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Given a system of polynomial di�erential equations{
ẋ = P(x , y),
ẏ = Q(x , y)

we ask ourselves how many limit cycles it can have, call this
number H.

Hindividual polynomial vf <∞

The maximum number of limit cycles for vector �elds up to degree
N is called

H(N), the Hilbert number.

H(N) <∞ ? Llibre, Pedregal (2014 � 2019) ?
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Given a system of polynomial di�erential equations{
ẋ = P(x , y),
ẏ = Q(x , y)

we ask ourselves how many limit cycles it can have, call this
number H.

Hindividual polynomial vf <∞ X Ecalle (1992), Ilyashenko (1991)

The maximum number of limit cycles for vector �elds up to degree
N is called

H(N), the Hilbert number.

H(N) <∞ ? Llibre, Pedregal (2014 � 2019) ?

H(2) ≥ 4 X Shi Song Ling (1979)

H(3) ≥ 13 X Li, Liu, Yang (2009)

H(5) ≥ 33 X Giné (2012), Gouveia (2019)



Theorem
There exists a function H : N→ R+ with the property

H(N) =

(
N2 logN

2(log 2)

)
(1 + o(1)) as N →∞,

and a sequence (Nk)k∈N, with Nk →∞ as k →∞ and for which

H(Nk) ≥ H(Nk), for all k ∈ N.

Asymptotic lower bound is comparable to known bounds:

- Christopher, LLoyd (1995)

- Xiong, Han (2014)

Today: Novel approach using singular perturbations
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For generalized Liénard systems:{
ẋ = y − F (x),
ẏ = G (x) Hg`(N) <∞?

Theorem
There exists a function Hg` : N→ R+ with the property

Hg`(N) =

(
N logN

log 2

)
(1 + o(1)) as N →∞,

and a sequence (Nk)k∈N, with Nk →∞ as k →∞ and for which

Hg`(Nk) ≥ Hg`(Nk), for all k ∈ N.

Asymptotic lower bound is comparable to earlier known bounds.



For
classical

generalized Liénard systems:
ẋ = y − F (x),
ẏ = G (x)//////

−x
Hc`(N) <∞?

Theorem
De Maesschalck, Huzak (2015) For N ≥ 6:

Hc`(N) ≥ N − 2.

Asymptotic lower bound is
better than

comparable to earlier known bounds.



Theorem
There exists a function Hg` : N→ R+ with the property

Hg`(N) =

(
N logN

log 2

)
(1 + o(1)) as N →∞,

and a sequence (Nk)k∈N, with Nk →∞ as k →∞ and for which

Hg`(Nk) ≥ Hg`(Nk), for all k ∈ N.

Is there an easy argument?
⇒

{
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ẋ = P(x , y),
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ẏ = G (x)

⇓ y = ρ(Y )

{
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ẏ = Q(x , y)

Theorem
There exists a function H : N→ R+ with the property

H(N) =

(
N2 logN

4(log 2)

)
(1 + o(1)) as N →∞,

and a sequence (Nk)k∈N, with Nk →∞ as k →∞ and for which

H(Nk) ≥ H(Nk), for all k ∈ N.



Canard nests



{
ẋ = y − F (x),
ẏ = εG (x),

(i) F ′(xc) = G (xc) = 0,

(ii) G ′(xc) < 0 and F ′′(xc) 6= 0,

(iii) G (x)F ′(x) 6= 0, for all x ∈ [x`, xr ] \ {xc},
(iv) F (x`) = F (xr ).

A canard nest is de�ned by (F ,G , xc , x`, xr )



Let us consider the canard nest (F ,G , xc , x`, xr ). Assume that
F ′′(xc) > 0. For any Y0 ∈ (F (xc),F (x`)) we consider the singular
orbit ΓY0

formed by the fast part

{(x , y) : y = Y0,F (x) ≤ Y0}

and the slow part

{(x , y)) : y = F (x),F (x) ≤ Y0}

The singular orbit ΓY0
will be called a canard cycle.

Similarly in case F ′′(xc) < 0.



Xε,a :

{
ẋ = y − F (x),
ẏ = ε(a + G (x))

Theorem (Slow-fast Hopf, Dumortier, Roussarie (1996))
Let ΓY0

be a canard cycle around a slow-fast Hopf point.

Then there exists a smooth control curve a = A(ε) with A(0) = 0
so that Xε,A(ε) has a ε-family of periodic orbits γε that tends in

Hausdor� sense to ΓY0
as ε→ 0.

Di�erent choices of Y0 may or may not lead to di�erent control

curves, but in any case all such control curves are exponentially

close to each other.

Questions:

1. Is the periodic orbit a limit cycle?

2. Are there multiple cycles in the nest?
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Lemma (Fast relation function)
Associated to a canard nest there exists a smooth fast relation

function L : [xc , xr ]→ [x`, xc ] such that F (L(x)) = F (x). (For
λ-families of canard nests, both L and its the domain may be

λ-dependent.)

Next, we de�ne the slow divergence integral as

I (x) = σ

∫ x

L(x)

F ′(s)2

G (s)
ds, σ = signF ′′(xc).

Theorem (Multiple cycles in a canard nest, Dumortier, Roussarie

(2001))
Let Y0 = F (x0) for some x0 ∈ (xc , xr ) and consider the canard

cycle ΓY0
. The orbit γε is a uniformly hyperbolic limit cycle when

I (x0) 6= 0.
Furthermore, suppose I (x0) 6= 0 but I has k simple zeros

{x1, . . . , xk} on the interval (xc , x0) then Xε,A(ε) has k additional

limit cycles.
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A canard nest for which the slow divergence integral has k simple
zeros on (xc , xr ) hence has the potential to generate k + 1 limit
cycles. We call (k + 1) the nest con�guration. If I is identically
zero (like in the case of a global center), the nest con�guration is
unde�ned.

Lemma (Change of coordinates of canard nests)
If (F ,G , xc , x`, xr ) is a canard nest, then any smooth change of

coordinates {x = ρ(X ), y = Y + Y0} for which ρ has no singular

values in [x`, xr ] leads to a canard nest

(F ◦ ρ, ρ′ · (G ◦ ρ),Xc ,X`,Xr )

where ρ(Xc) = xc , ρ(X`) = x`, ρ(Xr ) = xr . Furthermore, the nest

con�guration is retained.
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Lemma (Robustness of canard nests)
Let (F ,G , xc , x`, xr ) be a canard nest with con�guration (k + 1),
k ≥ 0. For any pair of functions (F1,G1) de�ned on [x`, xr ] and
satisfying the hypothesis (i) given above, i.e. F ′1(xc) = G1(xc) = 0,
there exists, for δ small enough, a perturbation

(F + δF1,G + δG1, xc , x` + o(1), xr + o(1)),

which is a canard nest of con�guration at least (k + 1).



Theorem
De Maesschalck, Huzak (2015) Given any n ≥ 6, there exist a

polynomial F (x) of degree n and x` < 0 < xr for which the canard

nest (F (x),−x , 0, x`, xr ){
ẋ = y − F (x)
ẏ = −x

has con�guration at least n − 2.

Theorem
De Maesschalck, Huzak (2014) Given any n ≥ 6 and m ≥ 2, there
exist a polynomial F (x) of degree n, a polynomial G (x) of degree

m and x` < 0 < xr for which the canard nest (F (x),G (x), 0, x`, xr ){
ẋ = y − F (x)
ẏ = G (x)

has con�guration at least 2[n−2
2

] + [m
2

].



Theorem
De Maesschalck, Dumortier (2011) For any even degree m ≥ 2 there

exists a polynomial G1(x) of degree m so that the canard nest

(x2,−x + δG1(x), 0,−xmax + o(1), xmax + o(1)){
ẋ = y − x2

ẏ = −x + δG1(x)

has con�guration (m
2

), for su�ciently small δ 6= 0.

Theorem
De Maesschalck, Dumortier (2011) For any odd degree n ≥ 3 there

exists a polynomial F1(x) of degree n so that the canard nest

(x2 + δF1(x),−x , 0,−xmax + o(1), xmax + o(1)){
ẋ = y − x2 − δF1(x)
ẏ = −x

has con�guration (n−1
2

), for su�ciently small δ 6= 0.



Canard populations



Given a smooth system {
ẋ = y − F (x),
ẏ = εG (x).

It is called a canard population on [x`, xr ] when there is a sequence

of disjoint subsets [x
(i)
` , x

(i)
r ], i = 1, . . . ,N and within x

(i)
c such that

(F ,G , x
(i)
c , x

(i)
` , x

(i)
r )

are canard nests. The population con�guration is de�ned as
(k1, . . . , kN), where ki is the nest con�guration of the i-th canard
nest.



Proposition
Given a canard population (F ,G ) de�ned on [x`, xr ] with
x` < 0 < xr . Suppose there exists z` < x` for which G (z`) < 0 and

F ′(z`) 6= 0, and that there exists zr > xr for which G (zr ) > 0 and

F ′(zr ) 6= 0.

Then for a suitable choice of M > 0, the change of

coordinates {
x = 1

M (X 2 −M2)
y = Y + F (−M)

leads to a canard population (F̃ , G̃ ) and an associated vector �eld{
Ẋ = Y − F̃ (X ),

Ẏ = ε G̃ (X )
with

F̃ (X ) = F
(

1
M (X 2 −M2)

)
− F (−M),

G̃ (X ) = 2X
M G

(
1
M (X 2 −M2)

)
,

on some interval [X`,Xr ] with X` < 0 < Xr . The new canard

population has two di�eomorphic copies of each canard nest of the

original population, and has an additional canard nest near X = 0.
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Proposition
Given a canard population in [x`, xr ] with a N canard nests, de�ned

with polynomials F ,G , and in each nest having a ki nest
con�guration, i = 1, . . . ,N. Then we consider the family of vector

�elds {
ẋ = y − F (x)

ẏ = ε
[
G (x) +

∑N
j=1 aj

∏
j 6=i

x−x(i)c

x
(j)
c −x

(i)
c

)
,

where (a1, . . . , aN) is close to (0, . . . , 0). There exists a curve in

parameter space

a1 = A1(ε), , aN = AN(ε)

with A1(0) = · · · = AN(0) = 0 and along which the above vector

�eld realizes the limit cycle con�guration (k1, . . . , kN) as prescribed

in all nests.



Proof.
The case for N = 1 is just the slow-fast Hopf case. By induction we
have chosen

a1 = A1(ε, ak , . . . , aN), . . . , ak−1 = Ak−1(ε, ak , . . . , aN)

iteratively applying the slow-fast Hopf result.

- all ai are O(ε) =⇒ slow divergence integral computations are
not a�ected

- at each induction step process the con�guration of limit cycles
is the same as in the previous one, but including additional
limit cycles corresponding to ak = Ak(ε).



The center canard nest



In the induction process, at some point we have a canard population{
ẋ = y − F (x)
ẏ = εG (x)

with

- G (x) = −x + O(x3) is odd

- F (x) = x2 + O(x4) is even

- Both are polynomials of some degree

- Away from the origin there are several canard nests with some
canard con�guration

- there is a canard nest of center type near the origin

Robustness lemma: we can perturb the center canard nest without
a�ecting the canard con�guration of existing nests!



For a given pair of integers r and s, we introduce the following
de�nition

Hr ,s(F ,G ) = det


hs−1 hs−2 · · · hs−r
hs hs−1 · · · hs−r+1

...
...

. . .
...

hs+r−2 hs+r−3 · · · hs−1


where hk is the 2k-th Taylor coe�cient of the (even) function
H = G/F ′ with the convention that hk = 0 for k ≤ −1.



Theorem
Let (F ,G , 0,−xmax , xmax) be a canard nest of center type (i.e. F is

even and G is odd) and let m be an odd integer and n ≥ 4 be an

even integer. Suppose

H n
2
−1,m+1

2

(F ,G ) 6= 0.

Then there exists an odd polynomial F1 of degree n− 1 and an even

polynomial G1 of degree m− 1 (with F ′1(0) = G1(0) = 0), for which

(F (x) + δF1(x),G (x) + δG1(x), 0,−xmax + o(1), xmax + o(1))

is a canard nest with con�guration at least (m+n−3
2

), for su�ciently

small δ 6= 0.

−→ We look for F1, G1 for which many simple zeros of

Iδ(x) = σ

∫ x

Lδ(x)

(F + δF1)′(s)2

(G + δG1)(s)
ds, σ = signF ′′(0).

appear.
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As a �rst step, we derive more explicitly the slow divergence
integral of the perturbed vector �eld: we look at the integrand:

(F ′ + δF ′1)2

G + δG1
=

F ′2 + 2δF ′F ′1
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G 2
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Let us thus de�ne

I1(x) =

∫ x

−x

2F ′(s)F ′
1
(s)G(s)−F ′(s)2G1(s)

G(s)2
ds − 2F ′(x)F1(x)

G(x) .

Hence, simple zeros of I1 in the open set (0, xmax) will perturb, for
δ 6= 0 small enough to simple zeros of Iδ. This reduces our focus to
the study of the zeros of I1.

Observe that I1(0) = 0 and

I ′1(x) = 2
F ′(x)F ′

1
(x)G(x)−F ′(x)2G1(x)−G(x)F ′′(x)F1(x)+G ′(x)F ′(x)F1(x)

G(x)2
.

Introducing H = G/F ′ we rewrite it as

1

2
I ′1(x)H(x)2 = F ′1(x)H(x) + H ′(x)F1(x)− G1(x).

Keep in mind that H is smooth (we smoothly extend the domain in
the origin), H(0) 6= 0, and both H and I ′1 are even, so the green
equation only contains even terms, starting with degree 2.
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1

2
I ′1(x)H(x)2 = F ′1(x)H(x) + H ′(x)F1(x)− G1(x).

Now, our claim is the following: for each given

Pλ(x) =

n+m−3
2∑

k=1

λkx
2k+1,

where λ = (λ1, . . . , λ n+m−3
2

), there exists a F1 and G1 satisfying the

hypotheses of the theorem and there exists an analytic function
Rλ(x) such that the green equation is satis�ed with I1(x) of the
form

I1(x) = Pλ(x) + Rλ(x)xn+m.

1

2

[
Pλ(x) + Rλ(x)xn+m

]′
H(x)2 = F ′1(x)H(x)+H ′(x)F1(x)−G1(x).
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2
P ′λH

2
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,

Sm+1
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1
2

(P ′λ + (Rλ.x
n+m)′)H2

]
= Sm+1[F ′1H + H ′F1].

jm−1: take the m − 1 jet around the origin
Sm+1: shift series
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remains to solve the yellow equation w.r.t. F1.
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H(x) =

m+n−1
2∑

k=0

hkx
2k + O(xm+n+1), F1(x) =

n
2
−1∑
`=1

f`x
2`+1,

and write the left-hand side of the yellow equation as a polynomial

W (x) =

n
2
−2∑

i=0

wix
2i .

Lemma
Let r = (n/2)− 1 and s = (m + 1)/2. The yellow equation is a

linear system
hs−1 hs−2 · · · hs−r
hs hs−1 · · · hs−r+1

...
...

. . .
...

hs+r−2 hs+r−3 · · · hs−1




f1
f2
...

fr

 =


w0/(2s + 1)
w1/(2s + 3)

...

wr−1/(2s + 2r − 1)





Let us now �nish the proof of the theorem. We have shown that,
given any Pλ, there exist choices of (F1,G1) so that the orange
equation is satis�ed:

I1(x) = Pλ(x) + Rλ(x)xn+m.

Hence, we rewrite it as

I1(x) = x3 Ī1(x2), Ī1(t) = P̄λ(t) + R̄λ(t)t
n+m−3

2

where

P̄λ(t) =

n+m−3
2
−1∑

k=0

λk+1t
k =

r+s−2∑
k=0

λk+1t
k ,

=⇒ zeros of slow divergence integral follow from catastrophe
theory: I1 can have r + s − 2 simple zeros on {t > 0}.
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Theorem
Let (F ,G , 0,−xmax , xmax) be a canard nest of center type (i.e. F is

even and G is odd) and let m be an odd integer and n ≥ 4 be an

even integer. Suppose

H n
2
−1,m+1

2

(F ,G ) 6= 0.

Then there exists an odd polynomial F1 of degree n− 1 and an even

polynomial G1 of degree m− 1 (with F ′1(0) = G1(0) = 0), for which

(F (x) + δF1(x),G (x) + δG1(x), 0,−xmax + o(1), xmax + o(1))

is a canard nest with con�guration at least (m+n−3
2

), for su�ciently

small δ 6= 0.

If additional constraints on F ′1 and G1 are imposed in

the form that F ′1(xj) = G1(xj) = 0 at several distinct (nonzero)

points xj , j = 1, . . . , J, then the results still hold with a reduced

con�guration of at least (m+n−3
2

)− 2J.

⇑
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Let us now discuss the case J ≥ 1:

- F ′1(xj) depend linearly on coe�cients of F1

- coe�cients depend linearly on LHS of yellow equation

- LHS depends linearly on λ

- same thing for G1(xj).

⇒ we have 2J linear constraints on the parameter space
(λ1, . . . , λr+s−1).

Elementary catastrophe under linear constraints

Lemma
Let f (t, µ) =

∑K−1
k=0 µkt

k + O(tK ) be smooth in (t, µ) near (0, 0),
linear w.r.t. µ, and let M be a linear subspace of RK of

codimension L. Then, inside any open neighborhood W of µ = 0
and T of t = 0, there exist choices of µ ∈ M ∩W for which f (t, µ)
has K − L− 1 simple zeros on {t > 0} ∩ T .
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Lemma
Let (F ,G ) be as above and such that Hr ,s(F ,G ) = 0. Then

Hr ,s(F ,G + µx2s−1(1 + O(x))) 6= 0, ∀µ 6= 0 small enough.
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The induction process



Consider {
ẋ = y − Fi (x)
ẏ = εGi (x)

with
F0(x) = x2 + a3x

3 + · · ·+ an0x
n0 ,G0(x) = −x

Perturb to
F̄0 = F0, Ḡ0(x) = −x + δxn0−1

Repeat in iteration:

- Do the doubling step

- Perturb to obtain condition H if necessary.

- Create extra cycles in the central nest



Let ni = deg Fi , mi = degGi , ci = # nests, ki = total canard
con�guration.
As a consequence, we examine the following system of recursions:

ni+1 = 2ni ,
mi+1 = 2mi + 1,
ci+1 = 2ci + 1,
ki+1 = 2ki + (ni + mi − 5ci − 1),

with n0 arbitrary, m0 = n0 − 1, c0 = 1, k0 = n0 − 2. It is easily
solved: 

ni = n02
i ,

mi = ni − 1,
ci = 2i+1 − 1,

ki = (1 + i)ni − 5i−1
2

ci − 5i+5
2
.



In view of obtaining the result on Generalized Liénards, let
N = ni = n02

i . Then ci = 2 N
n0
− 1, which makes that

ki = (1 + i)N − (5i − 1)

(
N

n0
− 1

2

)
− 5i + 5

2

= iN
n0 − 5

n0
+ N

n0 + 1

n0
− 3.

We de�ne Ni as the outcome of the sequence (ni )i at step i , with
n0 = i , i.e. Ni = i2i . Then

ki = iNi
i − 5

i
+ Ni

i + 1

i
− 3 = iNi (1 + o(1)), i →∞.

Noting that logNi = log(i2i ) = log i + i log 2 = (i log 2)(1 + o(1)),
we obtain

ki =
Ni logNi

log 2
(1 + o(1)), i →∞.

This way we obtain the result on generalized Liénards



Theorem
There exists a function Hg` : N→ R+ with the property

Hg`(N) =

(
N logN

log 2

)
(1 + o(1)) as N →∞,

and a sequence (Nk)k∈N, with Nk →∞ as k →∞ and for which

Hg`(Nk) ≥ Hg`(Nk), for all k ∈ N.

Theorem
There exists a function H : N→ R+ with the property

H(N) =

(
N2 logN

2(log 2)

)
(1 + o(1)) as N →∞,

and a sequence (Nk)k∈N, with Nk →∞ as k →∞ and for which

H(Nk) ≥ H(Nk), for all k ∈ N.
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We start with a canard population{
ẋ = y − F (x)
ẏ = εG (x)

perturbations preserve canard con�guration:{
ẋ = y − F (x)
ẏ = ε∆(y)G (x)

where ∆(0) = 1 and sup|y |≤1 |∆(y)− 1| < δ
multiplication preserves canard con�guration:{

ẋ = y − F (x)
ẏ = εQ∆(y)G (x)

where Q > 0
conclude: �big almost constant� perturbations preserve canard
con�guration {

ẋ = y − F (x)
ẏ = ε∆(y)G (x)

where ∆(0) > 0 and sup|y |≤1 |∆(y)−∆(0)| < δ
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ẏ = εG (x)

perturbations preserve canard con�guration:{
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ẋ = y − F (x)
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We consider a new system{
ẋ =×ρ′(Y )(ρ(Y )− F (x))

Ẏ = εG (x)

where ρ is a polynomial of degree N that is yet to be constructed.
We will ensure though that Y 7→ y = ρ(Y ) covers the interval
[−1, 1] N times.

Let y 7→ Y = αi (y) be the inverses, i = 1, . . . ,N. Transforming
the orange system via the coordinate change Y = αi (y) gives{

ẋ = y − F (x)
ẏ = ερ′(αi (y))G (x)

If we ensure that sup|y |≤1 |ρ′(αi (y))− ρ′(αi (0))| < δ and
ρ′(αi (0)) > 0, for each value of i , then the orange system has N
copies of canard populations in the yellow system, each with
con�guration k .
→ only possible for half of the indexes i .
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We are now ready to de�ne ρ(Y ). Let ρ0(Y ) be an arbitrary
polynomial with N simple roots.

Clearly, there is an a > 0 and b > 0 so that ρ0 covers the interval
[−b, b] around intervals of radius a centered around each root,
i.e. if Yi is a root, then ρ0([Yi − a,Yi + a]) ⊇ [−b, b]. Let M be
the sup of |ρ′0(Y )− ρ′0(Yi )| on the union of these intervals.
De�ne

ρ(Y ) =
1

b
ρ0(δbY /M).

Clearly ρ has N simple roots Yi
M
bδ , and it covers the interval [−1, 1]

in any root-centered interval with radius Ma
bδ . Finally

ρ′(Y )− ρ′(Yi
M

bδ
) =

δ

M
(ρ′0(δbY /M)− ρ′0(Yi )),

so it is bounded in absolute value by δ.
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We return to {
ẋ = ρ(Y )− F (x)

Ẏ = εG (x)

The number of canard nests is N/2 times the number of canard
nests of the original Liénard system. We then proceed to consider{

ẋ = ρ(y)− F (x)
ẏ = ε [G (x) + P(x , y)) ,

with
P(x , y) =

∑
k,`

pk`(aij)x
ky `

We use two-dimensional interpolation theory on rectangular grids
and proceed by induction to �nd control curves a = aij(ε) along
which the canard con�guration is realized.

=⇒ N

2
× O

(
N logN

log 2

)
hyperbolic limit cycles. �
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Thank you for the
attention.


