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Canard cycles with hyperbolic saddles

Motivation

Our goal is to study the cyclicity of canard cycle Γ.
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Canard cycles with hyperbolic saddles

Motivation

Predator-prey systems with a Holling type II or IV response
function P: {

ẋ = rx
(
1− x

K

)
− yP(x)

ẏ = y
(
− ε+ cP(x)

)
,

where x ≥ 0 is the population density of prey, y ≥ 0 is the
population density of predator, ε ≥ 0 is the death rate of the
predator kept small and the parameters c, K and r are strictly
positive.

The function P(x) = mx
b+x , with m > 0 and b > 0, is a

response function of Holling type II

When P(x) = mx
1+bx+ax2 with m > 0, a > 0 and b > −2

√
a,

we have the Holling type IV response function. Its simplified
version is given by P(x) = mx

a+x2 where m > 0 and a > 0.
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Canard cycles with hyperbolic saddles

Motivation

S

At most one limit cycle!

See [Ting-Hao Hsu, Number and Stability of Relaxation
Oscillations for Predator-Prey Systems with Small Death
Rates, 2019]

See also H. Zhu, X. Zhang, C. Li, B. W. Kooi, J. C. Poggiale...
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Canard cycles with hyperbolic saddles

Motivation

The study of canard cycles is also relevant for the Hilbert’s
16th problem.

We can consider polynomial deformations of quadratic system{
ẋ = x

(
1− x

)
− xy

ẏ = y
(
− ε+ x

)
,

S
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ẋ = x

(
1− x

)
− xy

ẏ = y
(
− ε+ x

)
,

S

Renato Huzak Cyclicity of canard cycles with hyperbolic saddles located away from the critical curve



6

Canard cycles with hyperbolic saddles

Motivation

For the study of the cyclicity of degenerate limit periodic sets
(thus, containing curves of singularities) inside polynomial
systems see [Artés, Dumortier, Llibre,2009], [Bobieński,
Mardesic, Novikov,2013], [Bobieński, Gavrilov,2016], [De
Maesschalck, Dumortier, 2010,2011], [De Maesschalck,
Huzak, 2014], [Dumortier, Panazzolo, Roussarie, 2007],
[Dumortier, Roussarie, 1996,2009], [Dumortier, Rousseau,
2009], [H. Zhu, C. Li, 2013], etc.

Our goal is to study the cyclicity of degenerate limit periodic
sets with singularities outside the slow curve.
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Canard cycles with hyperbolic saddles

Definitions

We deal with a slow-fast Hopf point at p ∈ M for
(ε, µ) = (0, 0), i.e. Xε,µ is locally smoothly equivalent to{

ẋ = y
ẏ = −xy + ε

(
b(µ)− x + x2g(x , ε, µ)

)
+ εy2H(x , y , ε, µ).

See [Dumortier, Roussarie, 1996,2009], [Krupa, Szmolyan,
2001], [De Maesschalck, Dumortier, 2005,2008], [Huzak,
2016,2017,2018]
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Canard cycles with hyperbolic saddles

Definitions

Along the slow curve, away from p ∈ M, Xε,µ can be studied
by using the slow dynamics

x ′ = f (x , µ), µ ∼ 0,

with a smooth function f .

We consider a smooth (ε, µ)-family of planar slow-fast vector
fields locally given by {ẋ = f (x , y , ε, µ), ẏ = εg(x , y , ε, µ)}.
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Canard cycles with hyperbolic saddles

Definitions

When ε = 0, we have a fast subsystem
{ẋ = f (x , y , 0, µ), ẏ = 0}.

If we divide {ẋ = f (x , y , ε, µ), ẏ = εg(x , y , ε, µ)} by ε > 0, we
get {εx ′ = f (x , y , ε, µ), y ′ = g(x , y , ε, µ)}.
When ε = 0, we get a slow subsystem:
{0 = f (x , y , 0, µ), y ′ = g(x , y , 0, µ)}.
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Canard cycles with hyperbolic saddles

Definitions

If the slow dynamics is regular and points towards p on c−

and away from p on c+ (i.e. f < 0), then the slow divergence
integral I−(um, µ) along c− (resp. I+(s1, µ) along c+) is well
defined:

I−(um, µ) :=

∫ 0

ω(um,µ)

divX0,µdx

f (x , µ)
< 0, um ∈ Lm,(

resp. I+(s1, µ) :=

∫ 0

α(s1,µ)

divX0,µdx

f (x , µ)
< 0, s1 ∈ Σ1

)
.
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Canard cycles with hyperbolic saddles

Definitions

The slow divergence integral:
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Canard cycles with hyperbolic saddles

Definitions

Sometimes, the slow dynamics f (x , 0) can have isolated
(nonzero) singularities, i.e. the slow dynamics is negative,
except at a finite number of singularities, near which the
passage from the right to the left can be possible for
(ε, µ) ∼ (0, 0) and ε > 0.

A typical example is a singularity of saddle-node type in the
slow dynamics

Besides the “regular” hyperbolic saddles S1, . . . ,Sm, we can
have “singular” hyperbolic saddles (they don’t exist when
ε = 0), generated by hyperbolic singularities in the slow
dynamics.

For example, f (ω(ūm, 0), 0) = 0 and ∂f
∂x (ω(ūm, 0), 0) > 0.
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For example, f (ω(ūm, 0), 0) = 0 and ∂f
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Canard cycles with hyperbolic saddles

Definitions

Definition (Hyperbolicity ratio)

Let λ− < 0 and λ+ > 0 be the eigenvalues of a hyperbolic saddle.
The hyperbolicity ratio of the hyperbolic saddle is the quantity
r = −λ−

λ+
> 0. The hyperbolic saddle is attracting (resp. repelling)

if r > 1 (resp. r < 1). The hyperbolic saddle is neutral if r = 1.

We denote by ri = ri (ε, µ) the hyperbolicity ratio of Si , for
i = 1, . . . ,m.

For a singular hyperbolic saddle, we denote ratio of the
eigenvalue attached to the slow direction to the eigenvalue
attached to the normal direction by −ερ− where
ρ− = ρ−(ε, µ) > 0 for all ε ≥ 0
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Canard cycles with hyperbolic saddles

Definitions

Near hyperbolic saddles we use Mourtada’s normal form
([Mourtada,1990], [Ilyashenko, Yakovenko,1991]):

Theorem

The Dulac map Di , near the hyperbolic saddle Si , has the
following structure:

Di (si ) = Di (si , δ, b0, µ) = srii
(
1 + Ψ(si , δ, b0, µ)

)
, (1)

where si ≥ 0, (δ, b0, µ) ∼ (0, 0, 0), δ ≥ 0, ri = ri (δ, b0, µ) is the
hyperbolicity ratio of Si , Ψ is a smooth function for si > 0 and for
all n ∈ N we have limsi→0 s

n
i
∂nΨ
∂sni

(si , δ, b0, µ) = 0, uniformly in

(δ, b0, µ). If ri (0, 0, 0) 6∈ Q, then Ψ ≡ 0. If ri (0, 0, 0) ∈ Q, then

sni
∂nΨ

∂sni
= o(sνi ), si → 0, ∀ν < 1. (2)

uniformly in (δ, b0, µ).
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Canard cycles with hyperbolic saddles

Results

We write I = I−(ūm, 0)− I+(s̄1, 0).

Theorem

Suppose that the slow dynamics is regular on I (i.e. f (x , 0) < 0 for
all x ∈ I ). If Si is attracting (resp. repelling) for all i = 1, . . .m
and (ε, µ) = (0, 0) and I < 0 (resp. > 0), then Cycl(Xε,µ, Γ) ≤ 1.
If a limit cycle exists, it is hyperbolic and attracting (resp.
repelling).
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Canard cycles with hyperbolic saddles

Results

Proof: We study the number of zeros w.r.t. s1 ∼ 0 of

I−(um, µ)− I+(s1, µ) + δ2
m∑
i=1

(ri − 1) ln si + o(1) = 0,

where um = Tm(s1) ∼ 0 and the o(1)-term tends to 0 as
δ → 0, uniformly in (s1, b0, µ) ∼ (0, 0, 0) and s1 > 0.
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Canard cycles with hyperbolic saddles

Results

The difference map:

p
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Canard cycles with hyperbolic saddles

Results

When Γ is neither attracting nor repelling, the study of the
cyclicity of Γ is more difficult, and we will therefore suppose
that m = 1.
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Canard cycles with hyperbolic saddles

Results

Theorem

Suppose that S is not neutral (i.e. r(0, 0) 6= 1). The following
statements are true:

1 If the slow dynamics is regular on I , then Cycl(Xε,µ, Γ) ≤ 3.

2 When the slow dynamics has a finite number of singularities in
the interior of I , then Cycl(Xε,µ, Γ) ≤ 3.
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Canard cycles with hyperbolic saddles

Results

We assume now that the slow dynamics has a singularity at
precisely one corner point. If the singularity is hyperbolic, we
have:
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Canard cycles with hyperbolic saddles

Results

Theorem

Suppose that the slow dynamics has a hyperbolic saddle at
precisely one corner point, for example at S−. Then:

1 If the slow dynamics is regular on I \ {ω(ūm, 0)} and the
connection between S and S− cannot be broken for all
(ε, µ) ∼ (0, 0) and ε > 0, then Cycl(Xε,µ, Γ) ≤ 1.

2 If the slow dynamics is regular on I \ {ω(ūm, 0)} and the
hyperbolic saddle S is not neutral, then Cycl(Xε,µ, Γ) ≤ 3.

3 When the slow dynamics has (a finite number of) singularities
in the interior of I and the connection between S and S−
cannot be broken, then Cycl(Xε,µ, Γ) ≤ 2.

4 If S is not neutral and the slow dynamics has extra
singularities on c−, then we have Cycl(Xε,µ, Γ) ≤ 3.
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Canard cycles with hyperbolic saddles

Results

In the following theorem we suppose that the singularity is not
hyperbolic.
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Canard cycles with hyperbolic saddles

Results

Theorem

Assume that the slow dynamics has a singularity at precisely one
corner point. Then the following statements are true:

1 If the slow dynamics is regular in the interior of I and the
hyperbolic saddle S is not neutral, then Cycl(Xε,µ, Γ) ≤ 3.

2 If S is not neutral and the slow dynamics has extra
singularities on the same part of the slow curve where the
corner singularity is located, then Cycl(Xε,µ, Γ) ≤ 3.
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Canard cycles with hyperbolic saddles

Results

The following theorem deals with a hyperbolic singularity at
both corner points.
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Canard cycles with hyperbolic saddles

Results

SS

S+ S+S− S−(a) (b)

Figure: The connection between S and S− remains unbroken. (a) κ ≤ 0.
(b) κ > 0.
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Canard cycles with hyperbolic saddles

Theorem

Suppose that the slow dynamics has a hyperbolic saddle at both
corner points and that ρ+r

1
ρ−
6= 1 for (ε, µ) = (0, 0). Then:

1 If the slow dynamics is regular in the interior of I and both
connections cannot be broken, then Cycl(Xε,µ, Γ) ≤ 1.

2 If the slow dynamics has singularities in the interior of I and
both connections cannot be broken, then Cycl(Xε,µ, Γ) ≤ 2.

3 If the slow dynamics is regular in the interior of I and precisely
one of the two connections cannot be broken, then
Cycl(Xε,µ, Γ) ≤ 2.

4 If the slow dynamics has singularities in the interior of I and
precisely one of the two connections cannot be broken, then
Cycl(Xε,µ, Γ) ≤ 3.
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Canard cycles with hyperbolic saddles

Results

When both connections are broken then we get the following
result:

SS

S+ S+S− S−(c) (d)

S
S

S+ S+S− S−(a) (b)

Figure: Both connections can be broken. (a) κ+ ≥ 0, κ− ≤ 0. (b)
κ+ < 0, κ− ≤ 0. (c) κ+ ≥ 0, κ− > 0. (d) κ+ < 0, κ− > 0.
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Canard cycles with hyperbolic saddles

Results

Theorem

Suppose that the slow dynamics has a hyperbolic saddle at both
corner points and that the slow dynamics is regular in the interior
of I . Moreover, suppose that ρ+r

1
ρ−
6= 1, ρ+ 6= ρ− and r 6= 1 for

(ε, µ) = (0, 0). If ρ+r
1
ρ−

> 1 and r < 1 (resp. ρ+r
1
ρ−

< 1 and

r > 1), then Cycl(Xε,µ, Γ) ≤ 4.
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Canard cycles with hyperbolic saddles

Proof

Proof: Let the slow dynamics be regular in the interior of I .
Then the cyclicity of Γ is bounded by 1+the number of zeros
(counting multiplicity) w.r.t. s > 0 of

(
1

ρ−
−δ2) lnβ−(D1(s))− (

1

ρ+
−δ2) lnβ+(s) +δ2(r−1) ln s +∗

where ∗ is δ-regularly C k in (s,D1(s),Ψ1(s), b0, µ).

D1(s) = sr
(
1 + Ψ(s, δ, b0, µ)

)
β−(u) = κ− + uβ̃−(u) and β+(s) = κ+ + sβ̃+(s)
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β−(u) = κ− + uβ̃−(u) and β+(s) = κ+ + sβ̃+(s)
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Canard cycles with hyperbolic saddles

Proof

SS

S+ S+S− S−(c) (d)

S
S

S+ S+S− S−(a) (b)

Figure: Both connections can be broken. (a) κ+ ≥ 0, κ− ≤ 0. (b)
κ+ < 0, κ− ≤ 0. (c) κ+ ≥ 0, κ− > 0. (d) κ+ < 0, κ− > 0.
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Canard cycles with hyperbolic saddles

Proof

(a) “κ+ ≥ 0, κ− ≤ 0”. In this case, S is located in front of
S+ and S− lies in front of S .

P(s) ≤(
1

ρ−
− δ2) lnD1(s)β̃−(D1(s))− (

1

ρ+
− δ2) ln sβ̃+(s)

+ δ2(r − 1) ln s + O(1)

=(
r

ρ−
− δ2r) ln s − (

1

ρ+
− δ2) ln s + δ2(r − 1) ln s + O(1)

=(
r

ρ−
− 1

ρ+
) ln s + O(1).
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Canard cycles with hyperbolic saddles

Proof

SS

S+ S+S− S−(c) (d)

S
S

S+ S+S− S−(a) (b)

Figure: Both connections can be broken. (a) κ+ ≥ 0, κ− ≤ 0. (b)
κ+ < 0, κ− ≤ 0. (c) κ+ ≥ 0, κ− > 0. (d) κ+ < 0, κ− > 0.
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Canard cycles with hyperbolic saddles

Proof

(b) “κ+ < 0, κ− ≤ 0”. We use a blow-up in the (κ+, s)-space
and a blow-up in the (κ−, s

r )-space.

β−(u) = κ− + uβ̃−(u) and β+(s) = κ+ + sβ̃+(s)

Our goal is to prove that P has at most 2 zeros (counting
multiplicity) w.r.t. s > 0 for each fixed (δ, b0, µ) ∼ (0, 0, 0)
such that κ+(δ, b0, µ) < 0 and κ−(δ, b0, µ) ≤ 0.

We write κ+ = −κ̄+s, with s > 0, s ∼ 0 and κ̄+ ∈]0, β̃+(0)[.
Note that β+(s) = s(−κ̄+ + β̃+(s)) has to be positive.
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Canard cycles with hyperbolic saddles

Proof

We have

P(s) ≤(
1

ρ−
− δ2) lnD1(s)β̃−(D1(s))− (

1

ρ+
− δ2) lnβ+(s)

+ δ2(r − 1) ln s + O(1)

=(
r

ρ−
− δ2r) ln s − (

1

ρ+
− δ2) ln s(−κ̄+ + β̃+(s))

+ δ2(r − 1) ln s + O(1)

=(
r

ρ−
− 1

ρ+
) ln s − (

1

ρ+
− δ2) ln(−κ̄+ + β̃+(s)) + O(1).

When κ̄+ ∼ β̃+(0), the above expression is of type −∞+∞
and we have to blow up the origin in the (κ−, s

r )-space, i.e.
we write κ− = −κ̄−sr where s > 0, s ∼ 0 and
κ̄− ∈ [0, β̃−(0)[.
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Canard cycles with hyperbolic saddles

Proof

The derivative of P, multiplied by sβ−(D1(s))β+(s) > 0, is
given by

(
1

ρ−
− δ2)β′−(D1(s))β+(s)rsr (1 + Ψ1(s))

− (
1

ρ+
− δ2)sβ−(D1(s))β′+(s)

+ β−(D1(s))β+(s)
(
δ2(r − 1) + ∗ · s + ∗ · sr + ∗ · sΨ′1(s)

)
where ∗-functions are δ-regularly C k in
(s,D1(s),Ψ1(s), b0, µ).

We have

sr+1
(
− 1

ρ+
β̃+(0)(−κ̄− + β̃−(0)) + o(1)

)
.
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Canard cycles with hyperbolic saddles

Proof

When κ̄− ∼ β̃−(0), then we use ρ+ 6= ρ−.

The derivative of the above expression w.r.t. s is given by

r(
1

ρ−
− 1

ρ+
)β′−(D1(s))β′+(s)sr (1 + Ψ1(s))

+ O(β−, β+s
r−1, β−β+Ψ′1, β−β+sΨ′′1).

If in the O-term we put the expressions for β±, we get

sr
(
r(

1

ρ−
− 1

ρ+
)β′−(0)β′+(0) + o(1)

)
where the o(1)-term tends to 0 as s → 0 and κ̄± → β̃±(0).
We use sΨ′1, s

2Ψ′′1 → 0 as s → 0.
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Canard cycles with hyperbolic saddles

Proof

Using Rolle’s theorem, we find at most 1 zero of the derivative
of P when κ+ = −κ̄+s and κ− = −κ̄−sr with κ̄+ ∼ β̃+(0)
and κ̄− ∈ [0, β̃−(0)[.

Putting all the information together, we find that P has at
most 2 zeros.

Indeed, we fix (δ, b0, µ) ∼ (0, 0, 0) with the property that
κ+(δ, b0, µ) < 0 and κ−(δ, b0, µ) ≤ 0. Thus, κ± are fixed. As
κ̄+ increases, s decreases because κ+ = −κ̄+s.

When κ̄+ is kept in an interval uniformly away from β̃+(0), s
is kept in an interval on which P is negative.

When κ̄+ is kept close to β̃+(0), s decreases further and P
can have at most 2 zeros using Rolle’s theorem.
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Canard cycles with hyperbolic saddles

Proof

SS

S+ S+S− S−(c) (d)

S
S

S+ S+S− S−(a) (b)

Figure: Both connections can be broken. (a) κ+ ≥ 0, κ− ≤ 0. (b)
κ+ < 0, κ− ≤ 0. (c) κ+ ≥ 0, κ− > 0. (d) κ+ < 0, κ− > 0.
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Canard cycles with hyperbolic saddles

Proof

(c) “κ+ ≥ 0, κ− > 0”. We will prove that P has at most 3
zeros (counting multiplicity) in s > 0 and s ∼ 0 under
condition that r < 1.

We write κ− = κ̄−s
r where κ̄− ∈]0, κ̄0

−] with κ̄0
− > 0 arbitrary

and fixed. Then P is negative. Indeed,

P(s) ≤(
r

ρ−
− 1

ρ+
) ln s + (

1

ρ−
− δ2) ln

(
κ̄− + (1 + Ψ)β̃−(D1)

)
+ O(1).

To cover the limiting case “κ̄0
− →∞” we write sr = s̄−κ−

where s̄− ∼ 0 and s̄− > 0. Then β−(D1(s)) = κ−(1 +O(s̄−)).

Here we have to consider two charts in the (κ+, s)-space.
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Canard cycles with hyperbolic saddles

Proof

First, we write κ+ = κ̄+s where κ̄+ ∈ [0, κ̄0
+] with κ̄0

+ > 0

large and fixed. Then β+(s) = s(κ̄+ + β̃+(s)).

The derivative of P can be written as

(
r

ρ−
− δ2r)β′−(D1(s))s(κ̄+ + β̃+)s̄−κ−(1 + Ψ1)

− (
1

ρ+
− δ2)sκ−(1 + O(s̄−))β′+(s)

+ sκ−(1 + O(s̄−))(κ̄+ + β̃+)
(
δ2(r − 1) + ∗ · s + ∗ · sr + ∗ · sΨ′1(s)

)
= sκ−

(
− 1

ρ+
β′+(0) + o(1)

)
.
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Canard cycles with hyperbolic saddles

Proof

In the limiting case “κ̄0
+ →∞” we have s = s̄+κ+, with

s̄+ ∼ 0 and s̄+ > 0, and β+(s) = κ+(1 + O(s̄+)). This is the
most difficult chart. P ′′′ is given by( 2r

ρ−
− 1 + r

ρ+
+ o(1)

)
β′−(D1)β′+(s)rs

+
( r(r − 1)

ρ−
+ o(1)

)
β′−(D1)β+(s)r

+ O(β−ss
1−r , β+ss

2−rΨ′′1, β−ss
1−rΨ′1, β−ss

2−rΨ′′1, β−β+s
2−r (Ψ′1)2,

β−β+s
2−rΨ′′1, β−β+s

3−rΨ′′′1 ).

κ+

(( r(r − 1)

ρ−
+ o(1)

)
β′−(D1)(1 + O(s̄+))r + o(1)

)
.
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+ O(β−ss
1−r , β+ss

2−rΨ′′1, β−ss
1−rΨ′1, β−ss

2−rΨ′′1, β−β+s
2−r (Ψ′1)2,

β−β+s
2−rΨ′′1, β−β+s

3−rΨ′′′1 ).

κ+

(( r(r − 1)

ρ−
+ o(1)

)
β′−(D1)(1 + O(s̄+))r + o(1)

)
.
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Canard cycles with hyperbolic saddles

Proof

Using Rolle’s theorem twice we conclude that P ′ has at most
2 zeros counting multiplicity in the chart “κ̄0

− →∞” and
κ+ ≥ 0.

If we apply Rolle’s theorem once more, we find that P has at
most 3 zeros for κ+ ≥ 0 and κ− > 0 (note that P is nonzero
when κ̄0

− is finite and κ̄− ∈]0, κ̄0
−]).

Thank you!
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