Correspondence between Gobdillon-Vey sequence and Françoise algorithm

Jessie Pontigo-Herrera¹ in collaboration with L. Ortiz-Bobadilla¹, P. Mardesic², D. Novikov³ ¹ UNAM, México ²Université de Bourgogne ³Weizmann Institute

Abstract

We study local integrable foliations and their deformations. We introduce the so-called Françoise algorithm for computing the first nonzero Melnikov function for the displacement map, and describe what we call the Godbillon-Vey sequence for a deformation. We establish the correspondence between these objects and give some results on the integrability of the deformation in terms of the length of the sequences (see [4]).

Preliminary Notions

Let $\gamma_0 \subset \mathbb{C}^2$ be a regular curve, Σ a transversal to γ_0 , F a holomorphic function defined on a tubular neigborhood $U \subset \mathbb{C}^2$ of γ_0 , formed by regular curves $\gamma(t) \subset F^{-1}(t), t \in F(\Sigma)$, with $\gamma_0 = \gamma(t_0)$.

Consider the integrable foliation dF = 0 and its holomorphic deformation

$$dF + \epsilon \omega = 0 \tag{1}$$

in U. We are interested in the displacement function Δ of (1) along $\gamma(t)$. It can be developed as

$$\Delta(t) = \sum_{i \ge 1} \epsilon^i M_i(t).$$
(2)

The functions $M_i(t)$ are called *Melnikov functions*. If $\Delta \equiv 0$, this means that (1) has a first integral in a neighborhood of $\gamma(t)$. If not, then there exists a *first nonzero* Melnikov function M_{μ} .

Françoise algorithm

Françoise algorithm allows to compute the first nonzero Melnikov function M_{μ} . Namely,

Theorem 1. [2] Let (2) be the displacement map of (1). Assume that $M_i \equiv 0$, for i = 1, ..., k. Then, $M_{k+1}(t) = (-1)^{k+1} \int_{\gamma(t)} g_k \omega$, where $g_0 = 1$, and g_i , r_i verify

$$g_{i-1}\omega = g_i dF + dr_i, \quad i = 1, ..., k.$$
 (3)

Definition (Françoise pairs and Françoise sequence). We call any pair (g_i, r_i) , verifying (3) an i-th Françoise pair associated to the deformation (1) and call the sequence (g_i, r_i) , i = 0, 1, ... a Françoise sequence. We say that the length of a Françoise sequence is ℓ , if ℓ is the smallest index such that $g_{\ell+1} = 0$. If there does not exist such an index, we say that the sequence is of infinite length.

Classical Godbillon-Vey sequence

The classical Godbillon-Vey sequence is associated to a foliation defined by a single one-form

$$\omega = 0. \tag{4}$$

It is a sequence of one-forms $\omega_0 = \omega, \omega_i, i = 1, \dots$ such that the formal one-form

$$\Omega = d\epsilon + \omega_0 + \sum_{i=1}^{\infty} \frac{\epsilon^i}{i!} \omega_i$$
(5)

in $\mathbb{C}^2 \times \mathbb{C}$ verifies the formal integrability condition

$$\Omega \wedge d\Omega = 0.$$

Here $\tilde{d} = d_{\epsilon} + d$ denotes the total differential with respect to x, y, ϵ . Condition (6) is equivalent to

> $d\omega_0 = \omega_0 \wedge \omega_1,$ $d\omega_1 = \omega_0 \wedge \omega_2,$ • • • • • • • $d\omega_n = \omega_0 \wedge \omega_{n+1} + \sum_{k=1}^n \binom{n}{k} \omega_k \wedge \omega_{n-k+1}.$

We say that the Godbillon-Vey sequence is of length n if the forms ω_k vanish for k > n.

Definition. Let K be a differential field, G a function and K_G the extension of K by G. We say that the extension K_G is: Darboux, Liouville or *Riccati*, respectively, if it belongs to a finite sequence of field extensions starting from the field K: the extensions in each step are either algebraic or given, respectively, by solutions of the equations $dG = \eta_0$, $dG = G\eta_1 + \eta_0$ or $dG = G^2\eta_2 + G\eta_1 + \eta_0$, with η_i one-forms with coefficients in the corresponding field extensions.

In that case, we call the function G Darboux, Liouville or Riccati with respect to K.

In [1], Casale relates the length n of the Godbillon-Vey sequence to the type of first integral of the foliation given by (4):

Theorem 2.

- (i) There exists a Godbillon-Vey sequence of length 1 if and only if (4) has a Darboux first integral.
- (ii) There exists a Godbillon-Vey sequence of length 2 if and only if (4) has a Liouvillian first integral.
- (iii) There exists a Godbillon-Vey sequence of length 3 if and only if (4) has a Riccati first integral.

Godbillon-Vey sequence for a deformation

We give a well-adapted version of Godbillon-Vey sequences to study deformations of integrable foliations as in (1). The Godbillon-Vey sequence gives a condition for verifying if the integrability at the level $\epsilon = 0$ extends to $\epsilon \neq 0$.

We define the form

$$\Omega = Rd\epsilon + (dF + \epsilon\omega)G,\tag{7}$$

with

$$G = \sum_{i=0} \epsilon^i G_i, \quad R = \sum_{i=0} \epsilon^i R_{i+1}$$
(8)

unknown functions and $G_0 \equiv 1$.

We give a relative version of the definition of different types of first integral for the deformation (1).

Definition. We denote by $K_{F,\omega}$ the field associated to the deformation (1). That is, the smallest differential field in a tubular neighborhood U of a cycle γ_0 containing the functions given by coefficients of dF and ω .

Let $F_{\epsilon} = \sum_{i=0}^{\ell} \epsilon^{i} F_{i}$, $\ell < \infty$, be a first integral of (1). We say that it is Darboux, Liouville or Riccati, respectively, if all F_i are in the corresponding extension of the field $K_{F,\omega}$.

Institute of Mathematics, Universidad Nacional Autónoma de México México City, México

Email: pontigo@matem.unam.mx

(6)

 $\Delta \equiv 0.$

Definition (Godbillon-Vey pairs and Godbillon-Vey sequence for a deformation). We call any pair (G_i, R_i) verifying (10), an *i*-th Godbillon-Vey pair associated to the deformation (1). The sequence $(G_i, R_i), i = 0, 1, ...$ is the Godbillon-Vey sequence associated to the deformation. We say that the length of a Godbillon-Vey sequence associated to the deformation is ℓ , if ℓ is the smallest index such that $G_{\ell+1} = 0$. If there does not exist such an index, we say that the sequence is of infinite length.

Main theorems

and

Contact Information:

Theorem 3. [3] There exists a solution (G, R) of the equation

 $\Omega \wedge \tilde{d}\Omega = 0$

if and only if the deformation preserves formal integrability along γ , i.e.,

Proof. It follows by Frobenius Theorem.

We also consider the Godbillon-Vey equation up to order k with Ω, G, R given by (7) and (8):

$$\Omega \wedge \tilde{d}\Omega = 0 \mod \epsilon^{k+1}.$$
 (10)

Here we state our two main results. The first establishes the relationship between the Françoise pairs and the Godbillon-Vey pairs associated to the deformation. In particular it shows that the minimal length of Françoise sequences and Godbillon-Vey sequences coincide:

Theorem 4

(i) The Melnikov functions M_i , i = 1, ..., k, are identically equal to zero if and only if one can solve the equation

$$\Omega \wedge \tilde{d}\Omega = 0 \mod \epsilon^{k+1},\tag{11}$$

(ii) For each choice of the Françoise sequence (g_i, r_i) , $i = 1, \ldots, k$, the Godbillon-Vey sequence (G_i, R_i) , i = 1, ..., k, can be chosen verifying the equations

$$G_i = (-1)^i g_i, \quad R_i = (-1)^{i+1} i r_i.$$
 (12)

(*iii*) If Ω verifies (11) then

a) there exists a function $N = 1 + \sum_{i=1}^{k} \epsilon^{i} n_{i}$ such that

$$\Omega = N\tilde{d}F_{\epsilon} \mod \epsilon^{k+1}.$$

Then the function F_{ϵ} is of the form

$$F_{\epsilon} = F + \sum_{i=1}^{k} (-1)^{i+1} \epsilon^{i} r_{i}.$$
 (13)

$$\tilde{d}F_{\epsilon} = \tilde{R}d\epsilon + \tilde{G}\left(dF + \epsilon\omega\right). \tag{14}$$

b) Let \tilde{G} and \tilde{R} be given in (14) and (G_i, R_i) , $i = 1, \ldots, k$, be its coefficients as in (8). Then the functions (q_i, r_i) , $i = 1, \ldots, k$, given by (12) are Françoise pairs.

Our second result gives the type of local first integral F_{ϵ} of the deformation (1) if the length of its Françoise sequence is finite. The first result is that the first integral is in a finite sequence of extensions of Darboux type. The second shows that it is in a single extension of Liouvillian type.

(9)

ifying

where

cycle γ_0 .

References

- [1] Casale, G.Suites de Godbillon-Vey et intégrales premières. (French. English, French summary) [Godbillon-Vey sequences and first integrals] C. R. Math. Acad. Sci. Paris 335 (2002), no. 12, 1003-1006.
- [2] Françoise, J.-P., Successive derivatives of a first return map, application to the study of quadratic vector fields. Ergodic Theory Dynam. Systems **16** (1996), no. 1, 87-96.
- [3] Godbillon, C., Vey, J. Un invariant des feuilletages de codimension 1. (French) C. R. Acad. Sci. Paris Sér. A-B 273 1971 A92-A95.
- [4] Mardesic, P., Novikov, D., Ortiz-Bobadilla, L., Pontigo-Herrera, J., Godbillon-Vey sequence and Françoise algorithm, Bulletin des Sciences Mathématiques (2019), DOI: 10.1016/j.bulsci.2019.02.001.

Acknowledgements

265667

- **Theorem 5.** Let $\eta_{\epsilon} = dF + \epsilon \omega$ as in (1) be such that there exists a Françoise sequence of finite length ℓ .
- (i) Then (1) admits a univalued first integral which is Darboux with respect to the field $K_{F,\omega}$ of the deformation (1).
- (ii) Then there exists a meromorphic form $\tilde{\theta}_{\epsilon}$ verifying the Godbillon-Vey se*quence of length* 2:

$$d\eta_{\epsilon} = \eta_{\epsilon} \wedge \tilde{\theta_{\epsilon}}$$
$$d\tilde{\theta_{\epsilon}} = 0,$$

such that there exists a (possibly multivalued) first integral \tilde{F}_{ϵ} of (1) ver-

$$d\tilde{F}_{\epsilon} = f\eta_{\epsilon},$$

$$df = f\tilde{\theta}_{\epsilon}$$

is a (possibly multivalued) function in a tubular neighborhood U of the

- In particular, the function f belongs to a Liouville extension of $K_{F,\omega}$ and F_{ϵ} belongs to a Darboux extension of this Liouville extension.
- *Remark.* Note that we are restricting our study to a tubular neighborhood U of a cycle γ_0 . A first integral F_{ϵ} which is Darboux in U can be more complicated (Liouville, Riccati,...) when studied globally.
- *Remark.* In Theorem 5 (ii) we prove in particular that if the deformation (1) has a finite Françoise sequence, then it has a Liouvillian first integral. The converse is an interesting question.
- *Remark.* In Theorem 5 we suppose that (1) has a Françoise sequence of finite order. What happens in the case of $\ell = \infty$? In particular, is it possible to give a condition assuring that a deformation (1) has a Liouville or a Riccati first integral in these terms?

This work was supported by Israel Science Foundation grant 1167/17, Papiit (Dgapa UNAM) IN106217, ECOS Nord-Conacyt 249542 and Fordecyt