Cyclicity of canard cycles with hyperbolic saddles located away from the critical curve

1

RENATO HUZAK

Hasselt University, Hasselt, Belgium

Renato Huzak Cyclicity of canard cycles with hyperbolic saddles located away

2

3

Iotivation

• Predator-prey systems with a Holling type II or IV response function *P*:

$$\begin{cases} \dot{x} = rx(1-\frac{x}{K}) - yP(x) \\ \dot{y} = y(-\epsilon + cP(x)), \end{cases}$$

where $x \ge 0$ is the population density of prey, $y \ge 0$ is the population density of predator, $\epsilon \ge 0$ is the death rate of the predator kept small and the parameters c, K and r are strictly positive.

3

Motivation

• Predator-prey systems with a Holling type II or IV response function *P*:

$$\begin{cases} \dot{x} = rx(1-\frac{x}{K}) - yP(x) \\ \dot{y} = y(-\epsilon + cP(x)), \end{cases}$$

where $x \ge 0$ is the population density of prey, $y \ge 0$ is the population density of predator, $\epsilon \ge 0$ is the death rate of the predator kept small and the parameters c, K and r are strictly positive.

• The function $P(x) = \frac{mx}{b+x}$, with m > 0 and b > 0, is a response function of Holling type II

3

Motivation

• Predator-prey systems with a Holling type II or IV response function *P*:

$$\begin{cases} \dot{x} = rx(1-\frac{x}{K}) - yP(x) \\ \dot{y} = y(-\epsilon + cP(x)), \end{cases}$$

where $x \ge 0$ is the population density of prey, $y \ge 0$ is the population density of predator, $\epsilon \ge 0$ is the death rate of the predator kept small and the parameters c, K and r are strictly positive.

- The function $P(x) = \frac{mx}{b+x}$, with m > 0 and b > 0, is a response function of Holling type II
- When $P(x) = \frac{mx}{1+bx+ax^2}$ with m > 0, a > 0 and $b > -2\sqrt{a}$, we have the Holling type IV response function. Its simplified version is given by $P(x) = \frac{mx}{a+x^2}$ where m > 0 and a > 0.

4

Motivation

4

Motivation

• At most one limit cycle!

4

Motivation

- At most one limit cycle!
- See [Ting-Hao Hsu, Number and Stability of Relaxation Oscillations for Predator-Prey Systems with Small Death Rates, 2019]
- See also H. Zhu, X. Zhang, C. Li, B. W. Kooi, J. C. Poggiale...

5

Motivation

• The study of canard cycles is also relevant for the Hilbert's 16th problem.

5

Motivation

- The study of canard cycles is also relevant for the Hilbert's 16th problem.
- We can consider polynomial deformations of quadratic system

$$\begin{cases} \dot{x} = x(1-x) - xy \\ \dot{y} = y(-\epsilon+x), \end{cases}$$

5

Motivation

- The study of canard cycles is also relevant for the Hilbert's 16th problem.
- We can consider polynomial deformations of quadratic system

$$\begin{cases} \dot{x} = x(1-x) - xy \\ \dot{y} = y(-\epsilon+x), \end{cases}$$

Renato Huzak Cyclicity of canard cycles with hyperbolic saddles located away

Motivation

6

 For the study of the cyclicity of degenerate limit periodic sets (thus, containing curves of singularities) inside polynomial systems see [Artés, Dumortier, Llibre,2009], [Bobieński, Mardesic, Novikov,2013], [Bobieński, Gavrilov,2016], [De Maesschalck, Dumortier, 2010,2011], [De Maesschalck, Huzak, 2014], [Dumortier, Panazzolo, Roussarie, 2007], [Dumortier, Roussarie, 1996,2009], [Dumortier, Rousseau, 2009], [H. Zhu, C. Li, 2013], etc.

Motivation

6

- For the study of the cyclicity of degenerate limit periodic sets (thus, containing curves of singularities) inside polynomial systems see [Artés, Dumortier, Llibre,2009], [Bobieński, Mardesic, Novikov,2013], [Bobieński, Gavrilov,2016], [De Maesschalck, Dumortier, 2010,2011], [De Maesschalck, Huzak, 2014], [Dumortier, Panazzolo, Roussarie, 2007], [Dumortier, Roussarie, 1996,2009], [Dumortier, Rousseau, 2009], [H. Zhu, C. Li, 2013], etc.
- Our goal is to study the cyclicity of degenerate limit periodic sets with singularities outside the slow curve.

Definitions

7

• We deal with a slow-fast Hopf point at $p \in M$ for $(\epsilon, \mu) = (0, 0)$, i.e. $X_{\epsilon, \mu}$ is locally smoothly equivalent to

$$\begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon (b(\mu) - x + x^2 g(x, \epsilon, \mu)) + \epsilon y^2 H(x, y, \epsilon, \mu) \end{cases}$$

Definitions

7

 We deal with a slow-fast Hopf point at p ∈ M for (ε, μ) = (0, 0), i.e. X_{ε,μ} is locally smoothly equivalent to

$$\begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon (b(\mu) - x + x^2 g(x, \epsilon, \mu)) + \epsilon y^2 H(x, y, \epsilon, \mu) \end{cases}$$

 See [Dumortier, Roussarie, 1996,2009], [Krupa, Szmolyan, 2001], [De Maesschalck, Dumortier, 2005,2008], [Huzak, 2016,2017,2018]

8

Definitions

 Along the slow curve, away from p ∈ M, X_{ϵ,μ} can be studied by using the slow dynamics

$$x'=f(x,\mu),\ \mu\sim 0,$$

with a smooth function f.

8

Definitions

 Along the slow curve, away from p ∈ M, X_{ε,μ} can be studied by using the slow dynamics

$$x'=f(x,\mu),\ \mu\sim 0,$$

with a smooth function f.

 We consider a smooth (ε, μ)-family of planar slow-fast vector fields locally given by {x = f(x, y, ε, μ), y = εg(x, y, ε, μ)}.

9

Definitions

• When $\epsilon = 0$, we have a fast subsystem $\{\dot{x} = f(x, y, 0, \mu), \dot{y} = 0\}.$

Definitions

- When $\epsilon = 0$, we have a fast subsystem $\{\dot{x} = f(x, y, 0, \mu), \dot{y} = 0\}.$
- If we divide $\{\dot{x} = f(x, y, \epsilon, \mu), \dot{y} = \epsilon g(x, y, \epsilon, \mu)\}$ by $\epsilon > 0$, we get $\{\epsilon x' = f(x, y, \epsilon, \mu), y' = g(x, y, \epsilon, \mu)\}$.

Definitions

- When $\epsilon = 0$, we have a fast subsystem $\{\dot{x} = f(x, y, 0, \mu), \dot{y} = 0\}.$
- If we divide $\{\dot{x} = f(x, y, \epsilon, \mu), \dot{y} = \epsilon g(x, y, \epsilon, \mu)\}$ by $\epsilon > 0$, we get $\{\epsilon x' = f(x, y, \epsilon, \mu), y' = g(x, y, \epsilon, \mu)\}$.
- When $\epsilon = 0$, we get a slow subsystem: $\{0 = f(x, y, 0, \mu), y' = g(x, y, 0, \mu)\}.$

10

Definitions

• If the slow dynamics is regular and points towards p on $c^$ and away from p on c^+ (i.e. f < 0), then the slow divergence integral $\mathcal{I}_-(u_m, \mu)$ along c^- (resp. $\mathcal{I}_+(s_1, \mu)$ along c^+) is well defined:

$$egin{aligned} &\mathcal{I}_{-}(u_m,\mu) := \int_{\omega(u_m,\mu)}^{0} rac{ ext{div}\, X_{0,\mu}dx}{f(x,\mu)} < 0, \,\, u_m \in L_m, \ &\left(ext{resp. } \mathcal{I}_{+}(s_1,\mu) := \int_{lpha(s_1,\mu)}^{0} rac{ ext{div}\, X_{0,\mu}dx}{f(x,\mu)} < 0, \,\, s_1 \in \Sigma_1
ight). \end{aligned}$$

11

12

Definitions

 Sometimes, the slow dynamics f(x, 0) can have isolated (nonzero) singularities, i.e. the slow dynamics is negative, except at a finite number of singularities, near which the passage from the right to the left can be possible for (ε, μ) ~ (0, 0) and ε > 0.

12

Definitions

- Sometimes, the slow dynamics f(x, 0) can have isolated (nonzero) singularities, i.e. the slow dynamics is negative, except at a finite number of singularities, near which the passage from the right to the left can be possible for (ε, μ) ~ (0, 0) and ε > 0.
- A typical example is a singularity of saddle-node type in the slow dynamics

Definitions

- Sometimes, the slow dynamics f(x, 0) can have isolated (nonzero) singularities, i.e. the slow dynamics is negative, except at a finite number of singularities, near which the passage from the right to the left can be possible for (ε, μ) ~ (0, 0) and ε > 0.
- A typical example is a singularity of saddle-node type in the slow dynamics
- Besides the "regular" hyperbolic saddles S_1, \ldots, S_m , we can have "singular" hyperbolic saddles (they don't exist when $\epsilon = 0$), generated by hyperbolic singularities in the slow dynamics.
- For example, $f(\omega(\bar{u}_m, 0), 0) = 0$ and $\frac{\partial f}{\partial x}(\omega(\bar{u}_m, 0), 0) > 0$.

13

Definitions

Definition (Hyperbolicity ratio)

Let $\lambda_{-} < 0$ and $\lambda_{+} > 0$ be the eigenvalues of a hyperbolic saddle. The hyperbolicity ratio of the hyperbolic saddle is the quantity $r = -\frac{\lambda_{-}}{\lambda_{+}} > 0$. The hyperbolic saddle is attracting (resp. repelling) if r > 1 (resp. r < 1). The hyperbolic saddle is neutral if r = 1.

13

Definitions

Definition (Hyperbolicity ratio)

Let $\lambda_{-} < 0$ and $\lambda_{+} > 0$ be the eigenvalues of a hyperbolic saddle. The hyperbolicity ratio of the hyperbolic saddle is the quantity $r = -\frac{\lambda_{-}}{\lambda_{+}} > 0$. The hyperbolic saddle is attracting (resp. repelling) if r > 1 (resp. r < 1). The hyperbolic saddle is neutral if r = 1.

• We denote by $r_i = r_i(\epsilon, \mu)$ the hyperbolicity ratio of S_i , for i = 1, ..., m.

13

Definitions

Definition (Hyperbolicity ratio)

Let $\lambda_{-} < 0$ and $\lambda_{+} > 0$ be the eigenvalues of a hyperbolic saddle. The hyperbolicity ratio of the hyperbolic saddle is the quantity $r = -\frac{\lambda_{-}}{\lambda_{+}} > 0$. The hyperbolic saddle is attracting (resp. repelling) if r > 1 (resp. r < 1). The hyperbolic saddle is neutral if r = 1.

- We denote by $r_i = r_i(\epsilon, \mu)$ the hyperbolicity ratio of S_i , for i = 1, ..., m.
- For a singular hyperbolic saddle, we denote ratio of the eigenvalue attached to the slow direction to the eigenvalue attached to the normal direction by -ερ₋ where ρ₋ = ρ₋(ε, μ) > 0 for all ε ≥ 0

14

Definitions

Near hyperbolic saddles we use Mourtada's normal form ([Mourtada,1990], [Ilyashenko, Yakovenko,1991]):

Theorem

The Dulac map D_i , near the hyperbolic saddle S_i , has the following structure:

$$\mathcal{D}_i(s_i) = \mathcal{D}_i(s_i, \delta, b_0, \mu) = s_i^{r_i} \big(1 + \Psi(s_i, \delta, b_0, \mu) \big), \tag{1}$$

where $s_i \ge 0$, $(\delta, b_0, \mu) \sim (0, 0, 0)$, $\delta \ge 0$, $r_i = r_i(\delta, b_0, \mu)$ is the hyperbolicity ratio of S_i , Ψ is a smooth function for $s_i > 0$ and for all $n \in \mathbb{N}$ we have $\lim_{s_i \to 0} s_i^n \frac{\partial^n \Psi}{\partial s_i^n}(s_i, \delta, b_0, \mu) = 0$, uniformly in (δ, b_0, μ) . If $r_i(0, 0, 0) \notin \mathbb{Q}$, then $\Psi \equiv 0$. If $r_i(0, 0, 0) \in \mathbb{Q}$, then

$$s_{i}^{n} \frac{\partial^{n} \Psi}{\partial n} = o(s_{i}^{\nu}), \ s_{i} \to 0, \ \forall \nu < 1.$$
(2)

15

Results

• We write
$$\mathcal{I} = \mathcal{I}_{-}(\bar{u}_m, 0) - \mathcal{I}_{+}(\bar{s}_1, 0).$$

Theorem

Suppose that the slow dynamics is regular on I (i.e. f(x,0) < 0 for all $x \in I$). If S_i is attracting (resp. repelling) for all i = 1, ..., m and $(\epsilon, \mu) = (0,0)$ and $\mathcal{I} < 0$ (resp. > 0), then $\text{Cycl}(X_{\epsilon,\mu}, \Gamma) \leq 1$. If a limit cycle exists, it is hyperbolic and attracting (resp. repelling).

16

Results

 \bullet Proof: We study the number of zeros w.r.t. ${\it s}_1 \sim 0$ of

$$\mathcal{I}_{-}(u_m,\mu) - \mathcal{I}_{+}(s_1,\mu) + \delta^2 \sum_{i=1}^m (r_i-1) \ln s_i + o(1) = 0,$$

where $u_m = \mathcal{T}_m(s_1) \sim 0$ and the o(1)-term tends to 0 as $\delta \rightarrow 0$, uniformly in $(s_1, b_0, \mu) \sim (0, 0, 0)$ and $s_1 > 0$.

17

18

Results

• When Γ is neither attracting nor repelling, the study of the cyclicity of Γ is more difficult, and we will therefore suppose that m = 1.

19

Results

Theorem

Suppose that S is not neutral (i.e. $r(0,0) \neq 1$). The following statements are true:

- If the slow dynamics is regular on I, then $Cycl(X_{\epsilon,\mu},\Gamma) \leq 3$.
- **2** When the slow dynamics has a finite number of singularities in the interior of I, then $Cycl(X_{\epsilon,\mu}, \Gamma) \leq 3$.

20

Results

• We assume now that the slow dynamics has a singularity at precisely one corner point. If the singularity is hyperbolic, we have:

21

Theorem

Suppose that the slow dynamics has a hyperbolic saddle at precisely one corner point, for example at S_{-} . Then:

- If the slow dynamics is regular on I \ {ω(ū_m, 0)} and the connection between S and S₋ cannot be broken for all (ε, μ) ~ (0, 0) and ε > 0, then Cycl(X_{ε,μ}, Γ) ≤ 1.
- If the slow dynamics is regular on I \ {ω(ū_m, 0)} and the hyperbolic saddle S is not neutral, then Cycl(X_{ε,μ}, Γ) ≤ 3.
- When the slow dynamics has (a finite number of) singularities in the interior of I and the connection between S and S_{_} cannot be broken, then Cycl(X_{ε,μ}, Γ) ≤ 2.

 If S is not neutral and the slow dynamics has extra singularities on c⁻, then we have Cvcl(X_e µ, Γ) < 3.
22

Results

• In the following theorem we suppose that the singularity is not hyperbolic.

Results

Theorem

Assume that the slow dynamics has a singularity at precisely one corner point. Then the following statements are true:

- If the slow dynamics is regular in the interior of I and the hyperbolic saddle S is not neutral, then Cycl(X_{ε,μ}, Γ) ≤ 3.
- If S is not neutral and the slow dynamics has extra singularities on the same part of the slow curve where the corner singularity is located, then Cycl(X_{ε,μ}, Γ) ≤ 3.

24

Results

• The following theorem deals with a hyperbolic singularity at both corner points.

25

26

Theorem

Suppose that the slow dynamics has a hyperbolic saddle at both corner points and that $\rho_+ r \frac{1}{\rho_-} \neq 1$ for $(\epsilon, \mu) = (0, 0)$. Then:

- If the slow dynamics is regular in the interior of I and both connections cannot be broken, then $\operatorname{Cycl}(X_{\epsilon,\mu},\Gamma) \leq 1$.
- ② If the slow dynamics has singularities in the interior of I and both connections cannot be broken, then $Cycl(X_{\epsilon,\mu}, \Gamma) \leq 2$.
- If the slow dynamics is regular in the interior of I and precisely one of the two connections cannot be broken, then Cycl(X_{ε,μ}, Γ) ≤ 2.
- If the slow dynamics has singularities in the interior of I and precisely one of the two connections cannot be broken, then Cycl(X_{ε,μ}, Γ) ≤ 3.

27

Results

• When both connections are broken then we get the following result:

Results

Theorem

Suppose that the slow dynamics has a hyperbolic saddle at both corner points and that the slow dynamics is regular in the interior of I. Moreover, suppose that $\rho_+ r \frac{1}{\rho_-} \neq 1$, $\rho_+ \neq \rho_-$ and $r \neq 1$ for $(\epsilon, \mu) = (0, 0)$. If $\rho_+ r \frac{1}{\rho_-} > 1$ and r < 1 (resp. $\rho_+ r \frac{1}{\rho_-} < 1$ and r > 1), then $\text{Cycl}(X_{\epsilon,\mu}, \Gamma) \leq 4$.

29

Proof

 Proof: Let the slow dynamics be regular in the interior of *I*. Then the cyclicity of Γ is bounded by 1+the number of zeros (counting multiplicity) w.r.t. s > 0 of

$$(rac{1}{
ho_-}-\delta^2)\lneta_-(\mathcal{D}_1(s))-(rac{1}{
ho_+}-\delta^2)\lneta_+(s)+\delta^2(r-1)\ln s+*$$

where * is δ -regularly C^k in $(s, \mathcal{D}_1(s), \Psi_1(s), b_0, \mu)$.

29

Proof

 Proof: Let the slow dynamics be regular in the interior of *I*. Then the cyclicity of Γ is bounded by 1+the number of zeros (counting multiplicity) w.r.t. s > 0 of

$$(rac{1}{
ho_-}-\delta^2)\lneta_-(\mathcal{D}_1(s))-(rac{1}{
ho_+}-\delta^2)\lneta_+(s)+\delta^2(r-1)\ln s+*$$

where * is δ -regularly C^k in $(s, \mathcal{D}_1(s), \Psi_1(s), b_0, \mu)$. • $\mathcal{D}_1(s) = s^r (1 + \Psi(s, \delta, b_0, \mu))$

29

Proof

 Proof: Let the slow dynamics be regular in the interior of *I*. Then the cyclicity of Γ is bounded by 1+the number of zeros (counting multiplicity) w.r.t. s > 0 of

$$(rac{1}{
ho_{-}}-\delta^2)\lneta_{-}(\mathcal{D}_1(s))-(rac{1}{
ho_{+}}-\delta^2)\lneta_{+}(s)+\delta^2(r-1)\ln s+*$$

where * is δ -regularly C^k in $(s, \mathcal{D}_1(s), \Psi_1(s), b_0, \mu)$.

•
$$\mathcal{D}_1(s) = s^r (1 + \Psi(s, \delta, b_0, \mu))$$

•
$$\beta_-(u) = \kappa_- + u ilde{eta}_-(u)$$
 and $\beta_+(s) = \kappa_+ + s ilde{eta}_+(s)$

29

Proof

 Proof: Let the slow dynamics be regular in the interior of *I*. Then the cyclicity of Γ is bounded by 1+the number of zeros (counting multiplicity) w.r.t. s > 0 of

$$(rac{1}{
ho_{-}}-\delta^2)\lneta_{-}(\mathcal{D}_1(s))-(rac{1}{
ho_{+}}-\delta^2)\lneta_{+}(s)+\delta^2(r-1)\ln s+*$$

where * is δ -regularly C^k in $(s, \mathcal{D}_1(s), \Psi_1(s), b_0, \mu)$.

•
$$\mathcal{D}_1(s) = s^r (1 + \Psi(s, \delta, b_0, \mu))$$

•
$$\beta_-(u) = \kappa_- + u ilde{eta}_-(u)$$
 and $\beta_+(s) = \kappa_+ + s ilde{eta}_+(s)$

30

31

Proof

• (a) " $\kappa_+ \ge 0, \kappa_- \le 0$ ". In this case, S is located in front of S_+ and S_- lies in front of S.

31

Proof

• (a) " $\kappa_+ \ge 0, \kappa_- \le 0$ ". In this case, S is located in front of S_+ and S_- lies in front of S.

$$\begin{split} P(s) \leq & (\frac{1}{\rho_{-}} - \delta^{2}) \ln \mathcal{D}_{1}(s) \tilde{\beta}_{-}(\mathcal{D}_{1}(s)) - (\frac{1}{\rho_{+}} - \delta^{2}) \ln s \tilde{\beta}_{+}(s) \\ & + \delta^{2}(r-1) \ln s + O(1) \\ = & (\frac{r}{\rho_{-}} - \delta^{2}r) \ln s - (\frac{1}{\rho_{+}} - \delta^{2}) \ln s + \delta^{2}(r-1) \ln s + O(1) \\ = & (\frac{r}{\rho_{-}} - \frac{1}{\rho_{+}}) \ln s + O(1). \end{split}$$

32

33

Proof

(b) "κ₊ < 0, κ₋ ≤ 0". We use a blow-up in the (κ₊, s)-space and a blow-up in the (κ₋, s^r)-space.

33

Proof

(b) "κ₊ < 0, κ₋ ≤ 0". We use a blow-up in the (κ₊, s)-space and a blow-up in the (κ₋, s^r)-space.

•
$$\beta_{-}(u) = \kappa_{-} + u \tilde{\beta}_{-}(u)$$
 and $\beta_{+}(s) = \kappa_{+} + s \tilde{\beta}_{+}(s)$

Proof

(b) "κ₊ < 0, κ₋ ≤ 0". We use a blow-up in the (κ₊, s)-space and a blow-up in the (κ₋, s^r)-space.

•
$$\beta_{-}(u) = \kappa_{-} + u\tilde{\beta}_{-}(u)$$
 and $\beta_{+}(s) = \kappa_{+} + s\tilde{\beta}_{+}(s)$

Our goal is to prove that P has at most 2 zeros (counting multiplicity) w.r.t. s > 0 for each fixed (δ, b₀, μ) ~ (0,0,0) such that κ₊(δ, b₀, μ) < 0 and κ₋(δ, b₀, μ) ≤ 0.

Proof

(b) "κ₊ < 0, κ₋ ≤ 0". We use a blow-up in the (κ₊, s)-space and a blow-up in the (κ₋, s^r)-space.

•
$$\beta_{-}(u) = \kappa_{-} + u\tilde{\beta}_{-}(u)$$
 and $\beta_{+}(s) = \kappa_{+} + s\tilde{\beta}_{+}(s)$

- Our goal is to prove that P has at most 2 zeros (counting multiplicity) w.r.t. s > 0 for each fixed (δ, b₀, μ) ~ (0,0,0) such that κ₊(δ, b₀, μ) < 0 and κ₋(δ, b₀, μ) ≤ 0.
- We write $\kappa_+ = -\bar{\kappa}_+ s$, with s > 0, $s \sim 0$ and $\bar{\kappa}_+ \in]0, \tilde{\beta}_+(0)[$. Note that $\beta_+(s) = s(-\bar{\kappa}_+ + \tilde{\beta}_+(s))$ has to be positive.

34

• We have

Proof

$$\begin{split} \mathsf{P}(s) \leq & (\frac{1}{\rho_{-}} - \delta^{2}) \ln \mathcal{D}_{1}(s) \tilde{\beta}_{-}(\mathcal{D}_{1}(s)) - (\frac{1}{\rho_{+}} - \delta^{2}) \ln \beta_{+}(s) \\ & + \delta^{2}(r-1) \ln s + O(1) \\ = & (\frac{r}{\rho_{-}} - \delta^{2}r) \ln s - (\frac{1}{\rho_{+}} - \delta^{2}) \ln s (-\bar{\kappa}_{+} + \tilde{\beta}_{+}(s)) \\ & + \delta^{2}(r-1) \ln s + O(1) \\ = & (\frac{r}{\rho_{-}} - \frac{1}{\rho_{+}}) \ln s - (\frac{1}{\rho_{+}} - \delta^{2}) \ln(-\bar{\kappa}_{+} + \tilde{\beta}_{+}(s)) + O(1). \end{split}$$

 When κ
₊ ~ β
₊(0), the above expression is of type -∞ +∞ and we have to blow up the origin in the (κ₋, s^r)-space, i.e. we write κ₋ = -κ
₋s^r where s > 0, s ~ 0 and κ
₋ ∈ [0, β
₋(0)[.

34

• We have

Proof

$$\begin{split} \mathsf{P}(s) \leq & (\frac{1}{\rho_{-}} - \delta^{2}) \ln \mathcal{D}_{1}(s) \tilde{\beta}_{-}(\mathcal{D}_{1}(s)) - (\frac{1}{\rho_{+}} - \delta^{2}) \ln \beta_{+}(s) \\ & + \delta^{2}(r-1) \ln s + O(1) \\ = & (\frac{r}{\rho_{-}} - \delta^{2}r) \ln s - (\frac{1}{\rho_{+}} - \delta^{2}) \ln s (-\bar{\kappa}_{+} + \tilde{\beta}_{+}(s)) \\ & + \delta^{2}(r-1) \ln s + O(1) \\ = & (\frac{r}{\rho_{-}} - \frac{1}{\rho_{+}}) \ln s - (\frac{1}{\rho_{+}} - \delta^{2}) \ln(-\bar{\kappa}_{+} + \tilde{\beta}_{+}(s)) + O(1). \end{split}$$

 When κ
₊ ~ β
₊(0), the above expression is of type -∞ +∞ and we have to blow up the origin in the (κ₋, s^r)-space, i.e. we write κ₋ = -κ
₋s^r where s > 0, s ~ 0 and κ
₋ ∈ [0, β
₋(0)].

35

Proof The derivative of P, multiplied by sβ_−(D₁(s))β₊(s) > 0, is given by

$$egin{aligned} &(rac{1}{
ho_{-}}-\delta^{2})eta_{-}'(\mathcal{D}_{1}(s))eta_{+}(s)rs^{r}(1+\Psi_{1}(s))\ &&-(rac{1}{
ho_{+}}-\delta^{2})seta_{-}(\mathcal{D}_{1}(s))eta_{+}'(s)\ &&+eta_{-}(\mathcal{D}_{1}(s))eta_{+}(s)\Big(\delta^{2}(r-1)+*\cdot s+*\cdot s^{r}+*\cdot s\Psi_{1}'(s)\Big) \end{aligned}$$

where *-functions are δ -regularly C^k in $(s, \mathcal{D}_1(s), \Psi_1(s), b_0, \mu)$.

35

Proof

The derivative of P, multiplied by sβ₋(D₁(s))β₊(s) > 0, is given by

$$egin{aligned} &(rac{1}{
ho_{-}}-\delta^2)eta_{-}'(\mathcal{D}_{1}(s))eta_{+}(s)rs^{r}(1+\Psi_{1}(s))\ &&-(rac{1}{
ho_{+}}-\delta^2)seta_{-}(\mathcal{D}_{1}(s))eta_{+}'(s)\ &&+eta_{-}(\mathcal{D}_{1}(s))eta_{+}(s)\Big(\delta^2(r-1)+*\cdot s+*\cdot s^r+*\cdot s\Psi_{1}'(s)\Big) \end{aligned}$$

where *-functions are δ -regularly C^k in $(s, \mathcal{D}_1(s), \Psi_1(s), b_0, \mu)$.

We have

$$s^{r+1}\Big(-rac{1}{
ho_+}\widetilde{eta}_+(0)(-ar{\kappa}_-+\widetilde{eta}_-(0))+o(1)\Big)$$

Renato Huzak

Cyclicity of canard cycles with hyperbolic saddles located away

Proof

• When $\bar{\kappa}_{-} \sim \tilde{\beta}_{-}(0)$, then we use $\rho_{+} \neq \rho_{-}$.

36

- When $\bar{\kappa}_{-} \sim \tilde{\beta}_{-}(0)$, then we use $\rho_{+} \neq \rho_{-}$.
- The derivative of the above expression w.r.t. s is given by

$$egin{aligned} &r(rac{1}{
ho_-}-rac{1}{
ho_+})eta_-'(\mathcal{D}_1(s))eta_+'(s)s^r(1+\Psi_1(s))\ &+O(eta_-,eta_+s^{r-1},eta_-eta_+\Psi_1',eta_-eta_+s\Psi_1''). \end{aligned}$$

36

Proof

- When $\bar{\kappa}_{-} \sim \tilde{\beta}_{-}(0)$, then we use $\rho_{+} \neq \rho_{-}$.
- The derivative of the above expression w.r.t. s is given by

$$egin{aligned} r(rac{1}{
ho_-}-rac{1}{
ho_+})eta_-'(\mathcal{D}_1(s))eta_+'(s)s^r(1+\Psi_1(s))\ &+O(eta_-,eta_+s^{r-1},eta_-eta_+\Psi_1',eta_-eta_+s\Psi_1''). \end{aligned}$$

• If in the O-term we put the expressions for β_{\pm} , we get

$$s^r \Big(r(rac{1}{
ho_-} - rac{1}{
ho_+}) eta_-'(0) eta_+'(0) + o(1) \Big)$$

where the o(1)-term tends to 0 as $s \to 0$ and $\bar{\kappa}_{\pm} \to \tilde{\beta}_{\pm}(0)$. We use $s\Psi'_1, s^2\Psi''_1 \to 0$ as $s \to 0$.

37

Proof

• Using Rolle's theorem, we find at most 1 zero of the derivative of P when $\kappa_+ = -\bar{\kappa}_+ s$ and $\kappa_- = -\bar{\kappa}_- s^r$ with $\bar{\kappa}_+ \sim \tilde{\beta}_+(0)$ and $\bar{\kappa}_- \in [0, \tilde{\beta}_-(0)[$.

37

- Using Rolle's theorem, we find at most 1 zero of the derivative of P when $\kappa_+ = -\bar{\kappa}_+ s$ and $\kappa_- = -\bar{\kappa}_- s^r$ with $\bar{\kappa}_+ \sim \tilde{\beta}_+(0)$ and $\bar{\kappa}_- \in [0, \tilde{\beta}_-(0)[$.
- Putting all the information together, we find that *P* has at most 2 zeros.

37

- Using Rolle's theorem, we find at most 1 zero of the derivative of P when $\kappa_+ = -\bar{\kappa}_+ s$ and $\kappa_- = -\bar{\kappa}_- s^r$ with $\bar{\kappa}_+ \sim \tilde{\beta}_+(0)$ and $\bar{\kappa}_- \in [0, \tilde{\beta}_-(0)[$.
- Putting all the information together, we find that *P* has at most 2 zeros.
- Indeed, we fix $(\delta, b_0, \mu) \sim (0, 0, 0)$ with the property that $\kappa_+(\delta, b_0, \mu) < 0$ and $\kappa_-(\delta, b_0, \mu) \leq 0$. Thus, κ_{\pm} are fixed. As $\bar{\kappa}_+$ increases, *s* decreases because $\kappa_+ = -\bar{\kappa}_+ s$.

37

- Using Rolle's theorem, we find at most 1 zero of the derivative of P when $\kappa_+ = -\bar{\kappa}_+ s$ and $\kappa_- = -\bar{\kappa}_- s^r$ with $\bar{\kappa}_+ \sim \tilde{\beta}_+(0)$ and $\bar{\kappa}_- \in [0, \tilde{\beta}_-(0)[$.
- Putting all the information together, we find that *P* has at most 2 zeros.
- Indeed, we fix $(\delta, b_0, \mu) \sim (0, 0, 0)$ with the property that $\kappa_+(\delta, b_0, \mu) < 0$ and $\kappa_-(\delta, b_0, \mu) \leq 0$. Thus, κ_\pm are fixed. As $\bar{\kappa}_+$ increases, *s* decreases because $\kappa_+ = -\bar{\kappa}_+ s$.
- When κ
 ₊ is kept in an interval uniformly away from β
 ₊(0), s is kept in an interval on which P is negative.

37

- Using Rolle's theorem, we find at most 1 zero of the derivative of P when $\kappa_+ = -\bar{\kappa}_+ s$ and $\kappa_- = -\bar{\kappa}_- s^r$ with $\bar{\kappa}_+ \sim \tilde{\beta}_+(0)$ and $\bar{\kappa}_- \in [0, \tilde{\beta}_-(0)[$.
- Putting all the information together, we find that *P* has at most 2 zeros.
- Indeed, we fix $(\delta, b_0, \mu) \sim (0, 0, 0)$ with the property that $\kappa_+(\delta, b_0, \mu) < 0$ and $\kappa_-(\delta, b_0, \mu) \leq 0$. Thus, κ_\pm are fixed. As $\bar{\kappa}_+$ increases, *s* decreases because $\kappa_+ = -\bar{\kappa}_+ s$.
- When κ
 ₊ is kept in an interval uniformly away from β
 ₊(0), s is kept in an interval on which P is negative.
- When κ
 ₊ is kept close to β
 ₊(0), s decreases further and P can have at most 2 zeros using Rolle's theorem.

38

39

Proof

(c) "κ₊ ≥ 0, κ₋ > 0". We will prove that P has at most 3 zeros (counting multiplicity) in s > 0 and s ~ 0 under condition that r < 1.

39

Proof

- (c) "κ₊ ≥ 0, κ₋ > 0". We will prove that P has at most 3 zeros (counting multiplicity) in s > 0 and s ~ 0 under condition that r < 1.
- We write κ_− = κ̄_−s^r where κ̄_− ∈]0, κ̄_−⁰] with κ̄_−⁰ > 0 arbitrary and fixed. Then P is negative. Indeed,

$$egin{aligned} P(s) \leq & (rac{r}{
ho_{-}} - rac{1}{
ho_{+}}) \ln s + (rac{1}{
ho_{-}} - \delta^2) \ln \left(ar{\kappa}_{-} + (1+\Psi) ar{eta}_{-}(\mathcal{D}_1)
ight) \ &+ O(1). \end{aligned}$$

To cover the limiting case " $\bar{\kappa}_{-}^{0} \to \infty$ " we write $s^{r} = \bar{s}_{-}\kappa_{-}$ where $\bar{s}_{-} \sim 0$ and $\bar{s}_{-} > 0$. Then $\beta_{-}(\mathcal{D}_{1}(s)) = \kappa_{-}(1 + O(\bar{s}_{-}))$.

• Here we have to consider two charts in the (κ_+, s) -space.

39

Proof

- (c) "κ₊ ≥ 0, κ₋ > 0". We will prove that P has at most 3 zeros (counting multiplicity) in s > 0 and s ~ 0 under condition that r < 1.
- We write κ_− = κ̄_−s^r where κ̄_− ∈]0, κ̄_−⁰] with κ̄_−⁰ > 0 arbitrary and fixed. Then P is negative. Indeed,

$$\begin{split} P(s) \leq & (\frac{r}{\rho_-} - \frac{1}{\rho_+}) \ln s + (\frac{1}{\rho_-} - \delta^2) \ln \left(\bar{\kappa}_- + (1+\Psi)\tilde{\beta}_-(\mathcal{D}_1)\right) \\ &+ O(1). \end{split}$$

To cover the limiting case " $\bar{\kappa}_{-}^{0} \to \infty$ " we write $s^{r} = \bar{s}_{-}\kappa_{-}$ where $\bar{s}_{-} \sim 0$ and $\bar{s}_{-} > 0$. Then $\beta_{-}(\mathcal{D}_{1}(s)) = \kappa_{-}(1 + O(\bar{s}_{-}))$.

39

Proof

- (c) "κ₊ ≥ 0, κ₋ > 0". We will prove that P has at most 3 zeros (counting multiplicity) in s > 0 and s ~ 0 under condition that r < 1.
- We write κ_− = κ̄_−s^r where κ̄_− ∈]0, κ̄_−⁰] with κ̄_−⁰ > 0 arbitrary and fixed. Then P is negative. Indeed,

$$P(s) \leq \left(\frac{r}{\rho_{-}} - \frac{1}{\rho_{+}}\right) \ln s + \left(\frac{1}{\rho_{-}} - \delta^{2}\right) \ln \left(\bar{\kappa}_{-} + (1+\Psi)\tilde{\beta}_{-}(\mathcal{D}_{1})\right) \\ + O(1).$$

To cover the limiting case " $\bar{\kappa}_{-}^{0} \to \infty$ " we write $s^{r} = \bar{s}_{-}\kappa_{-}$ where $\bar{s}_{-} \sim 0$ and $\bar{s}_{-} > 0$. Then $\beta_{-}(\mathcal{D}_{1}(s)) = \kappa_{-}(1 + O(\bar{s}_{-}))$.

• Here we have to consider two charts in the (κ_+, s) -space.
40

Proof

• First, we write $\kappa_+ = \bar{\kappa}_+ s$ where $\bar{\kappa}_+ \in [0, \bar{\kappa}^0_+]$ with $\bar{\kappa}^0_+ > 0$ large and fixed. Then $\beta_+(s) = s(\bar{\kappa}_+ + \tilde{\beta}_+(s))$.

40

Proof

- First, we write $\kappa_+ = \bar{\kappa}_+ s$ where $\bar{\kappa}_+ \in [0, \bar{\kappa}^0_+]$ with $\bar{\kappa}^0_+ > 0$ large and fixed. Then $\beta_+(s) = s(\bar{\kappa}_+ + \tilde{\beta}_+(s))$.
- The derivative of P can be written as

$$\begin{aligned} &(\frac{r}{\rho_{-}} - \delta^{2}r)\beta_{-}'(\mathcal{D}_{1}(s))s(\bar{\kappa}_{+} + \tilde{\beta}_{+})\bar{s}_{-}\kappa_{-}(1 + \Psi_{1}) \\ &- (\frac{1}{\rho_{+}} - \delta^{2})s\kappa_{-}(1 + O(\bar{s}_{-}))\beta_{+}'(s) \\ &+ s\kappa_{-}(1 + O(\bar{s}_{-}))(\bar{\kappa}_{+} + \tilde{\beta}_{+})\Big(\delta^{2}(r - 1) + * \cdot s + * \cdot s^{r} + * \cdot s\Psi_{1}'(s) \\ &= s\kappa_{-}\Big(-\frac{1}{\rho_{+}}\beta_{+}'(0) + o(1)\Big). \end{aligned}$$

41

Proof

• In the limiting case " $\bar{\kappa}^0_+ \to \infty$ " we have $s = \bar{s}_+ \kappa_+$, with $\bar{s}_+ \sim 0$ and $\bar{s}_+ > 0$, and $\beta_+(s) = \kappa_+(1 + O(\bar{s}_+))$. This is the most difficult chart. P''' is given by

$$\begin{split} & \Big(\frac{2r}{\rho_{-}} - \frac{1+r}{\rho_{+}} + o(1)\Big)\beta'_{-}(\mathcal{D}_{1})\beta'_{+}(s)rs \\ & + \Big(\frac{r(r-1)}{\rho_{-}} + o(1)\Big)\beta'_{-}(\mathcal{D}_{1})\beta_{+}(s)r \\ & + O(\beta_{-}ss^{1-r}, \beta_{+}ss^{2-r}\Psi''_{1}, \beta_{-}ss^{1-r}\Psi'_{1}, \beta_{-}ss^{2-r}\Psi''_{1}, \beta_{-}\beta_{+}s^{2-r}(\Psi'_{1})^{2}, \\ & \beta_{-}\beta_{+}s^{2-r}\Psi''_{1}, \beta_{-}\beta_{+}s^{3-r}\Psi'''_{1}). \end{split}$$

Proof

41

• In the limiting case " $\bar{\kappa}^0_+ \to \infty$ " we have $s = \bar{s}_+ \kappa_+$, with $\bar{s}_+ \sim 0$ and $\bar{s}_+ > 0$, and $\beta_+(s) = \kappa_+(1 + O(\bar{s}_+))$. This is the most difficult chart. P''' is given by

$$\begin{split} & \Big(\frac{2r}{\rho_{-}} - \frac{1+r}{\rho_{+}} + o(1)\Big)\beta'_{-}(\mathcal{D}_{1})\beta'_{+}(s)rs \\ & + \Big(\frac{r(r-1)}{\rho_{-}} + o(1)\Big)\beta'_{-}(\mathcal{D}_{1})\beta_{+}(s)r \\ & + O(\beta_{-}ss^{1-r}, \beta_{+}ss^{2-r}\Psi''_{1}, \beta_{-}ss^{1-r}\Psi'_{1}, \beta_{-}ss^{2-r}\Psi''_{1}, \beta_{-}\beta_{+}s^{2-r}(\Psi'_{1})^{2} \\ & \beta_{-}\beta_{+}s^{2-r}\Psi''_{1}, \beta_{-}\beta_{+}s^{3-r}\Psi'''_{1}). \end{split}$$

$$\kappa_+\Big(ig(rac{r(r-1)}{
ho_-}+o(1)ig)eta_-'(\mathcal{D}_1)(1+O(ar{s}_+))r+o(1)\Big).$$

42

Proof

• Using Rolle's theorem twice we conclude that P' has at most 2 zeros counting multiplicity in the chart " $\bar{\kappa}^0_- \to \infty$ " and $\kappa_+ \ge 0$.

42

Proof

- Using Rolle's theorem twice we conclude that P' has at most 2 zeros counting multiplicity in the chart " $\bar{\kappa}^0_- \to \infty$ " and $\kappa_+ \ge 0$.
- If we apply Rolle's theorem once more, we find that P has at most 3 zeros for κ₊ ≥ 0 and κ₋ > 0 (note that P is nonzero when κ
 ⁰₋ is finite and κ
 ⁻₋ ∈]0, κ
 ⁰₋]).

42

Proof

- Using Rolle's theorem twice we conclude that P' has at most 2 zeros counting multiplicity in the chart " $\bar{\kappa}^0_- \to \infty$ " and $\kappa_+ \ge 0$.
- If we apply Rolle's theorem once more, we find that P has at most 3 zeros for κ₊ ≥ 0 and κ₋ > 0 (note that P is nonzero when κ
 ⁰₋ is finite and κ
 ⁻₋ ∈]0, κ
 ⁰₋]).
- Thank you!