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Introduction and Motivation

We consider an autonomous system of the form,

ẋ = F(x) = (P(x),Q(x))T , x ∈ R2,

where F is an analytic planar vector field defined in a
neighborhood of the origin U ⊂ C2 having an equilibrium point
at the origin, i.e., F(0) = 0 and P,Q analytic in U . An
equilibrium point is monodromic if there is no orbit tending to it.
After we know the equilibrium point is monodromic, the
question is, when the equilibrium point is a center? The
integrability problem is very interesting as well, and both
problems are related.
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Quasi-homogeneous Vector Fields

Let f ∈ P
t=(t1,t2)
k be a quasi-homogeneous polynomial of

type t and degree k ⇔ f (εt1x , εt2y) = εk f (x , y).
Let F ∈ Qt=(t1,t2)

k be a quasi-homogeneous vector field of
type t and degree k ⇔ F = (P,Q)T , where P ∈ Pt

k+t1
and

Q ∈ Pt
k+t2

.

Any system can be written as the sum of quasi-homogeneous
terms of type t:

ẋ = F(x) = Fr (x) + Fr+1(x) + · · · ,

where Fk ∈ Qt
k for all k ∈ N. We are going to consider the

conservative-dissipative decomposition:

Fr = Xhr+|t| + µr D0,

where D0 = (t1x , t2y)T , hr+|t| = 1
r+|t| (D0 ∧ Fr ) and

µr = 1
r+|t|div(Fr ).
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Sufficient Condition of Monodromy

Our goal is to know when a equilibrium point of ẋ = Fr (x) + · · ·
is a center, but first we should know if it is monodromic. We will
focus in the generic cases because when this does not happen,
it is a degenerate case.

Theorem

Let be Fr = Xhr+|t| + µr D0 ∈ Qt
r . If hr+|t|(x , y) 6= 0 for all

(x , y) ∈ U \ {(0,0)} where U is a neighborhood of the origin
then the origin of system ẋ = Fr (x) + · · · is monodromic.

ẋ = F(x) = Fr (x) + Fr+1(x) + · · · , (1)

where hr+|t|(x , y) 6= 0 for all (x , y) ∈ U \ {(0,0)}.
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Necessary condition of center

Let be
ẋ = F(x) = Fr (x) + Fr+1(x) + · · · , (2)

where hr+|t|(x , y) 6= 0 for all (x , y) ∈ U \ {(0,0)}.

Theorem
If the origin of (2) is a center, then the origin of system
ẋ = Fr (x) is also a center.

From now on we assume these systems

ẋ = F(x) = Fr (x) + Fr+1(x) + · · · ,

where ẋ = Fr (x) has a center at the origin.
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An ilustrative example

Fr has a center at the origin is a necessary condition but it is
not sufficient:

ẋ = F(x) =

(
−4y3 − 2x2y
2xy2 + 6x5

)
F(x) = F2(x) + F4(x) where
F2 = (−4y3− 2x2y ,2xy2)T ∈ Q(1,1)

2 and F4 = (0,6x5)T ∈ Q(1,1)
4

The origin of system is monodromic and a center also because
F = XH , with H(x , y) = y4 + x2y2 + x6, H(x , y) > 0 for all
(x , y) ∈ U \ {(0,0)} and F is hamiltonian.
On the other hand, F2(x) = Xh with h(x , y) = y2(y2 + x2) and it
is not true that h(x , y) 6= 0 for all (x , y) ∈ U \ {(0,0)}.
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Center conditions

Choosing the change to generalized polar coordinates.

x = ρt1Cs(θ),
y = ρt2Sn(θ),

where (Cs(θ),Sn(θ)) are the periodic solutions of period T > 0,
of the initial value problem (ẋ , ẏ)T = Fr (x , y), x(0) = 1,
y(0) = 0. System ẋ = Fr + · · · with a reparemetrization in time
dt = 1

ρr dτ could be written as

ρ̇ = ρ
∑∞

j=1 Rj(θ)ρj ,

θ̇ = 1 +
∑∞

j=1 Ψj(θ)ρj ,

Using power series of ρ, we obtain the generalized Abel’s
equation.

dρ
dθ =

∞∑
i=2

gi(θ)ρi ,
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Center conditions

dρ
dθ =

∞∑
i=2

gi(θ)ρi , (3)

(3) converges if |ρ| � 1. Let ρ(θ, ρ0) =
∑

n≥1 an(θ)ρn
0 be the

solution of (3) when ρ(0, ρ0) = ρ0. With this, the Poincaré Map is

P(ρ0) = ρ(T , ρ0) = ρ0 +
∑
n≥2

an(T )ρn
0.

Theorem
The origin of ẋ = Fr + · · · is a center if, and only if, an(T ) = 0
for all n ≥ 2.
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Integrating factor of Abel’s Equation

Proposition

There exists a single formal serie Φ(ρ, θ) =
∑∞

i=1 Φi(θ)ρi , such
that 1

1−Φ(ρ,θ) is an integrating factor of Abel’s Equation with
Φ(ρ,0) ≡ 0. Φi(θ), i ≥ 1, verifies:

Φ1(θ) = −2
∫ θ

0
g2(s)ds, and if i ≥ 2,

 Φ′i(θ) = −(i + 1)gi+1(θ) +
i−1∑
j=1

(i + 1− 2j)Φj(θ)gi+1−j(θ),

Φi(0) = 0.

.
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Integrating factor of Abel’s Equation

Proposition

Let 1
1−Φ(θ,ρ) be the integrating factor of Abel’s Equation then the

inverse of Poincaré Map is

P−1(ρ) = ρ+
∞∑

n=1


n∑

j=1

∑
i1≥1,...,ij≥1

i1+···+ij =n

Φi1(T ) · · ·Φij (T )

 ρi+1

i + 1

Theorem
If the origin of ẋ = Fr + · · · is a center then Φk (T ) = 0 for all
k ≥ 1.
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Improvement of focal constant calculates

Proposition

We suppose that we can write system ẋ = Fr + · · · as:
ẋ = F̄(x) + F(x), where the origin of system ẋ = F̄(x) is a
center.

System Abel’s Eq. i.i.f
ẋ = F̄ + F ρ̇ =

∑
i

gi(θ)ρi 1− Φ

ẋ = F̄ ρ̇ =
∑

i

ḡi(θ)ρi 1− Φ̄

Let be ĝi = gi − ḡi , i ≥ 2 and Φ̂i(θ) = Φi(θ)− Φ̄i(θ), i ≥ 0. Then

Φn(T ) = Φ̂n(T ) ∀n ≥ 1.
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Improvement of focal constant calculates

Corollary

Case k-jet of F center We suppose that ẋ = F̄ =
∑k−1

j=0 Fr+j ,
k > 1, is a center, where F̄ are the k-first terms from system
ẋ = Fr + · · · . Φ̂i(θ) are defined as

Φ̂i(θ) = 0, if i ≤ k − 2,

Φ̂′i(θ) = −(i + 1)ĝi+1(θ) +
i−1∑
j=k

(i + 1− 2j)Φ̂j(θ)gi+1−j(θ)+

i−k∑
j=1

(i + 1− 2j)Φ̄j(θ)ĝi+1−j(θ), if i ≥ k − 1,

Φ̂i(0) = 0, if i ≥ k − 1.,
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Aplications: Type t = (2,3)

Already studied by [T. Liu, F. Li, Y. Liu, S.Li, J.Wang] in
Nonlinear Analysis: Real World Appl. (2019).(

ẋ
ẏ

)
=

(
−y3

x5

)
+

(
a50x5 + a22x2y2

b41x4y + b13xy3

)
(4)

The Normal-Form of system (4) is(
ẋ
ẏ

)
=

(
−y3

x5

)
+
(
α

(1)
8 x4 + α

(2)
8 xy2

)
D0 + Xβ9x4y2 + α9x3yD0

+α10x2y2D0 + α11x4yD0 + (α
(1)
12 h + α

(2)
12 x3y2)D0 · · · ,

where D0 = (2x ,3y)T , h = 1
4y4 + 1

6x6.

F̄(x) =

(
−y3

x5

)
+ α

(2)
8 xy2D0 + Xβ9x4y2 + α9x3yD0 + α

(2)
12 x3y2D0 · · · ,
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Φ̂1(T ) = −2α(1)
8

∫ T
0 Cs4(s)ds, α

(1)
8 = 1

13(5a50 + b41),

Φ̂1(T ) = 0⇔ b41 = −5a50,

Φ̂2(T ) = 0,
Φ̂3(T ) = −4α10

∫ T
0 Cs2(s)Sn2(s)ds,

α10 = 1
35a50(2a22 + 3b13)(5a22 − 3b13),

Φ̂3(T ) = 0⇔


a50 = 0 then is Rx-reversible.
a22 = −3/2b13 then is the hamiltonian case.
a22 = 3/5b13

Φ̂4(T ) = 0,
Φ̂5(T ) = a2

22a3
50A, with A ' 175,8365.
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Aplications: Type t = (2,3)

(
ẋ
ẏ

)
=

(
−y3

x5

)
+

(
a50x5 + a22x2y2

b41x4y + b13xy3

)
(5)

Theorem
The origin of system (5) is a center if a only if one of the
following conditions holds,

a) b41 = a50 = 0 (Rx-reversible).
b) b41 + 5a50 = 2a22 − 3b13 = 0 (Hamiltonian case).

Theorem
The origin of system (5) is analytically integrable if, and only if,
the system is orbitally equivalent to ẋ = (−y3, x5)T + Xβ9x4y2 ,
i.e., if it is verified b41 + 5a50 = 2a22 − 3b13 = 0 (Hamiltonian
case).
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Aplications: Type t = (2,5)

(
ẋ
ẏ

)
=

(
−y3

x9

)
+

(
a80x8 + a32x3y2

b23x2y3 + b71x7y

)
. (6)

The Normal-Form of system (6) is(
ẋ
ẏ

)
=

(
−y3

x9

)
+ Xβ14x8y +

(
α

(1)
14 x2y2 + α

(2)
14 x7

)
D0 + Xβ15x6y2+

α15x5yD0 + (α
(1)
16 x8 + α

(2)
16 x3y2)D0 + Xβ17x7y2 + α17x6yD0+

α18x4y2D0 + Xβ19x8y2 + α19x7yD0 + · · · ,

where D0 = (2x ,5y)T , h = 1
4y4 + 1

10x9.

F̄(x) =

(
−y3

x9

)
+ Xβ14x4y2 + α

(2)
14 x7D0 + α15x5yD0

+α
(2)
16 x3y2D0 + Xβ17x7y2 + Xβ19x8y2 + α19x7yD0 + · · · ,
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Φ̂1(T ) = −2α(1)
14

∫ T
0 Cs2(s)Sn2(s)ds, α

(1)
14 = a32 + b23),

Φ̂1(T ) = 0⇔ b23 = −a32,

Φ̂2(T ) = 0,
Φ̂3(T ) = −4α(1)

16

∫ T
0 Cs8(s)ds,

α
(1)
16 = − 3

253b23(8a80 + b71)(3a80 − b71),

Φ̂3(T ) = 0⇔


b23 = 0 then is Rx-reversible.
b71 = −8a80 then is the hamiltonian case.
b71 = 3a80

Φ̂4(T ) = 0,
Φ̂5(T ) = a2

80b3
23A with A ' 1,582.
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Aplications: Type t = (2,5)

(
ẋ
ẏ

)
=

(
−y3

x9

)
+

(
a80x8 + a32x3y2

b23x2y3 + b71x7y

)
. (7)

Theorem
The origin of system (7) is a center if a only if one of the
following conditions holds,

a) a32 = b23 = 0 (Rx-reversible).
b) b23 + a32 = b71 + a80 = 0 (Hamiltonian case).

Theorem
The origin of system (7) is analytically integrable if, and only if,
the system is orbitally equivalent to
ẋ = (−y3, x9)T + Xβ14x8y + Xβ15x6y2 + Xβ17x7y2 + Xβ19x8y2 , i.e., if it
is verified b23 + a32 = b71 + a80 = 0 (Hamiltonian case).
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Conclusions

The use of the following techniques applied successively
improve the calculations.

a) Normal Form.
b) Integrating factor.
c) The origin of a k-jet of ẋ = F(x) is a center, (decomposition

ẋ = F̄(x) + F(x)).

A. Algaba, M. Díaz, C. García, J. Gine Integrability and Center problem for perturbation of quasi-homogeneous centers.



Thank you for your attention
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