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{X = P(xy),
y = Q(X7y)

we ask ourselves how many limit cycles it can have, call this
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Given a system of polynomial differential equations

{* = P(x,y),
y = Q(X’y)

we ask ourselves how many limit cycles it can have, call this
number H.

Hindividual polynomial vf < 00 v Ecalle (1992), Ilyashenko (1991)

The maximum number of limit cycles for vector fields up to degree
N is called
H(N), the Hilbert number.

H(N) < o0 ? Llibre, Pedregal (2014 — 2019) 7
H(2) >4 v" Shi Song Ling (1979)

H(3)>13 v  Li Liu, Yang (2009)

H(5) > 33 v' Giné (2012), Gouveia (2019)



Theorem
There exists a function H: N — R with the property

o) = ( ) @ o) as - o

and a sequence (N)ken, with Ny — oo as k — oo and for which

H(Ny) > H(Ng), for all k € N.



Theorem
There exists a function H: N — R with the property

o) = ( ) @ o) as - o

and a sequence (N)ken, with Ny — oo as k — oo and for which
H(Ny) > H(Ng), for all k € N.
Asymptotic lower bound is comparable to known bounds:

- Christopher, LLoyd (1995)
- Xiong, Han (2014)



For generalized Liénard systems:

{X = y— F(x),

y = G(x) Hge(N) < 00?

Theorem
There exists a function H,p: N — R with the property

Hee) = (75 ) (@ o) a5 W

and a sequence (N )ken, with Ny — oo as k — oo and for which

Hgg(Nk) > ﬂg@(/\/k), for all k € N.

Asymptotic lower bound is comparable to earlier known bounds.



For generalized Liénard systems:

= y-F(x),
y = ﬁw) < 00?

Theorem
De Maesschalck, Huzak (2015)

Asymptotic lower bound is eemparable-to earlier known bounds.
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Theorem
There exists a function Hyp: N — R with the property

o) = () a4 o) s,

and a sequence (Ni)ken, with Ny — oo as k — oo and for which

Heo(Nk) > Hpgo(Nk), for all k € N. 1 = p( Y)
x = p(Y)p(Y) - F(x)),
s there an easy argument? & { s ng))( (Y) = F(x))
Theorem

There exists a function H: N — R™ with the property
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Theorem
There exists a function Hyp: N — R with the property

ﬂgZ(N)z ( ) (1+0(1)) as N — oo,
and a sequence (Ni)ken, with Ny — oo as k — oo and for which

Hge(Ni) > ﬂgz(Nk), for all k € N. U y = p( Y)

Theorem
There exists a function H: N — R™ with the property

y = Q(x,y) ﬂ(N):< )(1+0(1))asNﬁoo.

and a sequence (Nk)ken, with Ny — oo as k — oo and for which

H(Ny) > H(Ni),  forall k€N.




Canard nests



(i) F'(x) = Glx) =0,

(i) G'(xc) <0and F"(x) # 0
(i) G(x)F'(x) # 0, for all x € [x, ]\ {xc}
(iv) F(x) = F(x,).

A is defined by (F, G, xc, x¢, X;)



Let us consider the canard nest (F, G, xc, X, x,). Assume that
F"(xc) > 0. For any Yy € (F(xc), F(x¢)) we consider the singular
orbit Iy, formed by the fast part

{(X>Y) Y= YO:'E(X) < YO}
and the slow part
{(x,)) 1y = F(x), F(x) < Yo}

The singular orbit 'y, will be called a

Similarly in case F”(x.) < 0.



e = —SAe90
Xe '{y' = c(2+ G(x))

Theorem (Slow-fast Hopf, Dumortier, Roussarie (1996))

Let Ty, be a canard cycle around a slow-fast Hopf point.

Then there exists a smooth with A(0) =0
so that X, a(c) has a e-family of periodic orbits . that tends in
Hausdorff sense to Iy, as € — 0.

Different choices of Yo may or may not lead to different control
curves, but in any case all such control curves are exponentially
close to each other.



e = —SAe90
Xe '{y' = c(2+ G(x))

Theorem (Slow-fast Hopf, Dumortier, Roussarie (1996))
Let Ty, be a canard cycle around a slow-fast Hopf point.
Then there exists a smooth with A(0) =0
so that X, a(c) has a e-family of periodic orbits . that tends in
Hausdorff sense to Iy, as € — 0.
Different choices of Yo may or may not lead to different control
curves, but in any case all such control curves are exponentially
close to each other.
Questions:

1. Is the periodic orbit a limit cycle?

2. Are there multiple cycles in the nest?



Lemma (Fast relation function)

Associated to a canard nest there exists a smooth fast relation
function L : [xc, x;] — [xe, xc] such that F(L(x)) = F(x). (For
A-families of canard nests, both L and its the domain may be
A-dependent.)
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Lemma (Fast relation function)

Associated to a canard nest there exists a smooth fast relation
function L : [xc, x;] — [xe, xc] such that F(L(x)) = F(x). (For
A-families of canard nests, both L and its the domain may be
A-dependent.)

Next, we define the slow divergence integral as

= i F’(s)2 5 o = sign F"(x
/(X)—U/L(X) o % o =sEnF(x)

Theorem (Multiple cycles in a canard nest, Dumortier, Roussarie
(2001))

Let Yo = F(xp) for some xq € (xc, x;) and consider the canard
cycle T'y,. The orbit 7. is a uniformly hyperbolic limit cycle when
I(x0) # 0.

Furthermore, suppose |(xo) # 0 but | has k simple zeros
{x1,...,xk} on the interval (xc,xo) then X_ () has k additional
limit cycles.






A canard nest for which the slow divergence integral has k simple
zeros on (xc, x;) hence has the potential to generate k + 1 limit
cycles. We call (k + 1) the . If I is identically
zero (like in the case of a global center), the nest configuration is
undefined.



A canard nest for which the slow divergence integral has k simple
zeros on (xc, x;) hence has the potential to generate k + 1 limit
cycles. We call (k + 1) the . If I is identically
zero (like in the case of a global center), the nest configuration is
undefined.

Lemma (Change of coordinates of canard nests)

If (F, G, xc,xp, %r) is a canard nest, then any smooth change of
coordinates {x = p(X),y =Y + Yo} for which p has no singular
values in [x;, x,] leads to a canard nest

(Fop,p’ b (Gop)7XC7X€7Xr)

where p(Xc) = xc, p(Xe) = xo, p(X;) = x;. Furthermore, the nest
configuration is retained.




Lemma (Robustness of canard nests)

Let (F, G, xc, x¢, x,) be a canard nest with configuration (k + 1),
k > 0. For any pair of functions (F1, Gy) defined on [xy, x,] and
satisfying the hypothesis (i) given above, i.e. F{(x.) = Gi(xc) =0,
there exists, for & small enough, a perturbation

(F +5F1a G +5G17XCaX£ + 0(1)7XI’ aF 0(1))?

which is a canard nest of configuration at least (k + 1).



Theorem

De Maesschalck, Huzak (2015) Given any n > 6, there exist a
polynomial F(x) of degree n and x; < 0 < x, for which the canard
nest (F(x), —x, 0, xg, x;)

x = y—F(x)
y = —x
has configuration at least n — 2.

Theorem

De Maesschalck, Huzak (2014) Given any n > 6 and m > 2, there
exist a polynomial F(x) of degree n, a polynomial G(x) of degree
m and x; < 0 < x, for which the canard nest (F(x), G(x),0, x¢, x;)

U

has configuration at least 2["52] + [%].



Theorem

De Maesschalck, Dumortier (2011) For any even degree m > 2 there
exists a polynomial Gi(x) of degree m so that the canard nest
(x%, —x + 0 G1(x), 0, —Xmax + 0(1), Xmax + 0(1))

x = y—x?
y = —x+ 0Gy (X)
has configuration (%), for sufficiently small § # 0.

Theorem

De Maesschalck, Dumortier (2011) For any odd degree n > 3 there
exists a polynomial Fi(x) of degree n so that the canard nest
(x? + 6F1(x), —x, 0, =Xmax + 0(1), Xmax + 0(1))

X = y—x2—5F1(X)
jo=

has configuration (L), for sufficiently small & # 0.



Canard populations



Given a smooth system

{ ;15(5)(.)()’

It is called a canard population on [xs, x,] when there is a sequence
of disjoint subsets [xe('),x,(')], i=1,..., N and within Xél) such that

(F, G, x{7 x{D L)y

are canard nests. The population configuration is defined as
(K1, ..., kn), where k; is the nest configuration of the j-th canard
nest.




Proposition

Given a canard population (F, G) defined on [xy, x,| with

xp < 0 < x,. Suppose there exists z; < x; for which G(z;) < 0 and
F'(z;) # 0, and that there exists z, > x, for which G(z,) > 0 and

F'(z) # 0.



Proposition

Given a canard population (F, G) defined on [xy, x,| with

xp < 0 < x,. Suppose there exists z; < x; for which G(z;) < 0 and
F'(z;) # 0, and that there exists z, > x, for which G(z,) > 0 and
F'(z:) # 0. Then for a suitable choice of M > 0, the change of
coordinates

o = e G(X)
F(X) = F ((X? — M?)) — F(—M),
G(X) = 2 G (4(X2 - M?)),

on some interval [ Xy, X;| with X; < 0 < X,.



Proposition

Given a canard population (F, G) defined on [xy, x,| with

xp < 0 < x,. Suppose there exists z; < x; for which G(z;) < 0 and
F'(z;) # 0, and that there exists z, > x, for which G(z,) > 0 and
F'(z:) # 0. Then for a suitable choice of M > 0, the change of

coordinates s .
y=Y+ F(—M)

leads to a canard population (F, G) and an associated vector field

o = e G(X)
F(X) = F ((X? — M?)) — F(—M),
G(X) = 2 G (4(X2 - M?)),

on some interval [ Xy, X;| with X; < 0 < X,. The new canard
population has two diffeomorphic copies of each canard nest of the
original population, and has an additional canard nest near X = Q.



p~ ()



Proposition
Given a canard population in [x;, x,] with a N canard nests, defined
with polynomials F, G, and in each nest having a k; nest

configuration, i = 1,..., N. Then we consider the family of vector
fields

x = y—F(x)

. N _ g")

o/ P [G(X) + > im1 3 [ ﬁ) ;
where (a1, ..., an) is close to (0,...,0). There exists a curve in

parameter space
a; = Ai(e), ,an = Ap(e)

with A;1(0) = --- = An(0) = 0 and along which the above vector
field realizes the limit cycle configuration (k,. .., kn) as prescribed
in all nests.



Proof.
The case for N = 1 is just the slow-fast Hopf case. By induction we
have chosen

a) = Al(e,ak,...,aN),...,ak_l = .Ak_l(e,ak,. 1 .,aN)

iteratively applying the slow-fast Hopf result.
- all a; are O(¢) = slow divergence integral computations are
not affected

- at each induction step process the configuration of limit cycles
is the same as in the previous one, but including additional
limit cycles corresponding to ax = Ax(e).



The center canard nest



In the induction process, at some point we have a canard population

{ x = y-F(x)
y = €G(x)
with

- G(x) = —x+ O(x%) is odd

- F(x) = x* + O(x*) is even
Both are polynomials of some degree

- Away from the origin there are several canard nests with some
canard configuration

- there is a canard nest of center type near the origin

Robustness lemma: we can perturb the center canard nest without
affecting the canard configuration of existing nests!



For a given pair of integers r and s, we introduce the following
definition

. _hE. o hs—r
hs_1 hs_ri1

H,o(F, G) = det . A
hs+r72 hs+r73 i hsfl

where hy is the 2k-th Taylor coefficient of the (even) function
H = G/F’ with the convention that hy = 0 for k < —1.



Theorem

Let (F, G,0, —Xmax, Xmax) be a canard nest of center type (i.e. F is
even and G is odd) and let m be an odd integer and n > 4 be an
even integer. Suppose

Hy_y ma(F,G) #0.

Then there exists an odd polynomial F; of degree n—1 and an even
polynomial Gy of degree m—1 (with F{(0) = G;1(0) = 0), for which

(F(x) + 0F1(x), G(x) + 0G1(x),0, —xmax + 0(1), Xmax + 0(1))

is a canard nest with configuration at least (t1=2), for sufficiently

small § # 0.



Theorem

Let (F, G,0, —Xmax, Xmax) be a canard nest of center type (i.e. F is
even and G is odd) and let m be an odd integer and n > 4 be an
even integer. Suppose

Hy_y ma(F,G) #0.

Then there exists an odd polynomial F; of degree n—1 and an even
polynomial Gy of degree m—1 (with F{(0) = G;1(0) = 0), for which
(F(x) + 0F1(x), G(x) + 0G1(x),0, —xmax + 0(1), Xmax + 0(1))

is a canard nest with configuration at least (t1=2), for sufficiently
small § # 0.

— We look for Fi, Gy for which many simple zeros of

appear.



As a first step, we derive more explicitly the slow divergence
integral of the perturbed vector field: we look at the integrand:
F' 4 6F])? F2 + 26F'F]
( + 1) (] + 1 A 0(52)
G+ 466G G(1+0G/G)

F2 4 26F'F])(1 - 6G1/G
F?  2F'FIG - F2G
o L

+ 0(8?).




As a first step, we derive more explicitly the slow divergence
integral of the perturbed vector field: we look at the integrand:
F' 4 6F])? F2 + 26F'F]
( + 1) (] + 1 A 0(52)
G+ 466G G(1+0G/G)

_ (F?+25F'F{)(1 - 6G1/G) L o)

G

2 st Mo .
=<ct o o2 + O(69).

Next we use the equation F(x) + dFi(x) = F(Ls(x)) + dF1(Ls(x))

together with Lo(x) = —x to derive that

F(x)

F'(x)

Ls(x) = —x—26 + 0(6°).




As a first step, we derive more explicitly the slow divergence
integral of the perturbed vector field: we look at the integrand:
F' 4 6F])? F2 + 26F'F]
( + 1) (] + 1 A 0(52)
G+ 466G G(1+0G/G)

_ (F?+25F'F{)(1 - 6G1/G) L o)

G
2 st Mo
o L
Next we use the equation F(x) + dFi(x) = F(Ls(x)) + dF1(Ls(x))
together with Lo(x) = —x to derive that

F(x)

+ 0(8?).

ol 2
Ls(x) = —x—2¢ F(x) + O(67).
Hence
3 ()2 | <2F'(s)Fi(s)G(s)—F'(s)?G
/5(X) = O‘/ JsE10) (FG((SS)) ) (s)F1(s) G((Ss))z ©) 1(5)) ds + 0(52)
()

g ( /_ i AP Gle) s — Bl F(;((XX))2> + 0(5?).



Let us thus define

Mo / 2FFACEFEFae) gs_ pF IRk

Hence, simple zeros of /; in the open set (0, xmax) will perturb, for
0 # 0 small enough to simple zeros of /5. This reduces our focus to
the study of the zeros of /.



Let us thus define

h(x) = / 2F’(s)F{(s><é((sS>);F’(s)2cl(s) ds — 2E950)

Hence, simple zeros of /; in the open set (0, xmax) will perturb, for
0 # 0 small enough to simple zeros of /5. This reduces our focus to
the study of the zeros of /;. Observe that /;(0) = 0 and

"(x)F!(x)G(x)=F'(x)2Gy(x)—G(x)F" (x)F1(x)+G’(x)F’(x)F1(x
1(x) = o FI(x)F1(x) 6 (x)=F'(x)* Gu( )Gfx()z)F ()F1()+G ()F () Fi(x)




Let us thus define

* 2F!(s)F(s)G(s)—F'(s)2G F/(x)Fa(x
Mo /_ X OROC_FEPGE 45 Pt
Hence, simple zeros of /; in the open set (0, xmax) will perturb, for
0 # 0 small enough to simple zeros of /5. This reduces our focus to
the study of the zeros of /;. Observe that /;(0) = 0 and

"(x)F!(x)G(x)=F'(x)2Gy(x)—G(x)F" (x)F1(x)+G’(x)F’(x)F1(x
1(x) = o FI(x)F1(x) 6 (x)=F'(x)* Gu( )Gfx()z)F ()F1()+G ()F () Fi(x)

Introducing H = G/F’ we rewrite it as

Keep in mind that H is smooth (we smoothly extend the domain in
the origin), H(0) # 0, and both H and /] are even, so the green
equation only contains even terms, starting with degree 2.



Now, our claim is the following: for each given

n+m—3

ntm-3
Px(x) = Z iAo
k=1

where A = (A1,..., Anim-3), there exists a F; and G satisfying the
2

hypotheses of the theorem and there exists an analytic function

Rx(x) such that the green equation is satisfied with /;(x) of the
form



Now, our claim is the following: for each given

n+m—3

ntm-3
Px(x) = Z iAo
k=1

where A = (A1,..., Anim-3), there exists a F; and G satisfying the
2

hypotheses of the theorem and there exists an analytic function

Rx(x) such that the green equation is satisfied with /;(x) of the
form






Is equivalent to:
Gy =Jm—1 [F{H+ H'F — 3P H?]
S™HL (P + (Rax"t™))H?] = S™[F{H + H'Fy].

Jm—1: take the m — 1 jet around the origin
S™MFL: shift series



is equivalent to
GL = jm—1 [F{H + H'F — 1P H?],

ST [2(Py + (Ra.x™t™))H?] = S™LF{H + H'Fy].



is equivalent to
GL = jm—1 [F{H + H'F — 1P H?],
S™HL[3(PL + (Rax"tM))H?] = S™L[F{H + H'Fy).
so also equivalent to:
GL = jm—1 [F{H + H'F, — 1P H?],
Jn—a [S™TL [SPLH?]] = jaea [S™HF{H + H'F]].

STEM=L[LPLH? + (R x""M))H?] = S"™t™=1[F{H + H'F1].



is equivalent to
Gi = jm-1 [F{H + H'F1 — §PLH?]
jn=a [S™H [FPLHP]] = jn—s [STHUFIH + H'L]]

Srtm=1[1p/ K2 4 (Ryx™mY)H2] = S™m=1[F/H 4 H'Fy].



is equivalent to
GL = jm-1 [F{JH+ H'F — P{H?],
Jna [T [FPAHP]] = Jna [STTUFIH + H'A] .
SrEm=1[LP{H? + (R\.x"tM))H?] = S"+m=L[F{H + H'F].
so also equivalent to:
GL = jm-1 [F{H+ H'F — 1P H?],
Jn—a [S™TL[SPLH?]]| = ja—a [STHL[F{H + H'F]] .

(n+ m)Ry + xR, = £z.5""™ L [F{H + H'F, — 3P H?] .



is equivalent to
GL = jm-1 [F{JH+ H'F — P{H?],
Jn4 [S™ [3PAH]] = Jn-a [STTHFH + H'A] .
SrEm=1[LP{H? + (R\.x"tM))H?] = S"+m=L[F{H + H'F].
so also equivalent to:
GL = jm-1 [F{H+ H'F — 1P H?],
Jn—a [STTL[SPLH?]| = jaca [STHL[F{H + H'F]] .
(n+ m)Ry + xR, = £z.5"t™L [F{H + H'F, — 3P, H?].

remains to solve the yellow equation w.r.t. F;.



m+n—1 L.
D 7=l

2
HO = 3 hod+ 0™ ™), Fi( = 3 o,
k=0 /=1

and write the left-hand side of the yellow equation as a polynomial

g

W(x) = Z wix?,
i=0

Lemma
Let r =(n/2) —1 and s = (m + 1)/2. The yellow equation is a
linear system
hs—1 hs—2 T hs—r fi WO/(25 + 1)
hs hs—1 oo hs_pia f Wl/(25 + 3)

hsir—2 hsir3 - hs 1 fr Wr—l/(25 4 2 = 1)



Let us now finish the proof of the theorem. We have shown that,
given any P, there exist choices of (F1, G1) so that the orange
equation is satisfied:

Hence, we rewrite it as

= n+m—3

h(x)=x3R(x?),  k(t) = Pr(t) + Ra(t)t"%

where
n+m—3 1 r+572

nem=3
PAE) =" DEROESE 1t
k=0 k=0



Let us now finish the proof of the theorem. We have shown that,
given any P, there exist choices of (F1, G1) so that the orange
equation is satisfied:

Hence, we rewrite it as
- n+m—3

h(x)=x3R(x?),  k(t) = Pr(t) + Ra(t)t"%

where
n+m—3 1 r+572

nem=3
PAE) =" DEROESE 1t
k=0 k=0

— zeros of slow divergence integral follow from catastrophe
theory: /1 can have r + s — 2 simple zeros on {t > 0}.



Theorem

Let (F, G,0, —Xmax, Xmax) be a canard nest of center type (i.e. F is
even and G is odd) and let m be an odd integer and n > 4 be an
even integer. Suppose

H%*l,mTH(F7 G) # O.

Then there exists an odd polynomial Fy of degree n— 1 and an even
polynomial Gy of degree m—1 (with F{(0) = G1(0) = 0), for which

(F(x) 4+ dF1(x), G(x) + 6Gi(x), 0, —Xmax + 0(1), Xmax + 0(1))

is a canard nest with configuration at least (™2=32), for sufficiently
small § # 0.
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is a canard nest with configuration at least (™2=32), for sufficiently
small § # 0. If additional constraints on F{ and G; are imposed in
the form that F{(x;) = Gi(x;) = 0 at several distinct (nonzero)
points xj, j = 1,...,J, then the results still hold with a reduced
configuration of at least (™2=3) — 2.
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even an Lemma (Robustness of canard nests)

even INy Let (F,G,xc, x¢, xr) be a canard nest with configuration (k + 1),
k > 0. For any pair of functions (Fy, Gi) defined on [x;, x,] and
satisfying the hypothesis (i) given above, i.e. F{(x.) = Gi(x.) =0,
there exists, for 0 small enough, a perturbation

Then tR

v (F+dF1,G+ 060G, %, x¢ + o(1), x, + o(1)),
poiynorn

which is a canard nest of configuration at least (k + 1).

(F(X y E vy ) A\ A pp - —— -z \ a1z e "7

is a canard nest with configurat /ﬂ\ )t least (™2=3), for sufficiently
small § # 0. If additional constraints on F{ and G; are imposed in
the form that F{(x;) = Gi(x;) = 0 at several distinct (nonzero)

points xj, j = 1,...,J, then the results still hold with a reduced
configuration of at least (™2=3) — 2.




Let us now discuss the case J > 1:
- F{(x;j) depend linearly on coefficients of F;
- coefficients depend linearly on LHS of yellow equation
- LHS depends linearly on A
- same thing for Gi(x;).
= we have 2J linear constraints on the parameter space
()\1, .y 7)\r+s—1)-



Let us now discuss the case J > 1:

- F{(x;j) depend linearly on coefficients of F;

coefficients depend linearly on LHS of yellow equation

LHS depends linearly on A

same thing for Gi(x;).

= we have 2J linear constraints on the parameter space

()‘17 20 ¢ 7)‘r+s—1)-
Elementary catastrophe under linear constraints

Lemma

Let f(t,un) = Z;}f:_ol pktk + O(tX) be smooth in (t, ;1) near (0,0),
linear w.r.t. u, and let M be a linear subspace of RK of
codimension L. Then, inside any open neighborhood W of 1 = 0
and T of t =0, there exist choices of y € M N W for which f(t, i)
has K — L — 1 simple zeros on {t >0} N T.
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Theorem

Let (F, G,0, —Xmax, Xmax) be a canard nest of center type (i.e. F is
even and G is odd) and let m be an odd integer and n > 4 be an
even integer. Suppose

H%i]_’mTH(F, G) # 0.

Then there exists an odd polynomial Fy of degree n— 1 and an even
polynomial G of degree m — 1 (with F{(0) = G;(0) = 0), for which

(F(x) 4+ 0F1(x), G(x) + 0G1(x), 0, —Xmax + 0(1), Xmax + 0(1))

is a canard nest with configuration at least ("™=32), for sufficiently
small § # 0. If additional constraints on F{ and G; are imposed in
the form that F{(xj) = Gi(x;) =0 ...

Lemma
Let (F, G) be as above and such that H, s(F,G) = 0. Then

H,s(F, G+ px®*71(1 + O(x))) # 0, Y # 0 small enough.



The induction process



Consider

B . . — Ei(X)
y = €Gj(x)
with
Fo(x) = tapd 4+ 4+ Gno Xt 2 Go(X) = —X
Perturb to

Fo=Fo,  Go(x)=—x+ox™"
Repeat in iteration:
- Do the doubling step

- Perturb to obtain condition # if necessary.

- Create extra cycles in the central nest



Let n; = deg F;, m; = deg G;, ¢; = # nests, k; = total canard

configuration.

As a consequence, we examine the following system of recursions:

Njt1
miji1
Ci+1
kit1

2n,-,

2mj + 1,

2ci + 1,

2k; + (n,- + m; — 5¢; — 1),

with ng arbitrary, mg =ng — 1, g =1, ko = np — 2. It is easily

solved:
n;
mj
Ci
ki

n02’,
ny — 17
2i+1 —1q
)
(1 -+ i)n,- — 5’;1C; — %




In view of obtaining the result on Generalized Liénards, let
N = n; = ng2'. Then ¢; = 2% — 1, which makes that

2 ] N 1 5/ +5
s (e =) [
(1+1) (5i )<n0 2) 5
) n0—5

_iN +Nn0+1_
no no

3.

We define NV; as the outcome of the sequence (n;); at step 7, with
ng =i, 1.e. N =1i2'". Then
i—5 i+l

ki = iN;—— + N;——= —3=iN;(1+0(1)), i— oo
I I

Noting that log N; = log(i2') = log i + ilog2 = (ilog2)(1 + o(1)),
we obtain
oo N,‘ Iog N,‘

P =

oar (1Ho),  i—eo

This way we obtain the result on generalized Liénards



Theorem
There exists a function Hgyy: N — R* with the property

Heet) = (1) @+ 0ta)) a5 W o

and a sequence (N)ken, with Ny — oo as k — oo and for which

Hee(Nk) > Hgg(Ni),  forall keN.
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Theorem
There exists a function H: N — R with the property

wy = (5, ) o) as v

and a sequence (N)ken, with Ny — oo as k — oo and for which

H(NK) > H(Ny),  forall keN.



We start with a canard population

e



We start with a canard population inside [—1,1] x [-1,1]
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We start with a canard population inside [—1,1] x [-1,1]

x = y—F(x)
j = €6
perturbations preserve canard configuration:
{)'( = y—F(x)
y = €eA(y)G(x)

where A(0) =1 and supj, <y [A(y) — 1| <§
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We start with a canard population inside [—1,1] x [-1,1]

x = y—F(x)
j = €6
perturbations preserve canard configuration:
{)'( = y—F(x)
y = €eA(y)G(x)

where A(0) =1 and supj, <y [A(y) — 1| <§
multiplication preserves canard configuration:

{)'( = y—F(x)
y = eQA(y)G(x)

where Q@ > 0
conclude: “big almost constant” perturbations preserve canard

configuration
{ x = y—F(x)

y = €eA(y)G(x)
where A(0) > 0 and sup, < [A(y) — A(0)] < 0



We consider a new system

where p is a polynomial of degree N that is yet to be constructed.
We will ensure though that Y — y = p(Y') covers the interval
[—1,1] N times.



We consider a new system

where p is a polynomial of degree N that is yet to be constructed.
We will ensure though that Y — y = p(Y') covers the interval
[—1,1] N times.

Let y — Y = aj(y) be the inverses, i =1,..., N. Transforming
the orange system via the coordinate change Y = «;(y) gives

{)'( = y—F(x)
y = ep(ai(y))G(x)

If we ensure that sup|, <1 |[p'(@i(y)) — p'(2i(0))| < ¢ and
p'(i(0)) > 0, for each value of i, then the orange system has N
copies of canard populations in the yellow system, each with
configuration k.



We consider a new system

where p is a polynomial of degree N that is yet to be constructed.
We will ensure though that Y — y = p(Y') covers the interval
[—1,1] N times.

Let y — Y = aj(y) be the inverses, i =1,..., N. Transforming
the orange system via the coordinate change Y = «;(y) gives

{>’< = y—F(x)
y = ep(ai(y))G(x)

If we ensure that sup|, <1 [p'(@i(y)) — p'(ci(0))| < ¢ and

, for each value of /, then the orange system has N
copies of canard populations in the yellow system, each with
configuration k.



We are now ready to define p(Y). Let po(Y) be an arbitrary
polynomial with N simple roots.
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polynomial with N simple roots.

Clearly, there is an a > 0 and b > 0 so that py covers the interval
[—b, b] around intervals of radius a centered around each root,
i.e. if Y is a root, then po([Y; — a, Y; + a]) 2 [—b, b]. Let M be
the sup of |pp(Y) — pp(Yi)| on the union of these intervals.



We are now ready to define p(Y). Let po(Y) be an arbitrary
polynomial with N simple roots.

Clearly, there is an a > 0 and b > 0 so that py covers the interval
[—b, b] around intervals of radius a centered around each root,
i.e. if Y is a root, then po([Y; — a, Y; + a]) 2 [—b, b]. Let M be
the sup of |pp(Y) — pp(Yi)| on the union of these intervals.
Define

oY) = £ po(3bY /M),

Clearly p has N simple roots Y,-z/(’;, and it covers the interval [—1,1]
in any root-centered interval with rad|us 2. Finally

J(v) - P'(YibM(s) . %(pg((sw//\/l) — (7)),

so it is bounded in absolute value by 6.



We return to

The number of canard nests is N/2 times the number of canard
nests of the original Liénard system. We then proceed to consider

{X = py) = F(x)
y = €l6(x)+ )

with

We use two-dimensional interpolation theory on rectangular grids
and proceed by induction to find control curves along
which the canard configuration is realized.



We return to

The number of canard nests is N/2 times the number of canard
nests of the original Liénard system. We then proceed to consider

{X = py) = F(x)
y = €l6(x)+ )

with

We use two-dimensional interpolation theory on rectangular grids
and proceed by induction to find control curves along
which the canard configuration is realized.

Nlog N
log 2

N
= 5 X ) ( > hyperbolic limit cycles. O



Thank you for the
attention



