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Introduction

The talk is based on a joint work with Anna Cima and Armengol Gasull.
(JDE, 2018)

We investigate the maximum number of polynomial solutions for the
Bernouilli equation:

q(t) ẋ = pn(t) xn + p1(t) x , with q, pn, p1 ∈ C[t] and pn(t) 6≡ 0.

and also the same problem for the Abel equation

q(t) ẋ = p3(t) x3 + p2(t) x2 + p1(t) x + p0(t),

with coefficients in R[t] and p3(t) 6≡ 0.
Both equations are particular cases of the equation

q(t) ẋ = pn(t) xn + pn−1(t) xn−1 + · · ·+ p1(t) x + p0(t) (1)
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Introduction

q(t) ẋ = pn(t) xn + pn−1(t) xn−1 + · · ·+ p1(t) x + p0(t)

When n = 0, 1 one can easily show examples having all the solutions
polynomials.
There are several previous works asking for polynomial solutions of the
above equation for some values of n > 1
When n = 2 (Riccati equation)
A. Gasull, J. Torregrosa and X. Zhang. The number of polynomial
solutions of polynomial Ricatti equations. J. Differential Equations 261
(2016), 5071–5093.

About the degrees of the polynomial solutions
M. Bhargava and H. Kaufman. 1964-1966 Several papers investigating the
degree of the polynomial solutions of the Ricatti equation
R. G. Huffstutler, L. D. Smith and Ya Yin Liu. 1972
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Introduction

q(t) ẋ = pn(t) xn + pn−1(t) xn−1 + · · ·+ p1(t) x + p0(t)

About the case q(t) ≡ 1.
J. Gine, T. Grau and J. Llibre. On the polynomial limit cycles of
polynomial differential equations, Israel J. Math. 106 (2013), 481–507.
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Bernouilli equation: Theorem A

Theorem A Consider Bernoulli equations

q(t) ẋ = pn(t) xn + p1(t) x , (2)

with q, pn, p1 ∈ C[t] and pn(t) 6≡ 0. Then:

For n = 2, equation (2) has at most N + 1 (resp. 2) polynomial
solutions, where N ≥ 1 (resp. N = 0) is the maximum degree of
q, p2, p1, and these upper bounds are sharp. Moreover, when
q, p2, p1 ∈ R[t] these upper bounds are reached with real polynomial
solutions.

For n = 3, equation (2) has at most seven polynomial solutions and
this upper bound is sharp. Moreover, when q, p3, p1 ∈ R[t] this upper
bound is reached with seven polynomial solutions belonging to R[t].
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Bernouilli equation: Theorem A

For n ≥ 4, equation (2) has at most 2n − 1 polynomial solutions and
this upper bound is sharp. Moreover, when q, pn, p1 ∈ R[t] it has at
most three real polynomial solutions when n is even while it has at
most five real polynomial solutions when n is odd, and both upper
bounds are sharp.
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Sketch of the proof

q(t) ẋ = pn(t) xn + p1(t) x . (2)

First observe that if x(t) is a solution of our equation then αx(t) also is a
solution for all α ∈ C such that αn−1 = 1. We perform the change of
variable u = xn−1 in (2). This equation is transformed into the Riccati
equation

q(t) u̇ = (n − 1) pn(t) u2 + (n − 1) p1(t) u. (3)

Now using the fact that in the above equation two non-zero solutions z0

and z1 determine all other solutions by

zc =
z0z1

cz0 + (1− c)z1
, c ∈ C

we get...
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Sketch of the proof

If vn−1 and ωn−1 are different solutions of (3) and it exists another
solution of type xn−1, then

xn−1 =
vn−1 · ωn−1

cvn−1 + (1− c)ωn−1

for some number c ∈ C.
This fact implies that

(
n−1
√
c v
)n−1

+
(

n−1
√

1− c ω
)n−1

= yn−1 for some
polynomial y .
At this moment we use Fermat Theorem for polynomials.

Assume that the equation xk + yk = zk has non-trivial solutions in C[t].
Then k ≤ 2.
A trivial solution is a solution with
y = λx , z = βx , βk = 1 + λk , λ, β ∈ C.

And we obtain the result for n ≥ 4.
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Sketch of the proof

For n ≥ 4 we get that

q(t) u̇ = (n − 1) pn(t) u2 + (n − 1) p1(t) u.

has at most two non zero solutions of the form un−1 with u ∈ C[x ].
Therefore our original equation has at most 2n − 1 polynomial solutions.

Equation (t2n−1 − tn) x ′ = xn + (t2n−2 − 2 tn−1) x has the solutions
0, α t and α t2 for each α satisfying αn−1 = 1 and shows that the
bound for n ≥ 4 is sharp.
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Sketch of the proof, n = 3

To prove the case n = 3, we need the following improvement of the
Fermat Theorem for k = 2.

Theorem Let p, q ∈ C[t]. There exists at most one c ∈ C \ {0, 1} such
that

cp2 + (1− c)q2 = s2, with s ∈ C[t]
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Sketch of the proof, n = 3

A direct computation gives that equation

4 t (t2 +1) (t2−1) (t2−4) (4 t2−1) ẋ = 225 x3 +16 (3 t8−17 t6 +6 t4−1) x

has seven polynomial solutions. Namely x = 0, and

x±1 (t) = ± 2

5
t (t2 + 1), x±2 (t) = ± 2

3
t (t2−1), x±3 (t) = ± 4

15
(t4−1).
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Proof of Fermat’s Theorem for polynomials

The proof of the Fermat’s Theorem that we have found in the literature
relies on a result, interesting by itself, called the “abc Theorem”for
polynomials. It states that if a, b, c are pairwise coprime non-constant
polynomials for which a + b = c , then the degree of each of these three
polynomials cannot exceed Z (a b c)− 1. The “abc Theorem”for
polynomials (also known as Mason’s Theorem), was proved in 1981 by
Stothers, and also later by Mason and Silverman. We give another proof of
Fermat’s Theorem based on the computation of the genus of a planar
algebraic curve. The reason for introducing this proof is that the same idea
will be used in several parts of the next study of the Abel equation.
Assume that there exists p, q, r ∈ C[t] be such that

pk + qk = rk .

V
(p
r

)k
+
(q
r

)k
= 1V the curve xk + yk = 1 admits a rational

parametrizationV the curve xk + yk = 1 has genus zero V k ≤ 2.
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Proof of Fermat’s Theorem for polynomials

To compute the genus of xk + yk = 1 we use two basic facts

The curve has no singular points so it is irreducible.

If a curve F has no singular points then its genus depends only on its
degree. If deg(F ) = k and has no singular points

g(F ) =
(k − 1)(k − 2)

2
.
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Generalizations of Fermat Theorem

Theorem (M. de Bondt (2009)) The equation

gd
1 + gd

2 + · · ·+ gd
n = 0, with d ∈ N and gi ∈ C[t]

can have non trivial solutions only if d < n (n − 2).
We will apply this theorem when n = 4.
Theorem (M. de Bondt (2009) )Set n ≥ 3 and let f1, . . . , fn ∈ C[t] be not
all constant, such that

f1 + f2 + . . .+ fn = 0.

Assume furthermore that no proper subsum vanishes and (f1, . . . , fn) = 1
Then for all i ∈ {1, . . . , n} we get

deg(fi ) ≤
(n − 1)(n − 2)

2

(
Z (f1f2 . . . .fn)− 1

)
.
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Abel equation, Theorem B

Theorem B If equation

q(t) ẋ = p3(t) x3 + p2(t) x2 + p1(t) x + p0(t), (4)

with coefficients in R[t] and p3(t) 6≡ 0, has three real polynomial solutions
which are collinear then it has at most seven polynomial solutions. In this
case one of the collinear solutions is the arithmetic mean of the other two
and the equation reduces to a Bernoulli equation with polynomial
coefficients, as the one studied in item (ii) of Theorem A. If this relation
between the three collinear solutions does not hold then equation (4) has
at most six polynomial solutions and this upper bound is sharp.
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Proof of Theorem B, first reduction

Assume that equation (4) has x1, x2, x3 ∈ R[t] three different solutions
which are collinear. Assume also that x2 is between x1 and x3. Then the
change y = x − x2 transforms (4) to

q(t) ẏ = p3(t) y3 + p̃2(t) y2 + p̃1(t) y , (5)

for some p̃2(t), p̃1(t) ∈ R[t].
Notice that equation (5) has the collinear solutions
y1 = x1 − x2, y2 = 0, y3 = x3 − x2 = ky1, for some k < 0.
If x2 = 1

2 (x1 + x3) then a simple computation shows that k = −1 and
p̃2(t) = 0. So in this case the result follows from Theorem A.
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Proof of Theorem B, first reduction

If x2 6= 1
2 (x1 + x3) then k 6= −1. We consider the change z(t) := y(t)

y1(t) that

transforms equation (5) in

q(t) ż = p(t)z(z − 1)(z − k) (6)

for some p(t) ∈ R[t]. Note that we can assume that k ∈ (−1, 0).If this

were not the case it suffices to consider the change z(t) := y(t)
y2(t) instead

z(t) := y(t)
y1(t) and we obtain again equation (6) with k ∈ (−1, 0).

Thus the polynomial solutions of the original equation are transformed in
rational solutions of equation (6) with k ∈ (−1, 0). So we have reduced
the problem to show that equation (6) has at most six rational solutions.
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Equation q(t) ż = p(t)z(z − 1)(z − k)

Our equation has the following non autonomous first integral

(z − k)zk−1

(z − 1)k exp
(
k(k − 1)H(t)

) ,
where H ′(t) = p(t)

q(t) .

Given a solution z = z(t) we denote by π(z) the constant value

π(z) =
(z(t)− k)z(t)k−1

(z(t)− 1)k exp
(
k(k − 1)H(t)

)
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Equation q(t) ż = p(t)z(z − 1)(z − k)

π(z) =
(z(t)− k)z(t)k−1

(z(t)− 1)k exp
(
k(k − 1)H(t)

)
Thus if z1 and z2 are solutions we get

(z1 − k)zk−1
1

(z1 − 1)k
= M

(z2 − k)zk−1
2

(z2 − 1)k
where M =

π(z1)

π(z2)
,

If z1(t) = y1(t)
x1(t) and z2(t) = y2(t)

x2(t) with (y1, x1) = 1 = (y2, x2) are two
non-constant rational solutions we get

(y1 − kx1)(y1 − x1)−ky1−k
2 = M (y2 − kx2)(y2 − x2)−ky1−k

1
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q(t) ż = p(t)z(z − 1)(z − k).

(y1 − kx1)(y1 − x1)−ky1−k
2 = M (y2 − kx2)(y2 − x2)−ky1−k

1

From this we directly deduce that

y1 = y2. That is all nonconstant rational solutions share the
numerator.(
y−kx1
y−kx2

) (
y−x1
y−x2

)−k
= M

k ∈ Q ∩ (−1, 0) That is if there are more than one non constant
rational solutions then k ∈ Q.
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q(t) ż = p(t)z(z − 1)(z − k). The case Mm 6= 1

Proposition 1 Assume that z1(t) = y(t)
x1(t) and z2(t) = y(t)

x2(t) , with

(y , x1) = 1 = (y , x2) are two non-constant rational solutions of our

equation with k = − n
m and assume that Mm 6= 1 where M = π(z2)

π(z1) . Then

there exist two polynomials P,Q ∈ R[t] with (P,Q) = 1, not
simultaneously constant, such that

y =
n

n + m
(Pn+m −MQn+m),

x1 =
n

n + m
(Pn+m −MQn+m)− (Pn −MQn)Pm,

x2 =
n

n + m
(Pn+m −MQn+m)− (Pn −MQn)Qm.
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q(t) ż = p(t)z(z − 1)(z − k). The case Mm 6= 1

The proof follows applying the previous equality(
y − kx1

y − kx2

) (
y − x1

y − x2

)−k
= M

to our situation. We get(
y − kx1

y − kx2

)m (y − x1

y − x2

)n

= Mm

The result follows putting

y − x1

y − x2
=

(
P

Q

)m

and
y − kx1

y − kx2
= M

(
Q

P

)n

and using some elementary results on divisibility in R[x ].
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Rational solutions in different levels

Theorem Assume that equation

q(t)ż = p(t)z(z − 1)(z − k), k = − n

m
, 0 < n < m

has two nonconstant rational solutions z1, z2 with |π(z1)| 6= |π(z2)|. Then
the equation has only five rational solutions.
Sketch of the proof
Assume that there exists another nonconstant rational solution z3 and
assume for example that |π(z3)| 6= |π(z1)|. Put zi = y

xi
. From the previous

proposition we have that there exist P,Q,R,S with (P,Q) = (R, S) = 1
such that

y =
n

n + m
(Pn+m −MQn+m),

x1 =
n

n + m
(Pn+m −MQn+m)− (Pn −MQn)Pm,

x2 =
n

n + m
(Pn+m −MQn+m)− (Pn −MQn)Qm.
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Rational solutions in different levels

and

y =
n

n + m
(Rn+m − LSn+m),

x1 =
n

n + m
(Rn+m − LSn+m)− (Rn − LSn)Rm,

x3 =
n

n + m
(Rn+m − LSn+m)− (Pn − LSn) Sm.

In particular (Rn+m − LSn+m) = (Pn+m −MQn+m).
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Rational solutions in different levels

(Rn+m − LSn+m) = (Pn+m −MQn+m).

Theorem (M. de Bondt (2009)) The equation

gd
1 + gd

2 + · · ·+ gd
n = 0, with d ∈ N and gi ∈ C[t]

can have non trivial solutions only if d < n (n − 2).
Our equation can have non-trivial solutions only if n + m < 4(4− 2) = 8.
So we restrict our atention to the cases n + m ≤ 7. We also have

(Rn+m−LSn+m)− (Rn−LSn)Rm = (Pn+m−MQn+m)− (Pn−MQn)Pm
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Rational solutions in different levels

Now assume that n + m ≤ 7. Calling u = Q
P and v = S

R from the equalities

(Rn+m − LSn+m) = (Pn+m −MQn+m).

and

(Rn+m−LSn+m)− (Rn−LSn)Rm = (Pn+m−MQn+m)− (Pn−MQn)Pm

we deduce that

F (u, v) = (1− L vn+m) (1−M un)− (1−M un+m) (1− L vn) = 0. (7)

Hence the existence of three non-constant rational solutions implies that
some of the irreducible components of the above polynomial has a rational
parametrization. But it is know that this happens if and only this
irreducible component has genus equal to zero.

Francesc Mañosas (U.A.B.) On the number of polynomial solutions of Bernoulli and Abel polynomial differential equations27 / 40



Rational solutions in different levels

F (u, v) = (1− L vn+m) (1−M un)− (1−M un+m) (1− L vn) = 0. (7)

Lemma For n + m ≤ 7, 1 ≤ n < m, equation (7) with Mm 6= 1 6= Lm is
reducible only if Mm = Lm, and in this case the only component of genus
zero of the curve is u − αv for some α root of the unity. In any other case
the curve is irreducible and

g(F ) =
(2n + m − 1)(2n + m − 2)

2
− 3n(n − 1)

2
6= 0
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Computation of the genus

To see that the formula for the genus is the announced in the statement
we apply the well-known formula that says that the genus of a curve G of
degree k is

g(G ) =
(k − 1)(k − 2)

2
− Σp

mp(G )(mp(G )− 1)

2
(8)

where mp(G ) is the multiplicity of G at p, provided that near each
multiple point p, G has mp(G ) different tangents.
To get the desired result we need:

Compute the singular points. We use resultants to solve
F (u, v) = ∂F

∂u (u, v) = ∂F
∂v (u, v) = 0 to obtain that the only singular

points are (0, 0) and the two infinite points given by the directions
u = 0 and v = 0. Moreover one can directly see that each of these
points has multiplicity n.

In the case Mm 6= Lm since n + m ≤ 7 we can directly test that the
curve is irreducible using Bezout Theorem.
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Computation of the genus

Lastly, when Lm = Mm we get L = αM for some m-root of the unity
α and it is a direct computation that F (u, v) = (u − αv)P(u, v).

The same analysis shows that P(u, v) is irreducible, has only three
singular points and has genus different from zero.
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q(t) ż = p(t)z(z − 1)(z − k) The case Mm = 1

Proposition 2 Assume that z1(t) = y(t)
x1(t) and z2(t) = y(t)

x2(t) , with

(y , x1) = 1 = (y , x2) are two non-constant rational solutions of our

equation with k = − n
m and assume that Mm = 1 where M = π(z2)

π(z1) . Then

there exist two polynomials P,Q ∈ R[t] with (P,Q) = 1, not
simultaneously constant, such that

y =
n

n + m

(Pn+m − Qn+m)

P − Q
,

x1 =
n

n + m

(Pn+m − Qn+m)

P − Q
− (Pn − Qn)Pm

P − Q
,

x2 =
n

n + m

(Pn+m − Qn+m)

P − Q
− (Pn − Qn)Qm

P − Q
.
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Rational solutions at the same level

Theorem Assume that equation

q(t)ż = p(t)z(z − 1)(z − k), k = − n

m
, 0 < n < m

has three nonconstant rational solutions z1, z2, z3. Then
|π(z1)| = |π(z2)| = |π(z3)|, n = 1,m = 2 and there are no more
nonconstant rational solutions.
From the previous proposition there exist polynomials P,Q,R, S with
(P,Q) = (R, S) = 1 such that

(Pn+m − Qn+m)(R − S) = (Rn+m − Sn+m)(P − Q)

At this moment we will need the second generalization of Fermat theorem.

Francesc Mañosas (U.A.B.) On the number of polynomial solutions of Bernoulli and Abel polynomial differential equations32 / 40



Rational solutions at the same level

Theorem (M. de Bondt (2009) )Let f1, . . . , fn ∈ C[t] be not all constant,
such that

f1 + f2 + . . .+ fn = 0.

Assume furthermore that no proper subsum vanishes and (f1, . . . , fn) = 1
Then for all i ∈ {1, . . . , n} we get

deg(fi ) ≤
(n − 1)(n − 2)

2

(
Z (f1f2 . . . .fn)− 1

)
.

Corollary If the equation

(Pn+m − Qn+m)(R − S) = (Rn+m − Sn+m)(P − Q)

with (P,Q,R, S) = 1 has non trivial solutions then n + m ≤ 83.
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Rational solutions at the same level

(Pn+m − Qn+m)(R − S) = (Rn+m − Sn+m)(P − Q)

First of all we need to investigate the cases when a proper subsum
vanishes. There is a lot of possible cases but all of them are easily
solved using elementary results of divisibility.

deg(fi ) ≤ (n−1)(n−2)
2

(
Z (f1f2 . . . .fn)− 1

)
.

Let r = máx{deg(P), deg(Q), deg(R), deg(S)}. We get
Z (PQRS) ≤ 4r .Assume for example that deg(P) = r . we get

(n + m)r ≤ deg(Pn+mR) ≤ 21(4r − 1) < 84r
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Rational solutions at the same level

So we can focus our atention to the case n + m ≤ 83. Recall that there
exist P,Q,R, S ∈ R[t] such that (P,Q,R, S) = 1 and

(Pn+m − Qn+m)(R − S) = (Rn+m − Sn+m)(P − Q)

(Pn − Qn)Pm(R − S) = (Rn − Sn)Rm(P − Q)

As in the previous case putting Q
P = u and S

R = v we obtain from the
above equations

G (u, v) = (1− un+m)(1− vn)− (1− vn+m)(1− un) = 0. (9)

Therefore some of the irreducible components of the curve G (u, v) must
have genus zero.
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Rational solutions at the same level

Proposition Consider the algebraic curve
Gn,m(u, v) = (1− un+m)(1− vn)− (1− vn+m)(1− un) = 0 with n,m > 0.
This curve reduces in the following way

Gn,m(u, v) = (u − v)(u − 1)(v − 1)Pn,m(u, v)

and when 2 < n + m ≤ 83, n < m and (n,m) = 1, Pn,m(u, v) = 0 is
irreducible and has genus

(2n + m − 4)(2n + m − 5)

2
− 3

(n − 1)(n − 2)

2
.

The curves u = 1, v = 1 and u = v = 0 are not compatible with our
hypotheses.

A simple computation says that the g(Pn,m) = 0 if and only if n = 1
and m ∈ {2, 3}.
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Rational solutions at the same level

We need to show that for n + m ≤ 83 the curve Pn,m is irreducible
and also has only the three singular points. The difficult situation is
that we need to test this fact until n + m = 83. The good news are
that now Pn,m does not depend on parameters different from n,m.

Both problems are solved using Maple packages. To find the singular
points we use algcurves with the tool singularities. To see that it is
irreducible we also use the algcurves package.
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Rational solutions at the same level

P1,3 = 1 + u + v + u2 + uv + v2 that does not admit a racional
parametrization with rational real functions.
P1,2 = 1 + u + v . In this case we obtain

y =
1

3

(P3 − Q3)

P − Q
, x1 =

1

3

(P3 − Q3)

P − Q
− P2, x2 =

1

3

(P3 − Q3)

P − Q
− Q2

and

y =
1

3

(R3 − S3)

R − S
, x1 =

1

3

(R3 − S3)

R − S
− R2, x3 =

1

3

(R3 − S3)

R − S
− S2,

which gives the solutions R = P,S = Q, or R = P, S = −(P + Q), or
R = −P,S = P + Q. They give rise to three different solutions with
x1 = y − P2, x2 = y − Q2, x3 = y − (P + Q)2. So in this case we can
obtain six rational solutions.
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Rational solutions at the same level

To get un example with six solutions in the case k = −1
2 we simply choose

P(t) = t and Q(t) = 1 in the corresponding set of equations. Then the
equation is

3t(t + 1)(t2 + t + 1) ż = −2(2t + 1)(t − 1)(t + 2) z(z − 1)(z +
1

2
).

This equation has the solutions 0, 1,−1
2 and

z1(t) = − t2 + t + 1

(2t + 1)(t − 1)
, z2(t) =

t2 + t + 1

(t + 2)(t − 1)

and

z3(t) = − t2 + t + 1

(t + 2)(2t + 1)
.
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THANK YOU FOR YOUR ATTENTION!!

THANK YOU FOR YOUR ATTENTION!!

THANK YOU FOR YOUR ATTENTION!!
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