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Introduction

How to “solve” the differential equations that appear in many
phenomena?
What is “solve” a differential equation?

For physicist and applied mathematician means: to derive
a closed-form solution.

For mathematician: existence and uniqueness of the
solutions.

The first attempt to solve differential equations either explicitly
or by series expansions goes back to Euler, Newton and Leibniz.
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Introduction

The theory of integration of equations was subsequently
expanded by analysts and mechanicians as Lagrange, Poisson,
Hamilton, Liouville in 18th and 19th centuries.

The solution can always be represented by the combination of
known functions or by perturbations expansions.

Integrability

The property of equations for which all the local and global
information can be obtained either explicitly from the solutions
or implicitly from the constant of motion (first integrals)
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Introduction

Two different works have radically changed the program of
classical mechanics of 19th century.

Kovalevskaya’s study of the Euler equations. Technique
based in the behavior of the solution near the singularities
in the complex plane.

Poincaré’s geometric theory of solutions. He study
asymptotic solutions as geometric sets which define the
global qualitative behavior of solutions in the long time
limit.

The two approaches share a common feature: The local analysis
of the differential equation, close to its complex time
singularities for Kovalevskaya and its space singularities for
Poincaré, allows to find global properties of the system.
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Introduction

As a consequences of these works, mathematicians and
physicists shifted their interest away from the integrability
theory.

It is introduced the notion of Dynamical system by Birkhoff.

The success of dynamical systems theory was so overwhelming
that exact methods for integration were considered for years
useless and non-generic. This way of thinking continues
nowadays.

The important discovery Zabusky and Kruskal of solitons
of the Korteweg-de Vries equation. Solitons, pattern
formation and ordered structures are the key feactures of
systems with infinite degrees of freedom.
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Introduction

This seems shocking with the chaos, strange attractors and
ergodicity of dynamical systems with few degrees of freedom.

However in order to analyze a family of dynamical systems, is
usual to begin detecting the elements of the family that satisfy
some non-generic property (including integrability).

Next, some systems in the family are described as a
perturbations of the non-generic systems studied, and the
dynamical behavior of the perturbed systems can be analyzed.

This shows how crucial is the understanding of the phenomena
of integrability in dynamical systems.

8/62



Contents Objective Liouville integrability Weierstrass integrability Examples Formal strongly Weierstrass integrability

Introduction

Are the solutions of system ẋ = P (x, y) and ẏ = Q(x, y) in C2

expressable in terms of elementary functions? And the first
integrals?

First Integrals: functions that are constants on solution curves
(to deduce properties of the solutions).

Poincaré (1888) begun the qualitative theory of differential
equations.

Integrability problem: When does a system of differential
equations have a first integral that can be expressed in terms of
“known functions” and how does one find such an integral?
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Objective

Determine when a differential system in C2 has or has not a
first integral is one of the main problems in the qualitative
theory of differential systems.

The Liouville integrability is based on the existence of invariant
algebraic curves and their multiplicity through the exponential
factors.

Recently generalizations on the Liouville integrability theory
have been done.
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Objective

There exist differential systems which are integrable that are
non–Liouville integrable. Some of them are Weierstrass
integrable.

How to detect these non–Liouville and also non-Weierstrass
integrable systems?

In this talk we give a new criterium that detects weak formal
Weierstrass and strong formal Weierstrass non–integrability.
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Liouville integrability

Consider the complex polynomial differential system

ẋ = P (x, y), ẏ = Q(x, y), (1)

where P , Q ∈ C[x, y]. The degree of system (1) is
m = max{degP,degQ}.

Obviously system (1) has the associated differential equation

dy

dx
=
Q(x, y)

P (x, y)
, (2)

and the associated vector field X = P (x, y)∂/∂x+Q(x, y)∂/∂y.
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Invariant curve

f(x, y) = 0 is an invariant curve of system (1) if the orbital
derivative ḟ = Xf = P∂f/∂x+Q∂f/∂y vanishes on f = 0.

f(x, y) = 0 with f ∈ C[x, y], is an invariant algebraic curve of
system (1) if

Xf = P
∂f

∂x
+Q

∂f

∂y
= Kf. (3)

where K(x, y) ∈ C[x, y] of degree less than or equal to m− 1,
called the cofactor associated to the curve f(x, y) = 0.
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First integral

A non-constant function H : U ⊂ C2 → C is a first integral of
system (1) in the open set U if this function is constant in each
solution (x(t), y(t)) of system (1) contained in U . Clearly
H ∈ C1(U) is a first integral of system (1) on U if and only if
XH = P∂H/∂x+Q∂H/∂y ≡ 0 on U .

A function R is an integrating factor associated to a first
integral H of system (1) if

RP = −∂H
∂y

, and RV =
∂H

∂x
,

or equivalently

P
∂R

∂x
+Q

∂R

∂y
= −

(
∂P

∂x
+
∂Q

∂y

)
R = −div(X )R. (4)
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Liouvillian integrability

A polynomial differential system (1) has a Liouvillian first
integral H if its associated integrating factor is of the form

R = exp

(
D

E

)∏
i

Cαi
i , (5)

where D, E and the Ci are polynomials in C[x, y] and αi ∈ C.

The functions of the form (5) are called Darboux functions.
Note that the curves Ci = 0 and E = 0 are invariant algebraic
curves of the polynomial differential system (1), and the
exponential exp(D/E) is a product of some exponential factors
associated to the invariant algebraic curves of system (1) or to
the invariant straight line at infinity when such invariant curves
have multiplicity greater than one.
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Liouville integrability theory

There was the belief that a Liouvillian integrable system has
always an invariant algebraic curve in the finite phase portrait.
Moreover this statement was proved under certain hypothesis
by Zernov & Scárdua (2001).
However there exist Liouvillian integrable system without any
finite invariant algebraic curve as the folowing example shows.

Proposition (Giné & Llibre (2011))

Consider the differential system

ẋ = −1− 2x2 − xy, ẏ = 2x(2x+ y). (6)

System (6) is a Liouvillian integrable system without any finite
invariant algebraic curve.
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Liouville integrability theory

The proof previous theorem is based in the two following
propositions:

Proposition

System (6) is Liouville integrable because it has the integrating
factor R = e−(2x+y)2/4. Moreover it has the first integral

H(x, y) = 2e−
(2x+y)2

4 x−
√
πErf

(
1

2
(2x+ y)

)
.

Proposition

System (6) has not finite invariant algebraic curves.
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Liouville integrability theory

The proof of the second proposition is based in mentioned
method to detect invariant algebraic curves of arbitrary degree.
We impose that F (x, y) = 0, where F is a polynomial of degree
N be an invariant algebraic curve of system (6) i.e.,

(−1− 2x2 − xy)Fx(x, y) + 2x(2x+ y)Fy(x, y) = K(x, y)F (x, y),

where K(x, y) is a polynomial of degree 1 and is the cofactor of
the curve F (x, y). In fact for the computations we take
K(x, y) = a00 + a10x+ a01y. Now we develop the invariant
curve F (x, y) in homogeneous terms into the form

F (x, y) = fN (x, y) + fN−1(x, y) + · · · , (7)

where fi are homogeneous trigonometric polynomials of degree
i.
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Liouville integrability theory

We substitute the expression of F (x, y) into the equation that
must satisfy and we consider the homogeneous term of largest
degree which is N + 1 given by

(−2x2 − xy)fNx + 2x(2x+ y)fNy = (a10x+ a01y)fN . (8)

We made the change (x, y)→ (v, uv). We have that
fN (x, y) = vN f̃N (1, u) and from here we assume that f̃N (1, u) is
not identically a constant in u, i.e., fN 6= xN . Equation (8)
takes the form

(4 + 4u+ u2)f̃Nu = (a10 + 2N + (a01 +N)u) f̃N ,
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Liouville integrability theory

and its solution is given by

f̃N = CN exp
(2a01 − a10

2 + u

)
(2 + u)a01+N

which implies a10 = 2a01. Moreover taking into account that f̃N
must be of degree at most N we have that
a01 ∈ {−(N − 1),−(N − 2), . . . ,−1, 0}. Undoing the change we
have that fN = CN (2x+ y)a01+Nx−a01 .

The next homogeneous terms of higher degree given by

(−2x2−xy)fN−1x+2x(2x+y)fN−1y = a00CN (2x+y)a01+Nx−a01 .
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Liouville integrability theory

The change (x, y)→ (v, uv) transforms this equation into

(4 + 4u+ u2) ˜fN−1u

= a00CN (2 + u)a01+N + (2 + u)(a01 +N − 1)f̃N−1.
(9)

The solution equation (9) is

f̃N−1 = (2 + u)a01+N−1(CN−1 + CNa00 ln |2 + u|),

which has logarithmic terms that disappear when we take the
condition a00 = 0 and in this case we have that f̃N−1 has the
form

f̃N−1 = CN−1(2 + u)a01+N−1.
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Liouville integrability theory

The same process for the next homogeneous term give us that
f̃N−2 reads for

f̃N−2 = (2 + u)a01+N−2
(
CN−2 − CNa01(2 + u)

+2CN (a01 +N) ln |2 + u|).
(10)

Finally, in order to vanish the logarithmic term we obtain the
condition a01 = −N . Since f̃N−2 must a polynomial we obtain
CN 6= 0 which is contradiction. The case fN = CNx

N also gives
a contradiction.
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Liouville integrability theory

Are there polynomial systems with a non-Liouvillian first
integral ?

Cairó, Giacomini & Llibre (2002): They give some example
in the Lotka-Volterra quadratic systems that have a
non-Liouvillian first integral.

Garćıa & Giné (2002): They give some examples in Liénard
systems that have a non-Liouvillian first integral.

Chavarriga, Giacomini & Grau (2003): They give the proof
of the non-Liouvillian integrability of the algebraic limit
cycles of quadratic systems.
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Example of non-Liouvillian integrable system

Consider the polynomial Liénard system

ẋ = P (x, y) = −y + x4 , ẏ = Q(x, y) = x . (11)

From Odani’s works, it follows that system (11) does not have
any invariant algebraic curve.
The only possible Darboux integrating factor, if it exists, is an
exponential factor of the form exp(h) with h ∈ C[x, y]. From
the definition of inverse integrating factor we have

(−y + x4)∂h/∂x+ x∂h/∂y = 4x3 . (12)

Let h(x, y) =
∑N

i=0 hi(y)xi, where hi(y) ∈ C[y] with hN (y) 6≡ 0.
Equating the highest degree terms in both members of (12)
gives NhN (y)xN+3 = 0. Therefore N = 0 which gives a
contradiction with equation (12). Therefore system (11) does
not have any Liouvillian first integral.
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Example of non-Liouvillian integrable system

The change of the dependent and independent variables
dw/dy = −2x2w and z = 41/3y transforms the equation
dy/dx = x/(−y + x4) to an Airy differential equation
w′′(z) = zw(z).
Its general solution is given by w(z) = c1Ai(z) + c2Bi(z) where
ci are arbitrary constants and Ai(z) and Bi(z) is a pair of
linearly independent solutions of the Airy equation.
H(x, y) = f1f

−1
2 is a non-Liouvillian first integral of system

(11), where

f1(x, y) = 21/3x2Ai(41/3y) + Ai′(41/3y),

f2(x, y) = 21/3x2Bi(41/3y) + Bi′(41/3y).

are invariant curves with associated generalized cofactors
K1 = K2 = 2x3. A non-Liouvillian inverse integrating factor is
V (x, y) = f2

2 (x, y).
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Generalizations of Liouvillian integrability

This type of examples are included in the first generalization of
the Liouville theory of integrability where the cofactors for
non–algebraic invariant curves are defined.

I.A. Garćıa, J. Giné, Generalized cofactors and nonlinear superposition

principles, Appl. Math. Lett. 16 (2003), no. 7, 1137–1141.

The next question is whether a non-algebraic invariant curve
has always a polynomial cofactor. The answer to this question
in general is negative. The following example is given in:

J. Giné, M. Grau, J. Llibre, On the extensions of the Darboux theory of

integrability, Nonlinearity 26 (2013), no. 8, 2221–2229.
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Generalizations of Liouvillian integrability

Consider the polynomial differential system

ẋ = 2y, ẏ = x− y4. (13)

System (13) has the non-algebraic invariant curve f = 0 where
f = y +

√
Ai(x)/Ai′(x), with the non-polynomial cofactor

K(x, y) = −y3+y2
√

Ai(x)/Ai′(x)−yAi(x)/Ai′(x)+x
√

Ai′(x)/Ai(x).

By Seidenberg a formal invariant curve f(x, y) = 0 of a planar
autonomous differential system given by a formal power
expansion f ∈ C[[x, y]] must satisfy an equation Xf = Lf
where L ∈ C[[x, y]] is also a formal power expansion.
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Cofactor of a formal invariant curve

Moreover the form of the non-polynomial cofactor suggests to
define the so-called quasipolynomial cofactor.

Proposition

Let g(x) ∈ C[[x]]. A formal invariant curve of the form
y − g(x) = 0 of a polynomial differential system (1) of degree m
has a quasipolynomial cofactor of the form

K(x, y) = Km−1(x)ym−1 + · · ·+K1(x)y +K0(x). (14)

I.A. Garćıa, H. Giacomini, J. Giné, Generalized nonlinear superposition

principles for polynomial planar vector fields, J. Lie Theory 15 (2005), no.

1, 89–104.
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Formal Weierstrass polynomial

Let C[[x]] be the set of the formal power series in the variable x
with coefficients in C, and C[y] the set of the polynomials in the
variable y with coefficients in C. A function of the form

∑̀
i=0

ai(x)yi ∈ C[[x]][y] (15)

is called a formal Weierstrass polynomial in y of degree `. Here
we have privileged the variable y but of course we can
privileged the variable x instead of y. A formal Weierstrass
polynomial whose coefficients are convergent is called a
Weierstrass polynomial.
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Weierstrass integrability

A planar autonomous differential system is Weierstrass
integrable if admits an integrating factor of the form

R = exp

(
D

E

)∏
i

Cαi
i , (16)

where D, E and the Ci’s are Weierstrass polynomials. In several
works some Liénard differential systems and Abel differential
equations that are Weierstrass integrable are studied.

J. Giné, M. Grau, Weierstrass integrability of differential equations, Appl.

Math. Lett. 23 (2010), no. 5, 523–526.

32/62



Contents Objective Liouville integrability Weierstrass integrability Examples Formal strongly Weierstrass integrability

Weierstrass integrability

A first question is if any Liouville integrable system is formal
Weierstrass integrable. The answer in negative.

Given a polynomial, for instance, x3y2 + x2y − x− 2 = 0 the
y-roots of this polynomial are not formal, in fact are of the form

y1,2 =
−x2 ± x3/2

√
8 + 5x

2x3

whose expansions are

y1 =

√
2

x3/2
− 1

2x
+

5

8
√

2x
− 25

√
x

256
√

2
+O(x3/2)

y2 = −
√

2

x3/2
− 1

2x
− 5

8
√

2x
+

25
√
x

256
√

2
+O(x3/2)
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Puiseux Weierstrass integrability

Let C((x))) be the set of series in fractionary powers in the
variable x with coefficients in C (these series are called Puiseux
series), and C[y] the set of the polynomials in the variable y
with coefficients in C. We call a function of the form

∑̀
i=0

ai(x)yi ∈ C((x))[y] (17)

a Puiseux Weierstrass polynomial in y of degree `. This
definition is a generalization of the formal Weierstrass
polynomial presented before.
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Puiseux Weierstrass integrability

A planar autonomous differential system is Puiseux Weierstrass
integrable if it admits an integrating factor of the form

R = exp

(
D

E

)∏
i

Cαi
i , (18)

where D, E and the Ci’s are Puiseux Weierstrass polynomials.

By definition the Puiseux Weierstrass integrable systems include
the Liouville integrable systems as the following result shows.
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Puiseux Weierstrass integrability

Let C[[x, y]] be the set of all formal power series in the variables
x and y with coefficients in C.

Theorem (Puiseux)

If f ∈ C[[x, y]] then it has a unique decomposition of the form

f = uxr
∏̀
j=1

(y − gj(x)), (19)

where gj(x) are Puiseux series and r ∈ Z, r ≥ 0 and
u ∈ C[[x, y]] is invertible inside the ring C[[x, y]].

We note that a Darboux integrating factor (5) is analytic
function where it is defined consequently it can be written into
the form (19).
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Formal weakly Weierstrass integrability

Does not exist any criterium for detecting non–Liouville
integrability or non–Weierstrass integrability. In general to
detect the non–integrability of a differential system is a very
difficult problem.

We say that a polynomial differential system (1) is formal
weakly Weierstrass integrable if it has an integrating factor of
the form

R =
∏̀
i=1

(y − fi(x))αi , (20)

but where the functions fi(x) ∈ C[[x]] ⊂ C((x)).

Now we give a criterium for detecting when a polynomial
differential system (1) is not formal weakly Weierstrass
integrable.
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Formal weakly Weierstrass integrable

The criterion is based in the following result which is an
extension of the results of Darboux integrability.

Theorem

Assume that the polynomial differential system (1) is formal
weakly Weierstrass integrable, that is, it has an integrating
factor of the form (20). If Ki is the cofactor of the invariant
curve y − fi(x) = 0, then

∑̀
i=1

αiKi = −div(X ).
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Formal weakly Weierstrass integrable

The proof of the result is based on the given proposition.

Proposition

Let g(x) ∈ C[[x]]. A formal invariant curve of the form
y − g(x) = 0 of a polynomial differential system (1) of degree m
in y has a quasipolynomial cofactor of the form

K(x, y) = Km−1(x)ym−1 + · · ·+K1(x)y +K0(x). (21)

Then any formal invariant curve y − fi(x) = 0 has a formal
Weierstrass polynomial, that is, K ∈ C[[x]][y].
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Criterium for detect formal weakly Weierstrass
non–integrability

We compute the solutions of the form
y = fi(x) = gi(x) +O(xr+1) =

∑r
j=0 ajx

j +O(xr+1) ∈ C[[x]] of
system (1) through the equation Eq := ẋdy/dx− ẏ = 0 up to
order r in the variable x. After we compute the corresponding
cofactor Li ∈ C[[x]][y] of the invariant curve y − fi(x) = 0 up to
order r, using the equality

X (y − gi(x)) = Li(y − gi(x)) +O(xr+1).

From Theorem 6 if the cofactors Li’s do not verify the equality∑̀
i=1

αiLi = −divr(X ) +O(xr+1), (22)

where divr(X ) is the divergence div(X ) up to order r in the
variables x and y, then system (1) cannot be formal weakly
Weierstrass integrable.
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Example 1

Consider the polynomial differential system

ẋ = −y + x2, ẏ = x+ ax2. (23)

System (23) has a focus at the origin if a 6= 0 because the first
Poincaré-Liapunov constant is V4 = a. Now we study if system
(23) can be formal weakly Weierstrass integrable. We find four
solutions curves up to order 5 for system (23), two of them not
passing through the origin and two passing through the origin
that we call y1, y2, y3 and y4.

Next we compute their Weierstrass polynomial cofactors up to
order 5 that we call L1, L2, L3 and L4 respectively.
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Example 1

Now we try to see if there is a linear combination of them equal
to minus the divergence, that is

c1L1 + c2L2 + c3L3 + c4L4 = −divX +O(x5),

and the system does not have any solution. Hence system (23)
has not an integrating factor of the form

R =
∏̀
i=1

(y − fi(x))αi , (24)

Consequently system (23) is not formal weakly Weierstrass
integrable privileging the variable y. The same happens if we
privilege the variable x.
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Example 1

When a = 0 equation

c1L1 + c2L2 + c3L3 + c4L4 = −divX +O(x5),

has the solution

c1 = c2 = −5

2
(1 + c4) c3 = 1 + c4.

In fact for a = 0 the differential system (23) is a time-reversible
system because is invariant by the the symmetry
(x, y, t)→ (−x, y,−t). Hence it has a center at the origin.
Moreover it has a Darboux integrating factor of the form
R = (1 + 2y − 2x2)−1. So for a = 0 system (23) is Liouvillian
integrable.
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Example 2

Consider the differential system

ẋ = −y + x4, ẏ = x. (25)

System (25) is a time-reversible system because is invariant
under the symmetry (x, y, t)→ (−x, y,−t). Hence it has a
center at the origin of coordinates. Moreover, as we have seen,
system (25) has not a Liouville first integral, but it has a formal
weakly Weierstrass integrating factor because as we have seen
before it has the integrating factor

V (x, y) =
(

21/3x2Bi(41/3y) + Bi′(41/3y)
)2
.

Now we are going to apply the criterium to detect if system
(25) is formal weakly Weierstrass integrable, as it is the case.
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Example 2

We propose a solution curve of the form y =
∑4

j=0 ajx
j +O(x5)

and substituting this solution into the differential equation
Eq := ẋdy/dx− ẏ = 0 up to order 4, and solving it we find five
solutions curves, two passing through the origin and three not
passing through it. We call them y1, y2, y3, y4 and y5.

We compute the Weierstrass polynomial cofactors of these
solution curves up to order 4. Since system (25) is of degree 1
in y the Weierstrass polynomial cofactors are of the form k0(x).
Using the equation

X (y − yi(x)) = Li(y − yi(x)) +O(x5).
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Example 2

for each solution curves we compute the Weierstrass polynomial
cofactor up to order 4 and we call them L1, L2, L3, L4 and L5.
Now we study if system (25) satisfies the condition

c1L1 + c2L2 + c3L3 + c4L4 + c5L5 = −divX +O(x5),

and this equation has the solution c3 = c4 and

c1 = −15i−5
√

3+6ic4−2
√

3c4+10ic5
5(−i+

√
3)

, c2 = 10
√

3+4
√

3c4+5ic5+5
√

3c5
5i−5

√
3

.

Consequently system (25) could have a formal weakly
Weierstrass integrating factor of the form (24), as we know that
it has.
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Formal strongly Weierstrass integrability

A polynomial differential system (1) is formal strongly
Weierstrass integrable if it has an integrating factor of the form

M(x, y) = α(x)
∏̀
k=1

(y − gk(x))αk , (26)

where the functions α(x), gk(x) ∈ C[[x]] for i = 1, . . . , k.

Note that this integrating factor is a generalization of the
previous one.
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Main result

Theorem

Assume that a polynomial differential system (1) is formal
strongly Weierstrass integrable, and let H(x, y) be a first
integral.

(a) Let h(x) ∈ C[[x]] and y = h(x) be an invariant curve of the
system such that H(x, y) is defined on the curve y = h(x).
Then there exists an integrating factor M(x, y) of the form
(26) such that M(x, h(x)) = 0.

(b) Assume that the origin of system (1) is a singular point,
and the first integral H(x, y) and M(x, y) of statement (a)
are well-defined at the origin. Then a linear combination of
the formal Weierstrass cofactors up to order r of the
solutions of the form y = f(x) satisfying
Eq := ẋdy/dx− ẏ = 0 must be equal to minus the
divergence of system (1) up to order r.

50/62



Contents Objective Liouville integrability Weierstrass integrability Examples Formal strongly Weierstrass integrability

Example

Consider the differential system

ẋ = y, ẏ = −(ζx2 + α)y − (εx3 + σx). (27)

System (27) contains the famous force-free Duffing oscillator
(ζ = 0, ε 6= 0) and the Duffing-Van der Pol (ζ 6= 0, ε 6= 0).

Theorem

System (27) can be formal strongly Weierstrass integrable if,
and only if, one of the following cases holds:

(a) σ = 2α2/9,

(b) σ 6= 2α2/9, σ 6= 0 and 3αε− 4ζσ = 0,

(c) σ 6= 2α2/9, σ 6= 0 and
−21αε2 + 6α2εζ + 24εζσ − 7αζ2σ = 0,

(d) σ 6= 2α2/9, σ = 0 and −6ε(7ε− 2αζ) = 0.
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Example

The Liouville integrability of system (27) was studied in
previously an the following results were established.

Theorem

System (27) with ζ = 0 and ε 6= 0 is Liouvillian integrable if and
only if either α = 0 or σ = 2α2/9.

In the case ζ 6= 0 by a suitable rescaling of the variables for the
Duffing-Van der Pol system we can take ζ = 3 without loss of
generality.

Theorem

System (27) with ζ = 3 and ε 6= 0 is Liouvillian integrable if and
only if α = 4ε/3 and σ = ε2/3.
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Proof of the main theorem

We assume that system (1) is formal strongly Weierstrass
integrable, that is, it has an integrating factor of the form

M(x, y) = α(x)
∏̀
k=1

(y − gk(x))αk , (28)

where the functions α(x), gk(x) ∈ C[[x]] for i = 1, . . . , k.

Moreover we know that a first integral H and an integrating
factor M of the form given in statement (a) can be found.

53/62



Contents Objective Liouville integrability Weierstrass integrability Examples Formal strongly Weierstrass integrability

Proof of the main theorem

We compute the solutions y = fi(x) where fi(x) =
∑∞

j=0 ajx
j

with ai arbitrary coefficients that must satisfy the equation
Eq := ẋdy/dx− ẏ = 0 up to certain order r. Note that these
solutions satisfy that

either M(x, fi(x)) = O(xr), or M(x, fi(x)) = c2 +O(xr),

with c2 6= 0. The first ones correspond to the fi(x) that
approximate the invariant curves y = gk(x) that appear in the
integrating factor (28).
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Proof of the main theorem

For such fi(x) we compute the cofactor Ki up to certain order r
though the equation

X (y − fi(x)) = K̄i(y − fi(x)) +O(xr). (29)

Hence these cofactors K̄i of the solutions y − fi(x) are the
approximations up to order r of the cofactors Kk of the
invariant curves y − gk(x) of the integrating factor (28).
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Proof of the main theorem

The second ones satisfy

M(x, fi(x)) = α(x)
∏̀
k=1

(fi(x)− gk(x))αk = c2 +O(xr). (30)

Hence, since c2 6= 0, M(x, fi(x)) = c2 +O(xr), and from (26) we
have that α(0) 6= 0. Then up order r we have

∏̀
k=1

(fi(x)− gk(x))αk =
[ c2

α(x)

]
r

+O(xr), (31)

where here [ ]r means up to order r.
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Proof of the main theorem

Consequently y = fi(x) is an approximation up to order r of the
equation ∏̀

k=1

(y − gk(x))αk =
c2

α(x)
. (32)

We apply the vector field operator to (32) and we obtain

X
( ∏̀
k=1

(y − gk(x))αk

)
= X

(
c2

α(x)

)
= −c2α

′(x)

α(x)2
ẋ = −Kα

c2

α(x)
,

(33)
because X (α(x)) = Kα(x, y)α(x) where Kα is a formal
Weierstrass polynomial cofactor.
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Proof of the main theorem

This happens because α(x) = 0 is an invariant algebraic curve
of the vector field X . Indeed, α(x) is a factor of the integrating
factor M(x, y) given in (28).
Moreover we have that X (α(x)) = α′(x)ẋ = α′(x)P (x, y) and
then Kα = α′(x)P (x, y)/α(x).

In summary from equations (32) and (33) we have

X
( ∏̀
k=1

(y − gk(x))αk

)
= −Kα

∏̀
k=1

(y − gk(x))αk (34)
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Proof of the main theorem

Now we apply the vector field operator to (31) and we obtain

X

(∏̀
k=1

(fi(x)− gk(x))αk

)
= X

([ c2

α(x)

]
r

)
+O(xr), (35)

where X (O(xr)) = O(xr−1)P (x, fi(x)) = O(xr). Taking into
account equation (33) we define the new cofactor K̃α through
the equation

X
([ c2

α(x)

]
r

)
= −K̃α

([ c2

α(x)

]
r

)
(36)

which is equation (33) taking the lower terms up to r and where
K̃α is an approximation up to r of the cofactor Kα.

59/62



Contents Objective Liouville integrability Weierstrass integrability Examples Formal strongly Weierstrass integrability

Proof of the main theorem

Therefore from (31), (35) and (36) we obtain an approximation
of the cofactor of α(x) up to order r computing

X
(∏`

k=1(fi(x)− gk(x))αk

)
∏`
k=1(fi(x)− gk(x))αk

= −K̃α +O(xr). (37)

By the definition of integrating factor (28) we have that

X (M) = −div(X )M. (38)
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Proof of the main theorem

In short the other solutions y − fi(x) not passing through the
origin with cofactor K̃i given by equation (37) an
approximation up to order r of the cofactor K̃α of α(x), i.e.

s∑
i=1

µiK̃i = −K̃α. (39)

Therefore, from (30), (38) and (39) we obtain that

∑̀
i=1

λiK̄i +

s∑
i=1

µiK̃i = −divr(X ) +O(xr). (40)

This proves statement (b) of the theorem.
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Thank you!

Jaume Giné
Universitat de Lleida, Spain
gine@matematica.udl.cat
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