

Integrability and Center problem for perturbation of quasi-homogeneous centers.

A. Algaba, M. Díaz, C. García, J. Gine

AQTDE Castro Urdiales, June, 17th 2019

A. Algaba, M. Díaz, C. García, J. Gine

Integrability and Center problem for perturbation of quasi-homoge

- Introduction and Motivation
- Previous Concepts
- Centers Conditions
- Integrating factor of Abel's Equation
- Applications
- Conclusions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

We consider an autonomous system of the form,

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}) = (\mathbf{P}(\mathbf{x}), \mathbf{Q}(\mathbf{x}))^T, \ \mathbf{x} \in \mathbb{R}^2,$$

where **F** is an analytic planar vector field defined in a neighborhood of the origin $\mathcal{U} \subset \mathbb{C}^2$ having an equilibrium point at the origin, i.e., $\mathbf{F}(\mathbf{0}) = \mathbf{0}$ and P, Q analytic in \mathcal{U} . An equilibrium point is monodromic if there is no orbit tending to it. After we know the equilibrium point is monodromic, the question is, when the equilibrium point is a center? The integrability problem is very interesting as well, and both problems are related.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Quasi-homogeneous Vector Fields

- Let f ∈ 𝒫^{t=(t₁,t₂)} be a quasi-homogeneous polynomial of type t and degree k ⇔ f(ε^{t₁}x, ε^{t₂}y) = ε^kf(x, y).
- Let F ∈ Q_k^{t=(t₁,t₂)} be a quasi-homogeneous vector field of type t and degree k ⇔ F = (P, Q)^T, where P ∈ P_{k+t₁}^t and Q ∈ P_{k+t₂}^t.

Any system can be written as the sum of quasi-homogeneous terms of type **t**:

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}) = \mathbf{F}_r(\mathbf{x}) + \mathbf{F}_{r+1}(\mathbf{x}) + \cdots,$$

where $\mathbf{F}_k \in \mathcal{Q}_k^t$ for all $k \in \mathbf{N}$. We are going to consider the conservative-dissipative decomposition:

$$\mathbf{F}_{r} = \mathbf{X}_{h_{r+|\mathbf{t}|}} + \mu_{r} \mathbf{D}_{0},$$

where $\mathbf{D}_{0} = (t_{1}x, t_{2}y)^{T}$, $h_{r+|\mathbf{t}|} = \frac{1}{r+|\mathbf{t}|} (\mathbf{D}_{0} \wedge \mathbf{F}_{r})$ and
 $\mu_{r} = \frac{1}{r+|\mathbf{t}|} div(\mathbf{F}_{r}).$

A. Algaba, M. Díaz, C. García, J. Gine

Integrability and Center problem for perturbation of quasi-homoge

Our goal is to know when a equilibrium point of $\dot{\mathbf{x}} = \mathbf{F}_r(\mathbf{x}) + \cdots$ is a center, but first we should know if it is monodromic. We will focus in the generic cases because when this does not happen, it is a degenerate case.

Theorem

Let be $\mathbf{F}_r = \mathbf{X}_{h_{r+|\mathbf{t}|}} + \mu_r \mathbf{D}_0 \in \mathcal{Q}_r^t$. If $h_{r+|\mathbf{t}|}(x, y) \neq 0$ for all $(x, y) \in \mathcal{U} \setminus \{(0, 0)\}$ where \mathcal{U} is a neighborhood of the origin then the origin of system $\dot{\mathbf{x}} = \mathbf{F}_r(\mathbf{x}) + \cdots$ is monodromic.

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}) = \mathbf{F}_r(\mathbf{x}) + \mathbf{F}_{r+1}(\mathbf{x}) + \cdots, \qquad (1)$$

where $h_{r+|\mathbf{t}|}(x, y) \neq 0$ for all $(x, y) \in \mathcal{U} \setminus \{(0, 0)\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Necessary condition of center

Let be

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}) = \mathbf{F}_r(\mathbf{x}) + \mathbf{F}_{r+1}(\mathbf{x}) + \cdots,$$
 (2)

where $h_{r+|\mathbf{t}|}(x,y) \neq 0$ for all $(x,y) \in \mathcal{U} \setminus \{(0,0)\}$.

Theorem

If the origin of (2) is a center, then the origin of system $\dot{\mathbf{x}} = \mathbf{F}_r(\mathbf{x})$ is also a center.

From now on we assume these systems

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}) = \mathbf{F}_r(\mathbf{x}) + \mathbf{F}_{r+1}(\mathbf{x}) + \cdots,$$

where $\dot{\mathbf{x}} = \mathbf{F}_r(\mathbf{x})$ has a center at the origin.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 \mathbf{F}_r has a center at the origin is a necessary condition but it is not sufficient:

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}) = \begin{pmatrix} -4y^3 - 2x^2y\\ 2xy^2 + 6x^5 \end{pmatrix}$$

$$\begin{split} \mathbf{F}(\mathbf{x}) &= \mathbf{F}_2(\mathbf{x}) + \mathbf{F}_4(\mathbf{x}) \text{ where} \\ \mathbf{F}_2 &= (-4y^3 - 2x^2y, 2xy^2)^T \in \mathcal{Q}_2^{(1,1)} \text{ and } \mathbf{F}_4 = (0, 6x^5)^T \in \mathcal{Q}_4^{(1,1)} \\ \text{The origin of system is monodromic and a center also because} \\ \mathbf{F} &= \mathbf{X}_H, \text{ with } H(x, y) = y^4 + x^2y^2 + x^6, H(x, y) > 0 \text{ for all} \\ (x, y) \in \mathcal{U} \setminus \{(0, 0)\} \text{ and } \mathbf{F} \text{ is hamiltonian.} \\ \text{On the other hand, } \mathbf{F}_2(\mathbf{x}) = \mathbf{X}_h \text{ with } h(x, y) = y^2(y^2 + x^2) \text{ and it} \\ \text{ is not true that } h(x, y) \neq 0 \text{ for all } (x, y) \in \mathcal{U} \setminus \{(0, 0)\}. \end{split}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → ○○○

Center conditions

Choosing the change to generalized polar coordinates.

$$\begin{array}{lll} \mathbf{x} &=& \rho^{t_1} \mathrm{Cs}(\theta), \\ \mathbf{y} &=& \rho^{t_2} \mathrm{Sn}(\theta), \end{array}$$

where $(C_s(\theta), S_n(\theta))$ are the periodic solutions of period T > 0, of the initial value problem $(\dot{x}, \dot{y})^T = \mathbf{F}_r(x, y), x(0) = 1$, y(0) = 0. System $\dot{\mathbf{x}} = \mathbf{F}_r + \cdots$ with a reparemetrization in time $dt = \frac{1}{\rho^r} d\tau$ could be written as

$$\dot{\rho} = \rho \sum_{j=1}^{\infty} R_j(\theta) \rho^j,$$

$$\dot{\theta} = 1 + \sum_{j=1}^{\infty} \Psi_j(\theta) \rho^j,$$

Using power series of ρ , we obtain the **generalized Abel's** equation.

$$rac{d
ho}{d heta} = \sum_{i=2}^{\infty} g_i(heta)
ho^i,$$

Integrability and Center problem for perturbation of quasi-homoge

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Center conditions

$$\frac{d\rho}{d\theta} = \sum_{i=2}^{\infty} g_i(\theta) \rho^i, \qquad (3)$$

(3) converges if $|\rho| \ll 1$. Let $\rho(\theta, \rho_0) = \sum_{n \ge 1} a_n(\theta)\rho_0^n$ be the solution of (3) when $\rho(0, \rho_0) = \rho_0$. With this, the Poincaré Map is

$$P(\rho_0) = \rho(T, \rho_0) = \rho_0 + \sum_{n \ge 2} a_n(T) \rho_0^n.$$

Theorem

The origin of $\dot{\mathbf{x}} = \mathbf{F}_r + \cdots$ is a center if, and only if, $a_n(T) = 0$ for all $n \ge 2$.

A. Algaba, M. Díaz, C. García, J. Gine Integrability and Center problem for perturbation of quasi-homoge

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Proposition

There exists a single formal serie $\Phi(\rho, \theta) = \sum_{i=1}^{\infty} \Phi_i(\theta)\rho^i$, such that $\frac{1}{1-\Phi(\rho,\theta)}$ is an integrating factor of Abel's Equation with $\Phi(\rho, 0) \equiv 0$. $\Phi_i(\theta)$, $i \ge 1$, verifies:

$$\Phi_1(\theta) = -2\int_0^\theta g_2(s)ds, \text{ and if } i \geq 2,$$

$$\begin{cases} \Phi_i'(\theta) = -(i+1)g_{i+1}(\theta) + \sum_{j=1}^{i-1}(i+1-2j)\Phi_j(\theta)g_{i+1-j}(\theta), \\ \Phi_i(0) = 0. \end{cases}$$

A. Algaba, M. Díaz, C. García, J. Gine Integrability and Center problem for perturbation of quasi-homoge

・ロト ・ 理 ト ・ ヨ ト ・

Proposition

Let $\frac{1}{1-\Phi(\theta,\rho)}$ be the integrating factor of Abel's Equation then the inverse of Poincaré Map is

$$P^{-1}(\rho) = \rho + \sum_{n=1}^{\infty} \left(\sum_{\substack{j=1 \ i_1 \ge 1, \dots, i_j \ge 1 \\ i_1 + \dots + i_j = n}}^{n} \Phi_{i_1}(T) \cdots \Phi_{i_j}(T) \right) \frac{\rho^{i+1}}{i+1}$$

Theorem

If the origin of $\dot{\mathbf{x}} = \mathbf{F}_r + \cdots$ is a center then $\Phi_k(T) = 0$ for all $k \ge 1$.

A. Algaba, M. Díaz, C. García, J. Gine Integrability and Center problem for perturbation of quasi-homoge

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Proposition

We suppose that we can write system $\dot{\mathbf{x}} = \mathbf{F}_r + \cdots$ as: $\dot{\mathbf{x}} = \mathbf{\bar{F}}(\mathbf{x}) + \mathbf{F}(\mathbf{x})$, where the origin of system $\dot{\mathbf{x}} = \mathbf{\bar{F}}(\mathbf{x})$ is a center.

System	Abel's Eq.	i.i.f
$\dot{\mathbf{X}} = \bar{\mathbf{F}} + \mathbf{F}$	$\dot{ ho} = \sum_i g_i(heta) ho^i$	1 – Φ
$\dot{\mathbf{x}} = \mathbf{\bar{F}}$	$\dot{ ho} = \sum_i ar{g}_i(heta) ho^i$	$1-\bar{\Phi}$

Let be $\hat{g}_i = g_i - \bar{g}_i$, $i \ge 2$ and $\hat{\Phi}_i(\theta) = \Phi_i(\theta) - \bar{\Phi}_i(\theta)$, $i \ge 0$. Then $\Phi_n(T) = \hat{\Phi}_n(T) \quad \forall n > 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

^ / A

Corollary

Case k-jet of F center We suppose that $\dot{\mathbf{x}} = \bar{\mathbf{F}} = \sum_{j=0}^{k-1} \mathbf{F}_{r+j}$, k > 1, is a center, where $\bar{\mathbf{F}}$ are the k-first terms from system $\dot{\mathbf{x}} = \mathbf{F}_r + \cdots \cdot \hat{\Phi}_i(\theta)$ are defined as

$$\Phi_i(\theta) = 0, \quad \text{if } i \le k - 2, \\ \hat{\Phi}'_i(\theta) = -(i+1)\hat{g}_{i+1}(\theta) + \sum_{j=k}^{i-1} (i+1-2j)\hat{\Phi}_j(\theta)g_{i+1-j}(\theta) + \\ \sum_{\substack{j=1\\ j=1}}^{i-k} (i+1-2j)\bar{\Phi}_j(\theta)\hat{g}_{i+1-j}(\theta), \quad \text{if } i \ge k - 1, \\ \hat{\Phi}_i(0) = 0, \quad \text{if } i \ge k - 1., \\ \end{array}$$

・ロト ・ 理 ト ・ ヨ ト ・

-

Aplications: Type $\mathbf{t} = (2,3)$

Already studied by [T. Liu, F. Li, Y. Liu, S.Li, J.Wang] in Nonlinear Analysis: Real World Appl. (2019).

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -y^3 \\ x^5 \end{pmatrix} + \begin{pmatrix} a_{50}x^5 + a_{22}x^2y^2 \\ b_{41}x^4y + b_{13}xy^3 \end{pmatrix}$$
(4)

The Normal-Form of system (4) is

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -y^3 \\ x^5 \end{pmatrix} + \left(\alpha_8^{(1)} x^4 + \alpha_8^{(2)} x y^2 \right) \mathbf{D}_0 + \mathbf{X}_{\beta_9 x^4 y^2} + \alpha_9 x^3 y \mathbf{D}_0 \\ + \alpha_{10} x^2 y^2 \mathbf{D}_0 + \alpha_{11} x^4 y \mathbf{D}_0 + \left(\alpha_{12}^{(1)} h + \alpha_{12}^{(2)} x^3 y^2 \right) \mathbf{D}_0 \cdots ,$$

where $\mathbf{D}_0 = (2x, 3y)^T$, $h = \frac{1}{4}y^4 + \frac{1}{6}x^6$.

$$\bar{\mathbf{F}}(\mathbf{x}) = \begin{pmatrix} -y^3 \\ x^5 \end{pmatrix} + \alpha_8^{(2)} x y^2 \mathbf{D}_0 + \mathbf{X}_{\beta_9 x^4 y^2} + \alpha_9 x^3 y \mathbf{D}_0 + \alpha_{12}^{(2)} x^3 y^2 \mathbf{D}_0 + \alpha_{12}^{(2)} x^3 \mathbf{D}_0 +$$

Integrability and Center problem for perturbation of quasi-homoge

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

$$\begin{aligned} \hat{\Phi}_1(T) &= -2\alpha_8^{(1)} \int_0^T \mathrm{Cs}^4(s) ds, \quad \alpha_8^{(1)} &= \frac{1}{13} (5a_{50} + b_{41}), \\ \hat{\Phi}_1(T) &= 0 \Leftrightarrow b_{41} = -5a_{50}, \\ \hat{\Phi}_2(T) &= 0, \\ \hat{\Phi}_3(T) &= -4\alpha_{10} \int_0^T \mathrm{Cs}^2(s) \mathrm{Sn}^2(s) ds, \\ \alpha_{10} &= \frac{1}{35} a_{50} (2a_{22} + 3b_{13}) (5a_{22} - 3b_{13}), \end{aligned}$$

 $\hat{\Phi}_3(T) = 0 \Leftrightarrow \begin{cases} a_{50} = 0 \text{ then is Rx-reversible.} \\ a_{22} = -3/2b_{13} \text{ then is the hamiltonian case.} \\ a_{22} = 3/5b_{13} \end{cases}$ $\hat{\Phi}_4(T) = 0, \\ \hat{\Phi}_5(T) = a_{22}^2 a_{50}^3 A, \text{ with } A \simeq 175,8365. \end{cases}$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Aplications: Type $\mathbf{t} = (2,3)$

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -y^3 \\ x^5 \end{pmatrix} + \begin{pmatrix} a_{50}x^5 + a_{22}x^2y^2 \\ b_{41}x^4y + b_{13}xy^3 \end{pmatrix}$$
(5)

Theorem

The origin of system (5) is a center if a only if one of the following conditions holds,

a) $b_{41} = a_{50} = 0$ (*Rx-reversible*).

b) $b_{41} + 5a_{50} = 2a_{22} - 3b_{13} = 0$ (Hamiltonian case).

Theorem

The origin of system (5) is analytically integrable if, and only if, the system is orbitally equivalent to $\dot{\mathbf{x}} = (-y^3, x^5)^T + \mathbf{X}_{\beta_9 x^4 y^2}$, *i.e.*, if it is verified $b_{41} + 5a_{50} = 2a_{22} - 3b_{13} = 0$ (Hamiltonian case).

Aplications: Type $\mathbf{t} = (2, 5)$

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -y^3 \\ x^9 \end{pmatrix} + \begin{pmatrix} a_{80}x^8 + a_{32}x^3y^2 \\ b_{23}x^2y^3 + b_{71}x^7y \end{pmatrix}.$$
 (6)

The Normal-Form of system (6) is

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -y^3 \\ x^9 \end{pmatrix} + \mathbf{X}_{\beta_{14}x^8y} + \left(\alpha_{14}^{(1)}x^2y^2 + \alpha_{14}^{(2)}x^7\right)\mathbf{D}_0 + \mathbf{X}_{\beta_{15}x^6y^2} + \alpha_{15}x^5y\mathbf{D}_0 + \left(\alpha_{16}^{(1)}x^8 + \alpha_{16}^{(2)}x^3y^2\right)\mathbf{D}_0 + \mathbf{X}_{\beta_{17}x^7y^2} + \alpha_{17}x^6y\mathbf{D}_0 + \alpha_{18}x^4y^2\mathbf{D}_0 + \mathbf{X}_{\beta_{19}x^8y^2} + \alpha_{19}x^7y\mathbf{D}_0 + \cdots ,$$

where $\mathbf{D}_0 = (2x, 5y)^T$, $h = \frac{1}{4}y^4 + \frac{1}{10}x^9$.

$$\bar{\mathbf{F}}(\mathbf{x}) = \begin{pmatrix} -y^3 \\ x^9 \end{pmatrix} + \mathbf{X}_{\beta_{14}x^4y^2} + \alpha_{14}^{(2)}x^7\mathbf{D}_0 + \alpha_{15}x^5y\mathbf{D}_0 \\ + \alpha_{16}^{(2)}x^3y^2\mathbf{D}_0 + \mathbf{X}_{\beta_{17}x^7y^2} + \mathbf{X}_{\beta_{19}x^8y^2} + \alpha_{19}x^7y\mathbf{D}_0 + \cdots,$$

Integrability and Center problem for perturbation of quasi-homoge

$$\begin{split} \hat{\Phi}_1(T) &= -2\alpha_{14}^{(1)} \int_0^T \mathrm{Cs}^2(s) \mathrm{Sn}^2(s) ds, \quad \alpha_{14}^{(1)} = a_{32} + b_{23}), \\ \hat{\Phi}_1(T) &= 0 \Leftrightarrow b_{23} = -a_{32}, \\ \hat{\Phi}_2(T) &= 0, \\ \hat{\Phi}_3(T) &= -4\alpha_{16}^{(1)} \int_0^T \mathrm{Cs}^8(s) ds, \\ \alpha_{16}^{(1)} &= -\frac{3}{253} b_{23} (8a_{80} + b_{71}) (3a_{80} - b_{71}), \end{split}$$

$$\begin{split} \hat{\Phi}_3(T) &= 0 \Leftrightarrow \begin{cases} b_{23} = 0 \text{ then is Rx-reversible.} \\ b_{71} = -8a_{80} \text{ then is the hamiltonian case.} \\ b_{71} = 3a_{80} \end{cases} \\ \hat{\Phi}_4(T) &= 0, \\ \hat{\Phi}_5(T) &= a_{80}^2 b_{23}^3 A \text{ with } A \simeq 1,582. \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Aplications: Type $\mathbf{t} = (2, 5)$

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -y^3 \\ x^9 \end{pmatrix} + \begin{pmatrix} a_{80}x^8 + a_{32}x^3y^2 \\ b_{23}x^2y^3 + b_{71}x^7y \end{pmatrix}.$$
(7)

Theorem

The origin of system (7) is a center if a only if one of the following conditions holds,

a) $a_{32} = b_{23} = 0$ (*Rx-reversible*).

b) $b_{23} + a_{32} = b_{71} + a_{80} = 0$ (Hamiltonian case).

Theorem

The origin of system (7) is analytically integrable if, and only if, the system is orbitally equivalent to $\dot{\mathbf{x}} = (-y^3, x^9)^T + \mathbf{X}_{\beta_{14}x^8y} + \mathbf{X}_{\beta_{15}x^6y^2} + \mathbf{X}_{\beta_{17}x^7y^2} + \mathbf{X}_{\beta_{19}x^8y^2}$, i.e., if it is verified $b_{23} + a_{32} = b_{71} + a_{80} = 0$ (Hamiltonian case).

Integrability and Center problem for perturbation of quasi-homoge

The use of the following techniques applied successively improve the calculations.

- a) Normal Form.
- b) Integrating factor.
- c) The origin of a k-jet of $\dot{x} = F(x)$ is a center, (decomposition $\dot{x} = \bar{F}(x) + F(x)$).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Thank you for your attention

A. Algaba, M. Díaz, C. García, J. Gine Integrability and Center problem for perturbation of quasi-homoge

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ