t) := e^{-2\pi i \Psi_+ \circ (\Psi^-)^{-1}(-\frac{\log t}{2\pi i})}, \; t \approx \infty$$
Ecalle-Voronin moduli of analytic classification for $\text{Diff}(\mathbb{C}, 0)$

Identifications:

$$\left(\varphi_0(t), \varphi_\infty(t) \right) \equiv \left(a \varphi_0(bt), \frac{1}{b} \varphi_\infty\left(\frac{t}{a}\right) \right), \quad a, b \in \mathbb{C}^*$$

(choice of constant in Ψ_{\pm}, i.e. coordinates on spheres)

Theorem Ecalle-Voronin: After identifications, $(\varphi_0, \varphi_\infty)$ are analytic invariants.

Realisation theorem: Each pair $(\varphi_0, \varphi_\infty)$ tangent to identity can be realized as E-V modulus of a germ from the model formal class.

Trivial modulus $(\text{id}, \text{id}) \leftrightarrow$ analytically embeddable germs
Invariant domains (petals) for the local dynamics of a parabolic Dulac germ

L-F-like theorem, Dulac germs [MRR, in progress].

\[f(z) = z + az^\alpha \ell^m + \ldots \] Dulac germ on a SQD \(Q \), \(a \in \mathbb{R} \), \(\alpha > 1 \), \(m \in \mathbb{N}_- \).

\[\Rightarrow \text{countably many overlapping attracting/repelling petals} \]

\[V_i^\pm, \ i \in \mathbb{Z}, \ \text{of opening} \ \frac{2\pi}{\alpha-1} \]

\[\Rightarrow \text{centered at complex directions} \]

\[(-\text{sgn}(a))^{\frac{1}{\alpha-1}} \text{(attracting)}, \ (\text{sgn}(a))^{\frac{1}{\alpha-1}} \text{(repelling)} \]

(invariant lines for \(f \) tangential to these directions at 0)

Sketch of the proof. In the chart \(w = -\frac{1}{a(\alpha-1)}z^{-\alpha+1}\ell^{-m} \) \(f \) almost translation by 1, easier construction of invariant domain.
Dynamics of a Dulac germ (logarithmic chart)

\[f(z) = z + az^\alpha \ell^m + \ldots, \quad a < 0 \]
(Formal) Fatou coordinate of a Dulac germ

Theorem [MRRZ2 (2019), MRRp (in progress)]

f Dulac on SQD \mathcal{Q}, \hat{f} its Dulac expansion.

- unique (up to an additive constant) formal Fatou coordinate $\hat{\Psi}$ for \hat{f} in class $\hat{\mathcal{L}}$ (in $\hat{\mathcal{L}}_2$)
- unique (up to additive constants) analytic Fatou coordinates $\Psi_{\pm j}$, $j \in \mathbb{Z}$, on attracting/repelling petals $V_{\pm j}$
- $\Psi_{\pm j}$ admit $\hat{\Psi}$ as transserial asymptotic expansion with respect to integral sums on limit ordinal steps as $z \to 0$ on $V_{\pm j}$

Caution! Transserial asymptotic expansion is not well-defined (unique), if we do not prescribe a canonical summation method on limit ordinal steps (dictated here by Abel equation)!
Non-uniqueness of asymptotic expansion of a germ in \hat{L}

→ ambiguity: choice of the sum in ℓ at limit ordinal steps

Example

$f(z) = z + z^2 \frac{\ell}{1-\ell} + z^5$

Some possible asymptotic expansions:

\[\hat{f}_1(z) = z + z^2(\ell + \ell^2 + \ell^3 + \ldots) + z^5 \]
\[\hat{f}_2(z) = z + z^2(\ell + \ell^2 + \ell^3 + \ldots) - z^3 + z^5, \text{ etc.} \]

\[\hat{f}_1: \text{ canonical (convergent sum) at the first limit ordinal step:} \]

\[\ell + \ell^2 + \ell^3 + \ldots \mapsto \frac{\ell}{1-\ell} \]

\[\hat{f}_2: \ell + \ell^2 + \ell^3 + \ldots \mapsto \frac{\ell}{1-\ell} + e^{-\frac{3}{\ell}} \quad (z = e^{-1/\ell}) \]

Moreover: (?) canonical choice if series in ℓ was **divergent** (the case in the Fatou coordinate)
Sketch of the proof / method of summation

\[f(z) \sim \hat{f}(z) = z + z^{\alpha_1} P_1(-\log z) + z^{\alpha_2} P_2(-\log z) + \ldots \]

- solve (formal) Abel equation by \textit{blocks}

\[\hat{\Psi}(z + z^{\alpha_1} P_1(\ell^{-1}) + \ldots) - \hat{\Psi}(z) = 1 \]

- \(\hat{\Psi}(z) := \sum z^{\beta_i} \hat{T}_i(\ell) \)

- In each step, \(\hat{T}_i \) obtained solving one differential equation:

\[
\frac{d}{dz} \left(z^{\beta_i} \hat{T}_i(\ell) \right) := z^{\beta_i-1} R(\ell),
\]

\(\ast \) \(\hat{T}_i(\ell) = z^{-\beta_i} \int z^{\beta_i-1} R(\ell) dz, \)

\(\beta_i \) a finite combination of \(\alpha_i \); \(R \) a rational function in \(\ell \).

- \(\ast \) solvable analytically (\(T_i \) analytic on \(Q \)) as well as formally (\(\hat{T}_i \in \mathbb{C}[[z]] \)) by partial integration

\(\hat{T}_i \mapsto T_i \) (integral sum)
\[\hat{\Psi} := \Psi_\infty + \hat{R}, \text{ where } \Psi_\infty \text{ contains only finitely many infinite blocks} \]

\[\text{analytic Fatou coordinate on petals: iterative summation of the Abel equation along the orbit of } f/f^{-1}, \text{ after subtracting sufficiently many blocks:} \]

\[R(f(z)) - R(z) = \delta(z), \]

\[\delta(z) \text{ of arbitrarily small order.} \]

\[\Rightarrow R^j_\pm(z) := -\sum_{k=0}^{\infty} \delta(f^{\circ(\pm)k}(z)), \ j \in \mathbb{Z}. \]

Converges locally uniformly on petals \(V^j_\pm. \)

\[Q.E.D. \]
Example of blocks computation in the Fatou coordinate of a Dulac germ

Example

\[f(z) = z + z^2 \ell^{-1} + z^3 \Rightarrow \Psi(z + z^2 \ell^{-1} + z^3) - \Psi(z) = 1. \ (*\) \]

Computation of the first block of \(\Psi \) by formal T. expansion of \((*)\):

\[\Psi'_0(z) z^2 \ell^{-1} = 1 \Rightarrow \Psi_0(z) = \int z^{-2} \ell \, dz \]

➤ Integration by parts: \(\hat{\Psi}_0(z) = z^{-1} \sum_{n \in \mathbb{N}} n! \ell^n \)
 (divergent series in \(\ell \) in the first block!)

➤ Analytic integration on SQD: \(\Psi_0(z) = \int_*^z y^{-2} \ell(y) \, dy \)

? appropriate sum of divergent series above ? integral sum

\[\sum_n n! \ell^n \mapsto \int_*^z y^{-2} \ell(y) \, dy \div z^{-1}. \]
Ecalle-Voronom moduli for Dulac germs

- infinitely many attracting/repelling petals indexed by \(\mathbb{Z} \)
- neighboring spheres glued at closed orbits by a germ of a diffeomorphism
- infinite necklace of spheres (spaces of orbits on petals), not closed
Ecalle-Voronin moduli for Dulac germs

Theorem E-V for Dulac maps (MRRp)

\(f \) and \(g \) Dulac in the same \(\hat{\mathcal{L}} \)-formal class \((\alpha, m, \rho)\).

- analytic invariants given by a sequence of diffeomorphisms of 0 and \(\infty \) tangent to the identity, up to identifications \((*)\)

\[
\varphi_0^i(t) := e^{-2\pi i \Psi_+^{-1} \circ (\Psi_-)^{-1}(-\frac{\log t}{2\pi i})}, \quad t \approx 0
\]

\[
\varphi_\infty^i(t) := e^{-2\pi i \Psi_-^{-1} \circ (\Psi_+)^{-1}(-\frac{\log t}{2\pi i})}, \quad t \approx \infty, \; i \in \mathbb{Z}
\]

- radii of definition (at least)

\[
|t| < R_i \sim K_1 e^{-Ke^{C\sqrt{i}}}, \; i \to \infty \quad \text{(SQD)}
\]

- identifications \((*)\)

\[
(\varphi_0^i, \varphi_\infty^i; \; R_i)_{i \in \mathbb{Z}} \equiv (\psi_0^i, \psi_\infty^i; \; \tilde{R}_i)_{i \in \mathbb{Z}}
\]

if \(R_i, \; \tilde{R}_i \) bounded as above (possibly different constants) and there exist sequences \((a_i)_{i \in \mathbb{Z}}, \; (b_i)_{i \in \mathbb{Z}}\) in \(\mathbb{C}^* \) such that

\[
\varphi_0^i(t) = a_{i-1} \cdot \psi_0^i\left(\frac{t}{b_i}\right), \quad \varphi_\infty^i(t) = b_i \cdot \psi_\infty^i\left(\frac{t}{a_i}\right), \; i \in \mathbb{Z}.
\]
necklace symmetric w.r.t. \mathbb{R}_+-axis

Proof: Schwarz’s reflection lemma,
$f(\mathbb{R}_+) \subseteq \mathbb{R}_+ \Rightarrow f(\overline{z}) = f(z)$.

\star f embeddable analytically on SQD in a vector field \iff modulus trivial, $(\ldots, \text{id}, \text{id}, \ldots)$
Perspectives and comments

- realization of moduli in wider *generalized Dulac* class
- what can be realized really by Dulac corner maps of one saddle or by first return maps of more saddle polycycles (expected: *periodicity* of modules after finitely many)
References

MRRp Mardesic, P., Resman, M., Rolin, J.P., Analytic moduli for parabolic Dulac germs & Realization of moduli for parabolic Dulac germs (in progress)
Thank you for the attention!