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Goal and motivation

The goal is to parameterize bounded algebraic (or analytic) complex
subsets of Cn, i.e.

find a collection of standard local models Uα ⊂ Cn and a class of
”good” holomorphic maps φα : Uα → Cn, such that
for any F holomorphic on a standard polydisc B ⊂ Cn as above there
exist finitely many maps φi : Ui 7→ Cn such that ∪φi (Ui ) ⊃ B and

1 F ◦ φi : Ui 7→ C is ”simple”
2 the maps φi depend well on parameters, moreover
3 their number and complexity is roughly the same as the complexity of

F whenever defined (algebraic, Pfaffian, Noetherian?)

We were motivated by a field of transcendental number theory born from

Bombieri-Pila theorem

Let X ⊂ [0, 1]2 be an analytic but not algebraic irreducible curve. Then
the number N(H;X ) of rational points of height H on X grows slower
than any positive degree of H: ∀ε > 0 ∃C (ε) s.t. N(H;X ) 6 C (ε)Hε.

Note that this is a real result. We want to approach it from C.
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Existing results

We want ”good” to include a good control on derivatives of φi .
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We want ”good” to include a good control on derivatives of φi .

There were three relevant theories we knew, each one deficient in its own
way.

Uniformization (local parameterization): Ui are the polydisc, φi are
compositions of blow-downs. But: huge number of φi ’s, and no good
dependence on parameters.

Cylindrical cell decomposition for real algebraic (o-minimal) sets. Ui

are real cubes, φi are triangular, semialgebraic (definable). But: no
complex holomorphic version and no control on derivatives.

Yomdin-Gromov algebraic lemma (see below): Ui are real cubes, φi
are C r -smooth maps with bounded C r norm, their number is
reasonable. But only real and not even analytic result.

We paid by increasing the family of local models Uα, and get everything
we wanted. How? Using a simple lemma on functions of one complex
variable (instead of sophisticated algebraic geometry).
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The Yomdin-Gromov Algebraic Lemma

Theorem (Yomdin-Gromov Algebraic Lemma)

Let X ⊂ [0, 1]` be a set of dimension µ defined by polynomial equations or
inequalities of total degree β. Then for every r ∈ N there exists a
collection of C r -smooth maps φj : [0, 1]µ → X whose images cover X and
‖φj‖r 6 1. Moreover the number of maps is bounded by a constant
C = C (`, µ, β, r).

Crucial: uniformness in parameters.
But: the maps are only C r -smooth, and not holomorphic!

The Y-G theorem is the key step in Yomdin’s proof of Shub’s entropy
conjecture for smooth maps. It also plays a crucial role in
Pila-Wilkie’s work on the density of rational points in definable sets.

Y-G is useful because it allows us to do “Taylor approximations” on
semialgebraic (or subanalytic) sets.

Analyzing the dependence of C (`, µ, β, r) on β and r is important for
both Yomdin’s and Pila-Wilkie’s directions.
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Yomdin-Gromov complexification: naive approach

Denote D(r) = {|z | < r}. Let 0 < δ < 1.

We define ”local models” Ui to be standard polydiscs Dµ(1).

”Good” maps: C r -smooth maps should be upgraded to

We say that a holomorphic map f : Dµ(1) 7→ C` is δ-extendable if f can
be holomorphically extended to Dµ(δ−1).

Why? Cauchy formulas give control on all derivatives of f on Dµ(1).
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We say that a holomorphic map f : Dµ(1) 7→ C` is δ-extendable if f can
be holomorphically extended to Dµ(δ−1).

Wanted result

Let X ⊂ C` be an algebraic set of dimension µ and complexity β. Then
there is a finite collection of maps φj : D(1)µ → X whose image cover
X ∩ D(1)n such that

φj are 1/2-extendable with ‖φj‖D(2)µ 6 2, and

the number of maps φj is bounded by a constant C = C (`, µ, β).

Key (counter)example

For X = {xy = ε} ⊂ C2 one needs ∼ log log ε−1 such maps as ε→ 0.

D.Novikov (Weizmann) June 20, 2019 5 / 23



Reminder on hyperbolic domains

A domain U ⊂ C whose complement consists of more than one point is
called hyperbolic.

Theorem (Uniformization theorem)

For every hyperbolic U ⊂ C there is a holomorphic universal covering map
π : D → U where D = D(1) is the unit disc.

The Poincaré metric (1− |z |2)−1|dz | on D is invariant under the conformal
automorphisms of D and induces a canonical hyperbolic metric on U.

Lemma (Schwartz-Pick)

Let f : U → U ′ be a holomorphic map between hyperbolic domains. Then

dist(f (z), f (w);U ′) 6 dist(z ,w ;U), ∀z ,w ∈ U (1)

Corollary: diam(f (W ),U ′) 6 diam(W ,U) for any W ⊂ U.
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Back to our example

Recall our example K ⊂ X

K = {xy = ε, |x |, |y | 6 1}
X = {xy = ε, |x |, |y | < 2}

By projection to x ,
K ' A(ε, 1) ⊂ X ' A(ε/2, 2),
where A(r1, r2) = {r1 < |z | < r2}

Computation

If f : D(2)→ X is holomorphic then by Schwarz-Pick

diam(f (D(1));X ) 6 diam(D(1);D(2)) = log
√

3. (2)

On the other hand diam(K ;X ) ∼ log log ε−1.

Conclusion: to cover K by φj(D(1)) we will need at least log log ε−1 maps!

D.Novikov (Weizmann) June 20, 2019 7 / 23



Back to our example

Recall our example K ⊂ X

K = {xy = ε, |x |, |y | 6 1}
X = {xy = ε, |x |, |y | < 2}

By projection to x ,
K ' A(ε, 1) ⊂ X ' A(ε/2, 2),
where A(r1, r2) = {r1 < |z | < r2}

Computation

If f : D(2)→ X is holomorphic then by Schwarz-Pick

diam(f (D(1));X ) 6 diam(D(1);D(2)) = log
√

3. (2)

On the other hand diam(K ;X ) ∼ log log ε−1.

Conclusion: to cover K by φj(D(1)) we will need at least log log ε−1 maps!

D.Novikov (Weizmann) June 20, 2019 7 / 23



Real cells

In tame geometry, the notion of a cylindrical cell is defined inductively as
follows:

A cell of length one C ⊂ R is a point or an interval.
A cell C ⊂ R`+1 length `+ 1 is a set of the form

C = C1..` � F := {x1..`+1 : x1..` ∈ C1..`, x`+1 ∈ F(x1..`)} (3)

where C1..` is a cell of length ` and the fiber F is

F(x1..`) = {f (x1..`)} or F(x1..`) = (f1(x1..`), f2(x1..`))

where f or f1 < f2 are continuous functions on C1..` (i.e. F is a cell of
length one depending on x1..`).

Note that every cell is homeomorphic to a real cube of dimension dimC.

Definition

A cell decomposition (C.D.) of a set X ⊂ R` is a covering X =
⋃
α Cα by

(pairwise disjoint) cells.
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Cell Decompositions

Theorem (Cellular decomposition)

Every semialgebraic set can be subdivided into cells.

Denote π1..k(x1..`) = x1..k .

C.D. of X =⇒ C.D. of π1..k(X ).

C.D. of X =⇒ C.D. of π−11..k(p).

A polynomial P is compatible with a cell C if P|C ≡ 0 or P|C is
non-vanishing. Equivalently P has a constant sign on C.

Theorem

P1, . . . ,Pk polynomials =⇒ R` =
⋃
α Cα with Cα,Pj pairwise compatible.

Second theorem implies the first.
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Cell Decompositions
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Complex cells

Instead of fibers which are points or intervals, we take F to be one of

∗ = {0} D(r) = {|z | < |r |}
D◦(r) = {0 < |z | < |r |} A(r1, r2) = {|r1| < |z | < |r2|}

where r or r1, r2 are holomorphic bounded functions on C1..` and r 6= 0 or
0 < |r1| < |r2|, respectively.

Example

D◦(1)� A(z1, 2) = {z1,2 : 0 < |z1| < 1, |z1| < |z2| < 2}.

As a convenience our fibers are always centered at the origin.

Definition

A holomorphic function F ∈ O(C) is compatible with C if F is identically
zero or non-vanishing on C.
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δ-extensions of complex cells

Holomorphicity means we can talk about analytic continuation. For
0 < δ < 1 the δ-extension is defined inductively by

Cδ := Cδ1..` � Fδ, where

∗δ = ∗ Dδ(r) = D(δ−1r)

Dδ
◦(r) = D◦(δ

−1r) Aδ(r1, r2) = A(δr1, δ
−1r2)

assuming that r or r1, r2 continue holomorphically to Cδ1..` and still satisfy
r 6= 0 or 0 < |r1| < |r2| there.

For D◦(1)� A(z1, 2) we have 0 < |r1| < |r2| on Dδ
◦(1) for δ > 1/2.

Therefore (D◦(1)� A(z1, 2))δ = D◦(δ
−1)� A(δ|z1|, 2δ−1) is well-defined

for 1/2 6 δ < 1.

This is the principal new ingredient missing in the real context. The
hyperbolic geometry of C ⊂ Cδ will play a key role in our approach.
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Complex cellular decomposition

If f : C→ Ĉ maps z→ w we say that f is prepared if f is holomorphic and
bounded on C and for j = 1, . . . , `

wj = z
µj
j + φj(z1..j−1), µj ∈ N>0. (4)

The image of a prepared map is a more accurate analog of a real cell.

f admits δ-extension if it continues holomorphically to f : Cδ → Ĉ.

Theorem (CPT)

Let C admits δ-extension and F1, . . . ,Fk ∈ Ob(Cδ). Then there exists a
finite collection of prepared cellular maps fj : Cj → Cδ which admit
δ-extensions such that the fj(C

δ
j ) are compatible with each Fi and cover C.

If C, Fi are algebraic of complexity β, then the number of maps is
poly`(β, k , δ) and fj , Cj are algebraic of complexity poly`(β, k).

For example, the cells for which all Fi vanish give a “uniformization” by
cells of the set of common zeros of Fi .
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CPT

Cell decomposition of C = D(1)� D(1) ⊂ Cδ = D(δ)� D(δ) compatible with
F (x , y) = y2 − x and two cuts by {x = const}. E.g.

φ13 : D◦(0.4)� A( 5
4z , 1) 7→ Cδ, φ13(z ,w) = (z2,w).

For x > x0 only discs, and for x < x0 � 1 one should use annulus (red cell),
exactly as for {xy = ε}. Two points {±

√
x} form a cluster.
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Corollaries: Yomdin-Gromov

If C, F1, . . . ,Fk are real then CPT gives real C.D. with extras (analytic
continuation of maps). This implies effective bounds on

Yomdin-Gromov constant

The constant C = C (`, µ, β, r) = poly`(β) · rµ. Moreover, the maps φj
can be chosen to be semialgebraic of complexity poly`(β, r).
Alternatively, there are poly`(β) Yomdin-Gromov (A, 2)-mild maps φj :

∀α ∈ Nµ ‖Dαφ‖ 6 α!
(
A|α|2

)|α|
, A = poly`(β).

Similar bounds for Ran-definable families (constants depend on family).
This implies tight bounds on the tail entropy and volume growth for
analytic maps, conjectured by Yomdin in 1991.
Applications to counting rational points on algebraic and transcendental
varieties.
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Corollaries: resolution of singularities

Theorem (Classical Uniformization theorem)

Let F1, ..,Fk ∈ Ob(B). Then B can be covered by images of maps
fj : Bj → B such that f ∗j Fi is a monomial times a unit. Moreover the maps
are of a special form.

Complex cells analogue: Monomialization Lemma

Let F : C{ρ} → C \ {0} be holomorphic and bounded. Then on C{ρ} we
have F = zα · U(z) where α ∈ Z`, logU is holomorphic, univalued in C{ρ}

and

diam(logU(C);R) < Of (1) · ρ,

with |α(F )|,OF (1) = poly`(β) in algebraic case.

The exponent α is defined topologically.

Nontrivial since C is not necessarily compact.
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Key argument: Domination Lemma

Domination Lemma

Let f : Cδ → C \ {0, 1}. Then either f of f −1 is uniformly bounded on C

from above by some constant C = C (`, δ) independent of C.

Key Miracle in dim = 1:

For C = A(ε, 1), we have diam(C;Cδ) ∼ log log ε−1 →∞ as ε→ 0.
However, C does not depend on ε! Moduli of annulii disappear!
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Key Miracle in dim = 1:

For C = A(ε, 1), we have diam(C;Cδ) ∼ log log ε−1 →∞ as ε→ 0.
However, C does not depend on ε! Moduli of annulii disappear!

Corollary of dimC = 1 case: Little and Big Picard Theorems

1 Let f : C 7→ C \ {0, 1} be an entire function. Then f ≡ const.

2 Let f : D◦(1) 7→ C \ {0, 1} be a holomorphic function. Then f has at
most a pole at 0.

Proof: 1) Either f or f −1 is bounded by C on any D(r), i.e. on C.
2) Either f or f −1 is bounded by C on D◦(

1
2), i.e. is holomorphic at 0.
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How Domination Lemma works

Inductive step

Let Xε = {xi (ε)}ni=1 ⊂ D(1) be holomorphically depending on ε ∈ E . How
to cover D(1) \ Xε by cells with extensions?

Relative distance x1−x2
x1−1 changes from 0 to ∞ as ε ∈ (0, 1).
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How Domination Lemma works

Inductive step

Let Xε = {xi (ε)}ni=1 ⊂ D(1) be holomorphically depending on ε ∈ E . How
to cover D(1) \ Xε by cells with extensions?

Fulton-McPherson compactification

Describes confluences scenarios of Xε.

Definition

Cluster is a subset Yε ⊂ Xε of points which are closer one-to-another than
to other points: for any xi , xj ∈ Yε, xk ∈ Xε \ Yε we have
|xi − xj | � |xi − xk |.

To Xε corresponds a tree of clusters. One can read it from |αijk(ε)|, where

αijk : E → C ∪ {∞}, αijk(ε) =
xi − xj
xi − xk
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How Domination Lemma works (continuation)

Answer: To cover D(1) \ Xε cover smallest clusters by discs, add annulus
to go to next cluster, cover this bigger cluster by discs, etc.

Can be done analytically in ε as long as the tree of clusters doesn’t change.

Domination Lemma to help!

Let f : Cδ 7→ E be a cell compatible with all αijk . Then

αijk : Cδ 7→ C \ {0, 1},

so is either not too big or not too small uniformly on C. Thus the cluster
trees for all Xε, ε ∈ f (C) are the same!
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Domination Lemma Proof: classical result for D

Domination Lemma for D

Let R : D(2)→ C \ {0, 1}. Then R is uniformly bounded on D(1), either
above or below, by some absolute constant C .

Proof: Take C > 0 s.t. dist
(
{|z | = C}, {|z | = C−1};C \ {0, 1}

)
> log

√
3.
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Domination Lemma for maps to D(1) and C = A

Domination Lemma: maps to D(1)

Let R : Cδ → D. Then diam(R(C),D) 6 ∆ = ∆(`, δ) independent of C.

Let A = A(r1, r2) and f : Aδ → D(1). We equip the domain and range with
their hyperbolic metrics.

The diameter of A ⊂ Aδ is unbounded as r1/r2 → 0 (this was the whole
point of allowing annuli). However the diameter of S1 = {|z | = r1} and
S2 = {|z | = r2} in Aδ is bounded by some ρ = ρ(δ):

diam(S1,A
δ) 6 diam(S1,A(δr1, δ

−1r1)) =
π2

2 |log δ|
= ρ.

By the open mapping theorem ∂F (C) ⊂ F (∂C) = F (S1) ∪ F (S2), and the
latter two have diameter bounded by ρ in D.

Elementary geometry: if the boundary of a bounded planar domain has
bounded diameter, then the diameter of the domain is similarly bounded.
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Proof of Domination Lemma in dim = 1

Let A = A(r1, r2) and f : Aδ → C \ {0, 1}. We equip the domain and range
with their hyperbolic metrics.

Suppose f takes very small and very large values. By the maximum principle
it must take them on S1 and S2.

The hyperbolic diameter of f (S1) and f (S2) in C \ {0, 1} is bounded by ρ.
In particular if f (S1) is very close to 0 at one point then it is uniformly close
to 0, and similarly for f (S2) and ∞.

S1,S2 are homotopic in A, so f (S1), f (S2) are homotopic in C \ {0, 1}. But
one lives near 0 and the other near ∞, so they are in fact contractible.
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Proof of Domination Lemma in dim = 1 (cont.)

Therefore we may lift f to the universal cover, F : Cδ → D(1) such that
π ◦ F = f . By previous case, diam(F (C);D) 6 2ρ.

By Schwarz-Pick, diam(f (C);C \ {0, 1} 6 diam(F (C);D) 6 2ρ. So it cannot
be too close to both 0 and ∞ and we’re done.

For dim > 1 one should proceed by induction, using holomorphic sections
of the cell. Here it is crucial that ri are holomorphic!
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