Asymptotic lower bounds on Hilbert numbers using canard cycles

M.J. Álvarez B. Coll P. De Maesschalck R. Prohens

AQTDE 2019, Castro-Urdiales June 21, 2019

$$\left(egin{array}{ccc} \dot{x} &=& P(x,y), \ \dot{y} &=& Q(x,y) \end{array}
ight)$$

we ask ourselves how many limit cycles it can have, call this number H.

$$\dot{x} = P(x,y),$$

 $\dot{y} = Q(x,y)$

we ask ourselves how many limit cycles it can have, call this number *H*.

 $H_{
m individual}$ polynomial vf $< \infty$?

we ask ourselves how many limit cycles it can have, call this number *H*.

 $H_{\text{individual polynomial vf}} < \infty$ \checkmark Ecalle (1992), Ilyashenko (1991) The maximum number of limit cycles for vector fields up to degree N is called H(N), the Hilbert number.

we ask ourselves how many limit cycles it can have, call this number *H*.

 $H_{\text{individual polynomial vf}} < \infty$ \checkmark Ecalle (1992), Ilyashenko (1991) The maximum number of limit cycles for vector fields up to degree N is called H(N), the Hilbert number.

 $H(N) < \infty$? Llibre, Pedregal (2014 – 2019) ?

we ask ourselves how many limit cycles it can have, call this number *H*.

 $H_{\text{individual polynomial vf}} < \infty$ \checkmark Ecalle (1992), Ilyashenko (1991) The maximum number of limit cycles for vector fields up to degree N is called

H(N), the Hilbert number.

 $H(N) < \infty$?Llibre, Pedregal (2014 - 2019) ? $H(2) \ge 4$ \checkmark Shi Song Ling (1979) $H(3) \ge 13$ \checkmark Li, Liu, Yang (2009)

$$\dot{x} = P(x, y),$$

 $\dot{y} = Q(x, y)$

we ask ourselves how many limit cycles it can have, call this number *H*.

 $H_{\rm individual polynomial vf} < \infty$ \checkmark Ecalle (1992), Ilyashenko (1991) The maximum number of limit cycles for vector fields up to degree N is called

H(N), the Hilbert number.

$H(N) < \infty$?	Llibre, Pedregal (2014 – 2019) ?
$H(2) \geq 4$	\checkmark	Shi Song Ling (1979)
$H(3) \ge 13$	\checkmark	Li, Liu, Yang (2009)
$H(5) \ge 33$	\checkmark	Giné (2012), Gouveia (2019)

Theorem There exists a function $\underline{H} \colon \mathbb{N} \to \mathbb{R}^+$ with the property

$$\underline{H}(N) = \left(\frac{N' \log N}{2(\log 2)} \right) (1 + o(1)) \text{ as } N \to \infty,$$

and a sequence $(N_k)_{k\in\mathbb{N}}$, with $N_k o\infty$ as $k o\infty$ and for which $H(N_k)\geq \underline{H}(N_k),$ for all $k\in\mathbb{N}.$

Theorem There exists a function $\underline{H} \colon \mathbb{N} \to \mathbb{R}^+$ with the property

$$\underline{H}(N) = \left(rac{N^2 \log N}{2(\log 2)}\right) (1 + o(1)) \text{ as } N o \infty,$$

and a sequence $(N_k)_{k\in\mathbb{N}}$, with $N_k o\infty$ as $k o\infty$ and for which $H(N_k)\geq \underline{H}(N_k),$ for all $k\in\mathbb{N}.$

Asymptotic lower bound is comparable to known bounds:

- Christopher, LLoyd (1995)
- Xiong, Han (2014)

Today: Novel approach using singular perturbations

For generalized Liénard systems:

$$\begin{cases} \dot{x} = y - F(x), \\ \dot{y} = G(x) \end{cases} \qquad \qquad H_{g\ell}(N) < \infty$$

Theorem

There exists a function $\underline{H}_{g\ell} \colon \mathbb{N} \to \mathbb{R}^+$ with the property

$$\underline{H}_{g\ell}(N) = \left(rac{N\log N}{\log 2}
ight) (1+o(1)) \text{ as } N o \infty$$

and a sequence $(N_k)_{k\in\mathbb{N}}$, with $N_k o\infty$ as $k o\infty$ and for which $H_{g\ell}(N_k)\geq \underline{H}_{g\ell}(N_k),$ for all $k\in\mathbb{N}.$

Asymptotic lower bound is comparable to earlier known bounds.

For generalized Liénard systems:

$$\begin{cases} \dot{x} = y - F(x), \\ \dot{y} = \widehat{F}(y) \end{cases}$$

 $H_{c\ell}(N) < \infty$?

Theorem De Maesschalck, Huzak (2015) For $N \ge 6$:

 $H_{c\ell}(N) \geq N-2.$

Asymptotic lower bound is comparable to earlier known bounds.

Theorem There exists a function $\underline{H}_{g\ell} \colon \mathbb{N} \to \mathbb{R}^+$ with the property $\underline{H}_{g\ell}(N) = \left(\frac{\mu \log n}{\log n}\right) (1 + o(1))$ as $N \to \infty$, and a sequence $(N_k)_{k \in \mathbb{N}}$, with $N_k \to \infty$ as $k \to \infty$ and for which $H_{g\ell}(N_k) \ge \underline{H}_{g\ell}(N_k)$, for all $k \in \mathbb{N}$.

Is there an easy argument? \searrow

 $\begin{cases} \dot{x} = P(x, y), \\ \dot{y} = Q(x, y) \end{cases}$

Theorem There exists a function $\underline{H} \colon \mathbb{N} \to \mathbb{R}^+$ with the property

$$\underline{H}(N) = \left(rac{N^2 \log N}{2(\log 2)}
ight) (1 + o(1)) \; as \; N o \infty$$

and a sequence $(N_k)_{k\in\mathbb{N}}$, with $N_k o\infty$ as $k o\overline\infty$ and for which

 $H(N_k) \ge \underline{H}(N_k),$ for all $k \in \mathbb{N}.$

Theorem Theorem There exists a function $\underline{H}_{g\ell} \colon \mathbb{N} \to \mathbb{R}^+$ with the property $\underline{H}_{g\ell}(N) = \left(\frac{\mu \log N}{\log 2}\right) (1 + o(1)) \text{ as } N \to \infty,$ and a sequence $(N_k)_{k \in \mathbb{N}}$, with $N_k \to \infty$ as $k \to \infty$ and for whice $H_{g\ell}(N_k) \ge \underline{H}_{g\ell}(N_k), \quad \text{ for all } k \in \mathbb{N}.$

 $\begin{cases} \dot{x} = y - F(x), \\ \dot{y} = G(x) \end{cases}$

Is there an easy argument? \searrow

 $\begin{cases} \dot{x} = P(x, y), \\ \dot{y} = Q(x, y) \end{cases}$

Theorem There exists a function $\underline{H} \colon \mathbb{N} \to \mathbb{R}^+$ with the property

$$\underline{H}(N) = \left(rac{N^2 \log N}{2(\log 2)}
ight) (1 + o(1)) \text{ as } N o \infty$$

and a sequence $(N_k)_{k\in\mathbb{N}}$, with $N_k o\infty$ as $k o\overline\infty$ and for which

 $H(N_k) \geq \underline{H}(N_k), \quad \text{for all} \quad k \in \mathbb{N}.$

Theorem
There exists a function
$$\underline{H}_{g\ell}: \mathbb{N} \to \mathbb{R}^+$$
 with the property
 $\underline{H}_{g\ell}(N) = \begin{pmatrix} N \log n \\ \log n \end{pmatrix} (1 + o(1)) \text{ as } N \to \infty,$
and a sequence $(N_k)_{k \in \mathbb{N}}$, with $N_k \to \infty$ as $k \to \infty$ and for which
 $H_{g\ell}(N_k) \ge \underline{H}_{g\ell}(N_k), \quad \text{for all } k \in \mathbb{N}.$
 $\downarrow \qquad y = \rho(Y)$

Is there an easy argument? 📉

 $\begin{cases} \dot{x} = P(x, y), \\ \dot{y} = Q(x, y) \end{cases}$

$$\begin{cases} \dot{x} = \rho(Y) - F(x) \\ \rho'(Y)\dot{Y} = G(x) \end{cases}$$

Theorem There exists a function $\underline{H} \colon \mathbb{N} \to \mathbb{R}^+$ with the property

$$\underline{H}(N) = \left(\frac{N^2 \log N}{2(\log 2)}\right) (1 + o(1)) \text{ as } N \to \infty$$

and a sequence $(N_k)_{k\in\mathbb{N}}$, with $N_k o\infty$ as $k o\infty$ and for which

 $H(N_k) \geq \underline{H}(N_k),$ for all $k \in \mathbb{N}.$

Theorem
There exists a function
$$\underline{H}_{g\ell} \colon \mathbb{N} \to \mathbb{R}^+$$
 with the property
 $\underline{H}_{g\ell}(N) = \left(\frac{N \log r^{1/2}}{\log 2}\right) (1 + o(1))$ as $N \to \infty$,
and a sequence $(N_k)_{k \in \mathbb{N}}$, with $N_k \to \infty$ as $k \to \infty$ and for which
 $H_{g\ell}(N_k) \ge \underline{H}_{g\ell}(N_k)$, for all $k \in \mathbb{N}$.
 $\psi = P(n)$

Is there an easy argument? $\begin{cases} \dot{x} = \rho'(Y)(\rho(Y) - F(x)), \\ \dot{Y} = G(x) \end{cases}$

 $\begin{cases} \dot{x} = P(x, y), \\ \dot{y} = Q(x, y) \end{cases}$

Theorem There exists a function $\underline{H} \colon \mathbb{N} \to \mathbb{R}^+$ with the property

$$\underline{H}(N) = \left(\frac{N^2 \log N}{2(\log 2)}\right) (1 + o(1)) \text{ as } N \to \infty$$

and a sequence $(N_k)_{k\in\mathbb{N}}$, with $N_k o\infty$ as $k o\infty$ and for which

 $H(N_k) \geq \underline{H}(N_k), \quad \text{for all} \quad k \in \mathbb{N}.$

There is no easy argument. $\begin{cases} x = \rho(Y)(\rho(Y) - F(x)) \\ \dot{Y} = G(x) \end{cases}$

 $\begin{cases} \dot{x} = P(x, y), \\ \dot{y} = Q(x, y) \end{cases}$

Theorem There exists a function $\underline{H} \colon \mathbb{N} \to \mathbb{R}^+$ with the property

$$\underline{H}(N) = \left(rac{N^2 \log N}{4(\log 2)}
ight) (1 + o(1)) \text{ as } N o \infty$$

and a sequence $(N_k)_{k\in\mathbb{N}}$, with $N_k o\infty$ as $k o\infty$ and for which

 $H(N_k) \geq \underline{H}(N_k), \quad \text{for all} \quad k \in \mathbb{N}.$

Canard nests

(i) $F'(x_c) = G(x_c) = 0$, (ii) $G'(x_c) < 0$ and $F''(x_c) \neq 0$, (iii) $G(x)F'(x) \neq 0$, for all $x \in [x_\ell, x_r] \setminus \{x_c\}$, (iv) $F(x_\ell) = F(x_r)$.

A canard nest is defined by (F, G, x_c, x_ℓ, x_r)

Let us consider the canard nest (F, G, x_c, x_ℓ, x_r) . Assume that $F''(x_c) > 0$. For any $Y_0 \in (F(x_c), F(x_\ell))$ we consider the singular orbit Γ_{Y_0} formed by the fast part

$$\{(x, y) : y = Y_0, F(x) \le Y_0\}$$

and the slow part

 $\{(x, y)\} : y = F(x), F(x) \le Y_0\}$

The singular orbit Γ_{Y_0} will be called a canard cycle. Similarly in case $F''(x_c) < 0$.

$$X_{\varepsilon,\sigma}: \begin{cases} \dot{x} = y - F(x), \\ \dot{y} = \varepsilon(z + G(x)) \end{cases}$$

Theorem (Slow-fast Hopf, Dumortier, Roussarie (1996)) Let Γ_{Y_0} be a canard cycle around a slow-fast Hopf point. Then there exists a smooth control curve e = A(e) with A(0) = 0so that $X_{\epsilon,A(\epsilon)}$ has a ϵ -family of periodic orbits γ_{ϵ} that tends in Hausdorff sense to Γ_{Y_0} as $\epsilon \to 0$. Different choices of Y_0 may or may not lead to different control curves, but in any case all such control curves are exponentially close to each other.

$$X_{\varepsilon,\bullet}: \begin{cases} \dot{x} = y - F(x), \\ \dot{y} = \varepsilon(\mathbf{a} + G(x)) \end{cases}$$

Theorem (Slow-fast Hopf, Dumortier, Roussarie (1996)) Let Γ_{Y_0} be a canard cycle around a slow-fast Hopf point. Then there exists a smooth control curve $\alpha = A(\varepsilon)$ with A(0) = 0so that $X_{\epsilon,A(\varepsilon)}$ has a ε -family of periodic orbits γ_{ε} that tends in Hausdorff sense to Γ_{Y_0} as $\epsilon \to 0$. Different choices of Y_0 may or may not lead to different control curves, but in any case all such control curves are exponentially

close to each other.

Questions:

- 1. Is the periodic orbit a limit cycle?
- 2. Are there multiple cycles in the nest?

Lemma (Fast relation function)

Associated to a canard nest there exists a smooth fast relation function $L : [x_c, x_r] \rightarrow [x_\ell, x_c]$ such that F(L(x)) = F(x). (For λ -families of canard nests, both L and its the domain may be λ -dependent.)

Lemma (Fast relation function)

Associated to a canard nest there exists a smooth fast relation function $L : [x_c, x_r] \rightarrow [x_\ell, x_c]$ such that F(L(x)) = F(x). (For λ -families of canard nests, both L and its the domain may be λ -dependent.)

Next, we define the slow divergence integral as

$$I(x) = \sigma \int_{L(x)}^{x} \frac{F'(s)^2}{G(s)} ds, \qquad \sigma = \operatorname{sign} F''(x_c).$$

Lemma (Fast relation function)

Associated to a canard nest there exists a smooth fast relation function $L : [x_c, x_r] \rightarrow [x_\ell, x_c]$ such that F(L(x)) = F(x). (For λ -families of canard nests, both L and its the domain may be λ -dependent.)

Next, we define the slow divergence integral as

$$I(x) = \sigma \int_{L(x)}^{x} \frac{F'(s)^2}{G(s)} ds, \qquad \sigma = \operatorname{sign} F''(x_c).$$

Theorem (Multiple cycles in a canard nest, Dumortier, Roussarie (2001))

Let $Y_0 = F(x_0)$ for some $x_0 \in (x_c, x_r)$ and consider the canard cycle Γ_{Y_0} . The orbit γ_{ε} is a uniformly hyperbolic limit cycle when $I(x_0) \neq 0$. Furthermore, suppose $I(x_0) \neq 0$ but I has k simple zeros $\{x_1, \ldots, x_k\}$ on the interval (x_c, x_0) then $X_{\epsilon, A(\varepsilon)}$ has k additional limit cycles.

A canard nest for which the slow divergence integral has k simple zeros on (x_c, x_r) hence has the potential to generate k + 1 limit cycles. We call (k + 1) the nest configuration. If I is identically zero (like in the case of a global center), the nest configuration is undefined.

A canard nest for which the slow divergence integral has k simple zeros on (x_c, x_r) hence has the potential to generate k + 1 limit cycles. We call (k + 1) the nest configuration. If I is identically zero (like in the case of a global center), the nest configuration is undefined.

Lemma (Change of coordinates of canard nests) If (F, G, x_c, x_ℓ, x_r) is a canard nest, then any smooth change of coordinates $\{x = \rho(X), y = Y + Y_0\}$ for which ρ has no singular values in $[x_\ell, x_r]$ leads to a canard nest

 $(F \circ \rho, \rho' \cdot (G \circ \rho), X_c, X_\ell, X_r)$

where $\rho(X_c) = x_c$, $\rho(X_\ell) = x_\ell$, $\rho(X_r) = x_r$. Furthermore, the nest configuration is retained.

Lemma (Robustness of canard nests)

Let (F, G, x_c, x_ℓ, x_r) be a canard nest with configuration (k + 1), $k \ge 0$. For any pair of functions (F_1, G_1) defined on $[x_\ell, x_r]$ and satisfying the hypothesis (i) given above, i.e. $F'_1(x_c) = G_1(x_c) = 0$, there exists, for δ small enough, a perturbation

 $(F + \delta F_1, \overline{G + \delta G_1, x_c, x_\ell + o(1), x_r + o(1))},$

which is a canard nest of configuration at least (k + 1).

Theorem

De Maesschalck, Huzak (2015) Given any $n \ge 6$, there exist a polynomial F(x) of degree n and $x_{\ell} < 0 < x_r$ for which the canard nest $(F(x), -x, 0, x_{\ell}, x_r)$

$$\begin{cases} \dot{x} = y - F(x) \\ \dot{y} = -x \end{cases}$$

has configuration at least n - 2.

Theorem

De Maesschalck, Huzak (2014) Given any $n \ge 6$ and $m \ge 2$, there exist a polynomial F(x) of degree n, a polynomial G(x) of degree m and $x_{\ell} < 0 < x_r$ for which the canard nest $(F(x), G(x), 0, x_{\ell}, x_r)$

$$\begin{cases} \dot{x} = y - F(x) \\ \dot{y} = G(x) \end{cases}$$

has configuration at least $2\left[\frac{n-2}{2}\right] + \left[\frac{m}{2}\right]$.

Theorem

De Maesschalck, Dumortier (2011) For any even degree $m \ge 2$ there exists a polynomial $G_1(x)$ of degree m so that the canard nest $(x^2, -x + \delta G_1(x), 0, -x_{max} + o(1), x_{max} + o(1))$

$$\begin{cases} \dot{x} = y - x^2 \\ \dot{y} = -x + \delta G_1(x) \end{cases}$$

has configuration $(\frac{m}{2})$, for sufficiently small $\delta \neq 0$.

Theorem

De Maesschalck, Dumortier (2011) For any odd degree $n \ge 3$ there exists a polynomial $F_1(x)$ of degree n so that the canard nest $(x^2 + \delta F_1(x), -x, 0, -x_{max} + o(1), x_{max} + o(1))$

$$\left(egin{array}{ccc} \dot{x} &=& y-x^2-\delta F_1(x) \ \dot{y} &=& -x \end{array}
ight.$$

has configuration $(\frac{n-1}{2})$, for sufficiently small $\delta \neq 0$.

Canard populations

Given a smooth system

$$\begin{cases} \dot{x} = y - F(x), \\ \dot{y} = \varepsilon G(x). \end{cases}$$

It is called a canard population on $[x_\ell, x_r]$ when there is a sequence of disjoint subsets $[x_\ell^{(i)}, x_r^{(i)}]$, i = 1, ..., N and within $x_c^{(i)}$ such that

 $(F, G, x_c^{(i)}, x_\ell^{(i)}, x_r^{(i)})$

are canard nests. The population configuration is defined as (k_1, \ldots, k_N) , where k_i is the nest configuration of the *i*-th canard nest.

Proposition

Given a canard population (F, G) defined on $[x_{\ell}, x_r]$ with $x_{\ell} < 0 < x_r$. Suppose there exists $z_{\ell} < x_{\ell}$ for which $G(z_{\ell}) < 0$ and $F'(z_{\ell}) \neq 0$, and that there exists $z_r > x_r$ for which $G(z_r) > 0$ and $F'(z_r) \neq 0$.

Proposition

Given a canard population (F, G) defined on $[x_{\ell}, x_r]$ with $x_{\ell} < 0 < x_r$. Suppose there exists $z_{\ell} < x_{\ell}$ for which $G(z_{\ell}) < 0$ and $F'(z_{\ell}) \neq 0$, and that there exists $z_r > x_r$ for which $G(z_r) > 0$ and $F'(z_r) \neq 0$. Then for a suitable choice of M > 0, the change of coordinates

$$\begin{cases} x = \frac{1}{M}(X^2 - M^2) \\ y = Y + F(-M) \end{cases}$$

leads to a canard population $(ilde{F}, ilde{G})$ and an associated vector field

$$\left\{ egin{array}{ll} \dot{X} = Y - ilde{\mathcal{F}}(X), \ \dot{Y} = arepsilon \ ilde{\mathcal{G}}(X) \end{array}
ight.$$

with

$$\begin{split} & ilde{F}(X) = F\left(rac{1}{M}(X^2-M^2)
ight) - F(-M), \ & ilde{G}(X) = rac{2X}{M}G\left(rac{1}{M}(X^2-M^2)
ight), \end{split}$$

on some interval $[X_{\ell}, X_r]$ with $X_{\ell} < 0 < X_r$.

Proposition

Given a canard population (F, G) defined on $[x_{\ell}, x_r]$ with $x_{\ell} < 0 < x_r$. Suppose there exists $z_{\ell} < x_{\ell}$ for which $G(z_{\ell}) < 0$ and $F'(z_{\ell}) \neq 0$, and that there exists $z_r > x_r$ for which $G(z_r) > 0$ and $F'(z_r) \neq 0$. Then for a suitable choice of M > 0, the change of coordinates

$$\begin{cases} x = \frac{1}{M}(X^2 - M^2) \\ y = Y + F(-M) \end{cases}$$

leads to a canard population $(ilde{F}, ilde{G})$ and an associated vector field

$$\left\{ egin{array}{ll} \dot{X} = Y - ilde{\mathcal{F}}(X), \ \dot{Y} = arepsilon \ ilde{\mathcal{G}}(X) \end{array}
ight.$$

with

$$\begin{split} \tilde{F}(X) &= F\left(\frac{1}{M}(X^2 - M^2)\right) - F(-M),\\ \tilde{G}(X) &= \frac{2X}{M}G\left(\frac{1}{M}(X^2 - M^2)\right), \end{split}$$

on some interval $[X_{\ell}, X_r]$ with $X_{\ell} < 0 < X_r$. The new canard population has two diffeomorphic copies of each canard nest of the original population, and has an additional canard nest near X = 0.

Proposition

Given a canard population in $[x_{\ell}, x_r]$ with a N canard nests, defined with polynomials F, G, and in each nest having a k_i nest configuration, i = 1, ..., N. Then we consider the family of vector fields

$$\begin{cases} \dot{x} = y - F(x) \\ \dot{y} = \epsilon \left[G(x) + \sum_{j=1}^{N} a_j \prod_{j \neq i} \frac{x - x_c^{(j)}}{x_c^{(j)} - x_c^{(j)}} \right], \end{cases}$$

where (a_1, \ldots, a_N) is close to $(0, \ldots, 0)$. There exists a curve in parameter space

$$a_1 = \mathcal{A}_1(\epsilon), \qquad , a_N = \mathcal{A}_N(\epsilon)$$

with $A_1(0) = \cdots = A_N(0) = 0$ and along which the above vector field realizes the limit cycle configuration (k_1, \ldots, k_N) as prescribed in all nests.

Proof.

The case for ${\it N}=1$ is just the slow-fast Hopf case. By induction we have chosen

$$\mathsf{a}_1 = \mathcal{A}_1(\epsilon, \mathsf{a}_k, \dots, \mathsf{a}_N), \dots, \mathsf{a}_{k-1} = \mathcal{A}_{k-1}(\epsilon, \mathsf{a}_k, \dots, \mathsf{a}_N)$$

iteratively applying the slow-fast Hopf result.

- all a_i are $O(\epsilon) \implies$ slow divergence integral computations are not affected
- at each induction step process the configuration of limit cycles is the same as in the previous one, but including additional limit cycles corresponding to $a_k = \mathcal{A}_k(\epsilon)$.

The center canard nest

In the induction process, at some point we have a canard population

$$\begin{cases} \dot{x} = y - F(x) \\ \dot{y} = \epsilon G(x) \end{cases}$$

with

- $-G(x) = -x + O(x^3)$ is odd
- $F(x) = x^2 + O(x^4)$ is even
- Both are polynomials of some degree
- Away from the origin there are several canard nests with some canard configuration

- there is a canard nest of center type near the origin

Robustness lemma: we can perturb the center canard nest without affecting the canard configuration of existing nests!

For a given pair of integers r and s, we introduce the following definition

$$\mathcal{H}_{r,s}(F,G) = \det egin{pmatrix} h_{s-1} & h_{s-2} & \cdots & h_{s-r} \ h_s & h_{s-1} & \cdots & h_{s-r+1} \ dots & dots & \ddots & dots \ h_{s+r-2} & h_{s+r-3} & \cdots & h_{s-1} \end{pmatrix}$$

where h_k is the 2k-th Taylor coefficient of the (even) function H = G/F' with the convention that $h_k = 0$ for $k \le -1$.

Let $(F, G, 0, -x_{max}, x_{max})$ be a canard nest of center type (i.e. F is even and G is odd) and let m be an odd integer and $n \ge 4$ be an even integer. Suppose

$$\mathcal{H}_{\frac{n}{2}-1,\frac{m+1}{2}}(F,G)\neq 0.$$

Then there exists an odd polynomial F_1 of degree n - 1 and an even polynomial G_1 of degree m - 1 (with $F'_1(0) = G_1(0) = 0$), for which

 $(F(x) + \delta F_1(x), G(x) + \delta G_1(x), 0, -x_{max} + o(1), x_{max} + o(1))$

is a canard nest with configuration at least $\left(\frac{m+n-3}{2}\right)$, for sufficiently small $\delta \neq 0$.

Let $(F, G, 0, -x_{max}, x_{max})$ be a canard nest of center type (i.e. F is even and G is odd) and let m be an odd integer and $n \ge 4$ be an even integer. Suppose

$$\mathcal{H}_{\frac{n}{2}-1,\frac{m+1}{2}}(F,G)\neq 0.$$

Then there exists an odd polynomial F_1 of degree n-1 and an even polynomial G_1 of degree m-1 (with $F'_1(0) = G_1(0) = 0$), for which

 $(F(x) + \delta F_1(x), G(x) + \delta G_1(x), 0, -x_{max} + o(1), x_{max} + o(1))$

is a canard nest with configuration at least $\left(\frac{m+n-3}{2}\right)$, for sufficiently small $\delta \neq 0$.

 \longrightarrow We look for F_1 , G_1 for which many simple zeros of

 $I_{\delta}(x) = \sigma \int_{L_{\delta}(x)}^{x} \frac{(F + \delta F_1)'(s)^2}{(G + \delta G_1)(s)} ds, \qquad \sigma = \operatorname{sign} F''(0).$

appear.

As a first step, we derive more explicitly the slow divergence integral of the perturbed vector field: we look at the integrand:

$$\frac{(F' + \delta F'_1)^2}{G + \delta G_1} = \frac{F'^2 + 2\delta F' F'_1}{G(1 + \delta G_1/G)} + O(\delta^2) \\ = \frac{(F'^2 + 2\delta F' F'_1)(1 - \delta G_1/G)}{G} + O(\delta^2) \\ = \frac{F'^2}{G} + \delta \frac{2F' F'_1 G - F'^2 G_1}{G^2} + O(\delta^2).$$

As a first step, we derive more explicitly the slow divergence integral of the perturbed vector field: we look at the integrand:

$$\frac{(F' + \delta F_1')^2}{G + \delta G_1} = \frac{F'^2 + 2\delta F' F_1'}{G(1 + \delta G_1/G)} + O(\delta^2)$$

= $\frac{(F'^2 + 2\delta F' F_1')(1 - \delta G_1/G)}{G} + O(\delta^2)$
= $\frac{F'^2}{G} + \delta \frac{2F' F_1' G - F'^2 G_1}{G^2} + O(\delta^2).$

Next we use the equation $F(x) + \delta F_1(x) = F(L_{\delta}(x)) + \delta F_1(L_{\delta}(x))$ together with $L_0(x) = -x$ to derive that

$$L_{\delta}(x) = -x - 2\delta rac{F_1(x)}{F'(x)} + O(\delta^2).$$

As a first step, we derive more explicitly the slow divergence integral of the perturbed vector field: we look at the integrand:

$$\frac{(F' + \delta F'_1)^2}{G + \delta G_1} = \frac{F'^2 + 2\delta F'F'_1}{G(1 + \delta G_1/G)} + O(\delta^2)$$

= $\frac{(F'^2 + 2\delta F'F'_1)(1 - \delta G_1/G)}{G} + O(\delta^2)$
= $\frac{F'^2}{G} + \delta \frac{2F'F'_1G - F'^2G_1}{G^2} + O(\delta^2).$

Next we use the equation $F(x) + \delta F_1(x) = F(L_{\delta}(x)) + \delta F_1(L_{\delta}(x))$ together with $L_0(x) = -x$ to derive that

$$L_{\delta}(x)=-x-2\deltarac{F_1(x)}{F'(x)}+O(\delta^2).$$

Hence

$$egin{aligned} &\mathcal{H}_{\delta}(x) = \sigma \int_{-x-2\deltarac{F_1(x)}{F'(x)}}^x \left(rac{F'(s)^2}{G(s)} + \delta rac{2F'(s)F_1'(s)G(s) - F'(s)^2G_1(s)}{G(s)^2}
ight) ds + O(\delta^2) \ &= \sigma \delta \left(\int_{-x}^x rac{2F'(s)F_1'(s)G(s) - F'(s)^2G_1(s)}{G(s)^2} ds - 2rac{F_1(x)}{F'(x)}rac{F'(x)^2}{G(x)}
ight) + O(\delta^2). \end{aligned}$$

Let us thus define

$$I_1(x) = \int_{-x}^{x} \frac{2F'(s)F'_1(s)G(s) - F'(s)^2G_1(s)}{G(s)^2} ds - 2\frac{F'(x)F_1(x)}{G(x)}.$$

Hence, simple zeros of I_1 in the open set $(0, x_{max})$ will perturb, for $\delta \neq 0$ small enough to simple zeros of I_{δ} . This reduces our focus to the study of the zeros of I_1 .

Let us thus define

$$I_1(x) = \int_{-x}^{x} \frac{2F'(s)F'_1(s)G(s) - F'(s)^2G_1(s)}{G(s)^2} ds - 2\frac{F'(x)F_1(x)}{G(x)}.$$

Hence, simple zeros of I_1 in the open set $(0, x_{max})$ will perturb, for $\delta \neq 0$ small enough to simple zeros of I_{δ} . This reduces our focus to the study of the zeros of I_1 . Observe that $I_1(0) = 0$ and

$$I_{1}'(x) = 2\frac{F'(x)F_{1}'(x)G(x) - F'(x)^{2}G_{1}(x) - G(x)F''(x)F_{1}(x) + G'(x)F'(x)F_{1}(x)}{G(x)^{2}}$$

Let us thus define

$$I_1(x) = \int_{-x}^{x} \frac{2F'(s)F'_1(s)G(s) - F'(s)^2G_1(s)}{G(s)^2} ds - 2\frac{F'(x)F_1(x)}{G(x)}.$$

Hence, simple zeros of I_1 in the open set $(0, x_{max})$ will perturb, for $\delta \neq 0$ small enough to simple zeros of I_{δ} . This reduces our focus to the study of the zeros of I_1 . Observe that $I_1(0) = 0$ and

$$I_{1}'(x) = 2 \frac{F'(x)F_{1}'(x)G(x) - F'(x)^{2}G_{1}(x) - G(x)F''(x)F_{1}(x) + G'(x)F'(x)F_{1}(x)}{G(x)^{2}}$$

Introducing H = G/F' we rewrite it as

$\frac{1}{2}I_1'(x)H(x)^2 = F_1'(x)H(x) + H'(x)F_1(x) - G_1(x)$

Keep in mind that H is smooth (we smoothly extend the domain in the origin), $H(0) \neq 0$, and both H and I'_1 are even, so the green equation only contains even terms, starting with degree 2.

$\frac{1}{2}I_1'(x)H(x)^2 = F_1'(x)H(x) + H'(x)F_1(x) - G_1(x)$

Now, our claim is the following: for each given

$$\mathcal{P}_{\lambda}(x)=\sum_{k=1}^{rac{n+m-3}{2}}\lambda_k x^{2k+1},$$

where $\lambda = (\lambda_1, \ldots, \lambda_{\frac{n+m-3}{2}})$, there exists a F_1 and G_1 satisfying the hypotheses of the theorem and there exists an analytic function $R_{\lambda}(x)$ such that the green equation is satisfied with $I_1(x)$ of the form

 $I_1(x) = P_\lambda(x) + R_\lambda(x) x^{n+m}.$

$\frac{1}{2}I_1'(x)H(x)^2 = F_1'(x)H(x) + H'(x)F_1(x) - G_1(x)$

Now, our claim is the following: for each given

$$\mathcal{P}_{\lambda}(x)=\sum_{k=1}^{rac{n+m-3}{2}}\lambda_k x^{2k+1},$$

where $\lambda = (\lambda_1, \ldots, \lambda_{\frac{n+m-3}{2}})$, there exists a F_1 and G_1 satisfying the hypotheses of the theorem and there exists an analytic function $R_{\lambda}(x)$ such that the green equation is satisfied with $I_1(x)$ of the form

 $h_1(x) = P_\lambda(x) + R_\lambda(x) x^{n+m}.$

 $\frac{1}{2} \left[P_{\lambda}(x) + R_{\lambda}(x) x^{n+m} \right]' H(x)^2 = F_1'(x) H(x) + H'(x) F_1(x) - G_1(x).$

Is equivalent to:

$$\begin{cases} G_1 = j_{m-1} \left[F'_1 H + H' F_1 - \frac{1}{2} P'_\lambda H^2 \right], \\ S^{m+1} \left[\frac{1}{2} (P'_\lambda + (R_\lambda . x^{n+m})') H^2 \right] = S^{m+1} [F'_1 H + H' F_1]. \end{cases}$$

 $\overline{j_{m-1}}$: take the m-1 jet around the origin S^{m+1} : shift series

is equivalent to

 $\begin{cases} G_1 = j_{m-1} \left[F'_1 H + H' F_1 - \frac{1}{2} P'_\lambda H^2 \right], \\ S^{m+1} \left[\frac{1}{2} (P'_\lambda + (R_\lambda . x^{n+m})') H^2 \right] = S^{m+1} [F'_1 H + H' F_1]. \end{cases}$

is equivalent to

 $\begin{cases} G_1 = j_{m-1} \left[F'_1 H + H' F_1 - \frac{1}{2} P'_\lambda H^2 \right], \\ S^{m+1} \left[\frac{1}{2} (P'_\lambda + (R_\lambda . x^{n+m})') H^2 \right] = S^{m+1} [F'_1 H + H' F_1]. \end{cases}$

so also equivalent to:

 $\begin{cases} G_1 = j_{m-1} \left[F'_1 H + H' F_1 - \frac{1}{2} P'_\lambda H^2 \right], \\ j_{n-4} \left[S^{m+1} \left[\frac{1}{2} P'_\lambda H^2 \right] \right] = j_{n-4} \left[S^{m+1} [F'_1 H + H' F_1] \right]. \\ S^{n+m-1} \left[\frac{1}{2} P'_\lambda H^2 + (R_\lambda . x^{n+m})') H^2 \right] = S^{n+m-1} [F'_1 H + H' F_1]. \end{cases}$

is equivalent to

 $\begin{cases} G_1 = j_{m-1} \left[F'_1 H + H' F_1 - \frac{1}{2} P'_\lambda H^2 \right], \\ j_{n-4} \left[S^{m+1} \left[\frac{1}{2} P'_\lambda H^2 \right] \right] = j_{n-4} \left[S^{m+1} [F'_1 H + H' F_1] \right]. \\ S^{n+m-1} \left[\frac{1}{2} P'_\lambda H^2 + (R_\lambda . x^{n+m})') H^2 \right] = S^{n+m-1} [F'_1 H + H' F_1]. \end{cases}$

is equivalent to

$$\begin{cases} G_{1} = j_{m-1} \left[F_{1}'H + H'F_{1} - \frac{1}{2}P_{\lambda}'H^{2} \right], \\ j_{n-4} \left[S^{m+1} \left[\frac{1}{2}P_{\lambda}'H^{2} \right] \right] = j_{n-4} \left[S^{m+1} [F_{1}'H + H'F_{1}] \right]. \\ S^{n+m-1} \left[\frac{1}{2}P_{\lambda}'H^{2} + (R_{\lambda}.x^{n+m})')H^{2} \right] = S^{n+m-1} [F_{1}'H + H'F_{1}]. \end{cases}$$

so also equivalent to:

$$\begin{cases} G_{1} = j_{m-1} \left[F_{1}'H + H'F_{1} - \frac{1}{2}P_{\lambda}'H^{2} \right], \\ \\ j_{n-4} \left[S^{m+1} \left[\frac{1}{2}P_{\lambda}'H^{2} \right] \right] = j_{n-4} \left[S^{m+1} [F_{1}'H + H'F_{1}] \right]. \\ \\ (n+m)R_{\lambda} + xR_{\lambda}' = \frac{1}{H^{2}}.S^{n+m-1} \left[F_{1}'H + H'F_{1} - \frac{1}{2}P_{\lambda}'H^{2} \right]. \end{cases}$$

is equivalent to

$$\begin{cases} G_{1} = j_{m-1} \left[F_{1}'H + H'F_{1} - \frac{1}{2}P_{\lambda}'H^{2} \right], \\ j_{n-4} \left[S^{m+1} \left[\frac{1}{2}P_{\lambda}'H^{2} \right] \right] = j_{n-4} \left[S^{m+1} [F_{1}'H + H'F_{1}] \right]. \\ S^{n+m-1} \left[\frac{1}{2}P_{\lambda}'H^{2} + (R_{\lambda}.x^{n+m})')H^{2} \right] = S^{n+m-1} [F_{1}'H + H'F_{1}]. \end{cases}$$

so also equivalent to:

 $\begin{cases} G_1 = j_{m-1} \left[F'_1 H + H' F_1 - \frac{1}{2} P'_\lambda H^2 \right], \\ j_{n-4} \left[S^{m+1} \left[\frac{1}{2} P'_\lambda H^2 \right] \right] = j_{n-4} \left[S^{m+1} [F'_1 H + H' F_1] \right]. \\ (n+m) R_\lambda + x R'_\lambda = \frac{1}{H^2} . S^{n+m-1} \left[F'_1 H + H' F_1 - \frac{1}{2} P'_\lambda H^2 \right]. \end{cases}$ remains to solve the yellow equation w.r.t. F_1 .

$$H(x) = \sum_{k=0}^{\frac{m+n-1}{2}} h_k x^{2k} + O(x^{m+n+1}), \qquad F_1(x) = \sum_{\ell=1}^{\frac{n}{2}-1} f_\ell x^{2\ell+1},$$

and write the left-hand side of the yellow equation as a polynomial

$$W(x)=\sum_{i=0}^{\frac{n}{2}-2}w_ix^{2i}.$$

Lemma

Let r = (n/2) - 1 and s = (m + 1)/2. The yellow equation is a linear system

$$\begin{pmatrix} h_{s-1} & h_{s-2} & \cdots & h_{s-r} \\ h_s & h_{s-1} & \cdots & h_{s-r+1} \\ \vdots & \vdots & \ddots & \vdots \\ h_{s+r-2} & h_{s+r-3} & \cdots & h_{s-1} \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_r \end{pmatrix} = \begin{pmatrix} w_0/(2s+1) \\ w_1/(2s+3) \\ \vdots \\ w_{r-1}/(2s+2r-1) \end{pmatrix}$$

Let us now finish the proof of the theorem. We have shown that, given any P_{λ} , there exist choices of (F_1, G_1) so that the orange equation is satisfied:

 $H_1(x) = P_\lambda(x) + R_\lambda(x) x^{n+m}$

Hence, we rewrite it as

 $\overline{I_1(x)}=x^3ar{I_1}(x^2), \qquad \overline{I_1}(t)=ar{P}_\lambda(t)+ar{R}_\lambda(t)t^{rac{n+m-3}{2}}$

where

$$ar{P}_{\lambda}(t) = \sum_{k=0}^{rac{n+m-3}{2}-1} \lambda_{k+1} t^k = \sum_{k=0}^{r+s-2} \lambda_{k+1} t^k$$

Let us now finish the proof of the theorem. We have shown that, given any P_{λ} , there exist choices of (F_1, G_1) so that the orange equation is satisfied:

 $H_1(x) = P_\lambda(x) + R_\lambda(x) x^{n+m}$

Hence, we rewrite it as

$$I_1(x) = x^3 ar{l}_1(x^2), \qquad ar{l}_1(t) = ar{P}_\lambda(t) + ar{R}_\lambda(t) t^{rac{n+m-3}{2}}$$

where

$$ar{P}_{\lambda}(t) = \sum_{k=0}^{rac{n+m-3}{2}-1} \lambda_{k+1} t^k = \sum_{k=0}^{r+s-2} \lambda_{k+1} t^k$$

 \implies zeros of slow divergence integral follow from catastrophe theory: I_1 can have r + s - 2 simple zeros on $\{t > 0\}$.

Let $(F, G, 0, -x_{max}, x_{max})$ be a canard nest of center type (i.e. F is even and G is odd) and let m be an odd integer and $n \ge 4$ be an even integer. Suppose

 $\mathcal{H}_{\frac{n}{2}-1,\frac{m+1}{2}}(F,G)\neq 0.$

Then there exists an odd polynomial F_1 of degree n-1 and an even polynomial G_1 of degree m-1 (with $F'_1(0) = G_1(0) = 0$), for which

 $(F(x) + \delta F_1(x), G(x) + \delta G_1(x), 0, -x_{max} + o(1), x_{max} + o(1))$

is a canard nest with configuration at least $\left(\frac{m+n-3}{2}\right)$, for sufficiently small $\delta \neq 0$.

Let $(F, G, 0, -x_{max}, x_{max})$ be a canard nest of center type (i.e. F is even and G is odd) and let m be an odd integer and $n \ge 4$ be an even integer. Suppose

 $\mathcal{H}_{\frac{n}{2}-1,\frac{m+1}{2}}(F,G)\neq 0.$

Then there exists an odd polynomial F_1 of degree n-1 and an even polynomial G_1 of degree m-1 (with $F'_1(0) = G_1(0) = 0$), for which

 $(F(x) + \delta \overline{F_1(x), G(x) + \delta G_1(x), 0, -x_{max} + o(1), x_{max} + o(1))}$

is a canard nest with configuration at least $(\frac{m+n-3}{2})$, for sufficiently small $\delta \neq 0$. If additional constraints on F'_1 and G_1 are imposed in the form that $F'_1(x_j) = G_1(x_j) = 0$ at several distinct (nonzero) points x_j , j = 1, ..., J, then the results still hold with a reduced configuration of at least $(\frac{m+n-3}{2}) - 2J$.

configuration of at least $\left(\frac{m+n-3}{2}\right) - 2J$.

Let us now discuss the case $J \ge 1$:

- $F'_1(x_j)$ depend linearly on coefficients of F_1
- coefficients depend linearly on LHS of yellow equation
- LHS depends linearly on λ
- same thing for $G_1(x_j)$.

 \Rightarrow we have $2\overline{J}$ linear constraints on the parameter space $(\lambda_1, \ldots, \lambda_{r+s-1}).$

Let us now discuss the case $J \ge 1$:

- $F'_1(x_j)$ depend linearly on coefficients of F_1
- coefficients depend linearly on LHS of yellow equation
- LHS depends linearly on λ
- same thing for $G_1(x_j)$.

 \Rightarrow we have 2*J* linear constraints on the parameter space $(\lambda_1, \dots, \lambda_{r+s-1})$. Elementary catastrophe under linear constraints

Lemma

Let $f(t,\mu) = \sum_{k=0}^{K-1} \mu_k t^k + O(t^K)$ be smooth in (t,μ) near (0,0), linear w.r.t. μ , and let M be a linear subspace of \mathbb{R}^K of codimension L. Then, inside any open neighborhood W of $\mu = 0$ and T of t = 0, there exist choices of $\mu \in M \cap W$ for which $f(t,\mu)$ has K - L - 1 simple zeros on $\{t > 0\} \cap T$.

Let $(F, G, 0, -x_{max}, x_{max})$ be a canard nest of center type (i.e. F is even and G is odd) and let m be an odd integer and $n \ge 4$ be an even integer. Suppose

$$\mathcal{H}_{\frac{n}{2}-1,\frac{m+1}{2}}(F,G)\neq 0.$$

Then there exists an odd polynomial F_1 of degree n - 1 and an even polynomial G_1 of degree m - 1 (with $F'_1(0) = G_1(0) = 0$), for which

 $(F(x) + \delta F_1(x), G(x) + \delta G_1(x), 0, -x_{max} + o(1), x_{max} + o(1))$

is a canard nest with configuration at least $(\frac{m+n-3}{2})$, for sufficiently small $\delta \neq 0$. If additional constraints on F'_1 and G_1 are imposed in the form that $F'_1(x_j) = G_1(x_j) = 0 \dots$

Let $(F, G, 0, -x_{max}, x_{max})$ be a canard nest of center type (i.e. F is even and G is odd) and let m be an odd integer and $n \ge 4$ be an even integer. Suppose

 $\mathcal{H}_{\frac{n}{2}-1,\frac{m+1}{2}}(F,G)\neq 0.$

Then there exists an odd polynomial F_1 of degree n-1 and an even polynomial G_1 of degree m-1 (with $F'_1(0) = G_1(0) = 0$), for which

 $(F(x) + \delta F_1(x), G(x) + \delta G_1(x), 0, -x_{max} + o(1), x_{max} + o(1))$

is a canard nest with configuration at least $(\frac{m+n-3}{2})$, for sufficiently small $\delta \neq 0$. If additional constraints on F'_1 and G_1 are imposed in the form that $F'_1(x_j) = G_1(x_j) = 0 \dots$

Let $(F, G, 0, -x_{max}, x_{max})$ be a canard nest of center type (i.e. F is even and G is odd) and let m be an odd integer and $n \ge 4$ be an even integer. Suppose

 $\mathcal{H}_{\frac{n}{2}-1,\frac{m+1}{2}}(F,G)\neq 0.$

Then there exists an odd polynomial F_1 of degree n - 1 and an even polynomial G_1 of degree m - 1 (with $F'_1(0) = G_1(0) = 0$), for which

 $(F(x) + \delta F_1(x), G(x) + \delta G_1(x), 0, -x_{max} + o(1), x_{max} + o(1))$

is a canard nest with configuration at least $(\frac{m+n-3}{2})$, for sufficiently small $\delta \neq 0$. If additional constraints on F'_1 and G_1 are imposed in the form that $F'_1(x_j) = G_1(x_j) = 0$...

Lemma

Let (F, G) be as above and such that $\mathcal{H}_{r,s}(F, G) = 0$. Then

 $\mathcal{H}_{r,s}(F,G+\mu x^{2s-1}(1+O(x)))\neq 0, \qquad \forall \mu\neq 0 \text{ small enough}.$

The induction process

Consider

$$\begin{cases} \dot{x} = y - F_i(x) \\ \dot{y} = \epsilon G_i(x) \end{cases}$$

with

$$F_0(x) = x^2 + a_3 x^3 + \dots + a_{n_0} x^{n_0}, G_0(x) = -x$$

Perturb to

$$ar{F}_0=F_0, \qquad ar{G}_0(x)=-x+\delta x^{n_0-1}$$

Repeat in iteration:

- Do the doubling step
- Perturb to obtain condition ${\mathcal H}$ if necessary.
- Create extra cycles in the central nest

Let $n_i = \deg F_i$, $m_i = \deg G_i$, $c_i = \#$ nests, $k_i =$ total canard configuration.

As a consequence, we examine the following system of recursions:

$$\left(egin{array}{rcl} n_{i+1}&=&2n_i,\ m_{i+1}&=&2m_i+1,\ c_{i+1}&=&2c_i+1,\ k_{i+1}&=&2k_i+(n_i+m_i-5c_i-1), \end{array}
ight.$$

with n_0 arbitrary, $m_0 = n_0 - 1$, $c_0 = 1$, $k_0 = n_0 - 2$. It is easily solved:

$$\left\{ \begin{array}{rrl} n_i &=& n_0 2^i, \\ m_i &=& n_i - 1, \\ c_i &=& 2^{i+1} - 1, \\ k_i &=& (1+i)n_i - \frac{5i-1}{2}c_i - \frac{5i+5}{2}. \end{array} \right.$$
In view of obtaining the result on Generalized Liénards, let $N = n_i = n_0 2^i$. Then $c_i = 2 \frac{N}{n_0} - 1$, which makes that

$$k_i = (1+i)N - (5i-1)\left(\frac{N}{n_0} - \frac{1}{2}\right) - \frac{5i+5}{2}$$
$$= iN\frac{n_0-5}{n_0} + N\frac{n_0+1}{n_0} - 3.$$

We define N_i as the outcome of the sequence $(n_i)_i$ at step i, with $n_0 = i$, i.e. $N_i = i2^i$. Then

$$k_i = iN_i \frac{i-5}{i} + N_i \frac{i+1}{i} - 3 = iN_i(1+o(1)), \qquad i \to \infty.$$

Noting that $\log N_i = \log(i2^i) = \log i + i \log 2 = (i \log 2)(1 + o(1))$, we obtain

$$k_i = rac{N_i \log N_i}{\log 2} (1 + o(1)), \qquad i o \infty.$$

This way we obtain the result on generalized Liénards

Theorem

There exists a function $\underline{H}_{g\ell}$: $\mathbb{N} \to \mathbb{R}^+$ with the property

$$\underline{H}_{g\ell}(\mathsf{N}) = \left(rac{\mathsf{N}\log\mathsf{N}}{\log 2}
ight)(1+o(1))$$
 as $\mathsf{N} o\infty_1$

and a sequence $(N_k)_{k\in\mathbb{N}}$, with $N_k o\infty$ as $k o\infty$ and for which $H_{g\ell}(N_k)\geq \underline{H}_{g\ell}(N_k),$ for all $k\in\mathbb{N}.$

Theorem

There exists a function $\underline{H}_{g\ell} \colon \mathbb{N} \to \mathbb{R}^+$ with the property

$$\underline{H}_{g\ell}(\mathsf{N}) = \left(rac{\mathsf{N}\log\mathsf{N}}{\log 2}
ight)(1+o(1))$$
 as $\mathsf{N} o \infty$.

and a sequence $(N_k)_{k\in\mathbb{N}}$, with $N_k o\infty$ as $k o\infty$ and for which $H_{g\ell}(N_k)\geq \underline{H}_{g\ell}(N_k),$ for all $k\in\mathbb{N}.$

Theorem There exists a function $\underline{H} \colon \mathbb{N} \to \mathbb{R}^+$ with the property

$$\underline{H}(N) = \left(rac{N^2 \log N}{2(\log 2)}
ight) (1 + o(1)) \text{ as } N o \infty,$$

and a sequence $(N_k)_{k\in\mathbb{N}}$, with $N_k o\infty$ as $k o\infty$ and for which $H(N_k)\geq \underline{H}(N_k),$ for all $k\in\mathbb{N}.$

We start with a canard population

$$\begin{cases} \dot{x} = y - F(x) \\ \dot{y} = \epsilon G(x) \end{cases}$$

We start with a canard population inside [-1,1] imes [-1,1]

$$\begin{cases} \dot{x} = y - F(x) \\ \dot{y} = \epsilon G(x) \end{cases}$$

We start with a canard population inside [-1,1] imes [-1,1]

$$\left\{ egin{array}{rcl} \dot{x} &=& y-F(x) \ \dot{y} &=& \epsilon G(x) \end{array}
ight.$$

perturbations preserve canard configuration:

$$\left\{ egin{array}{rcl} \dot{x}&=&y-F(x)\ \dot{y}&=&\epsilon\Delta(y)G(x) \end{array}
ight.$$

where $\Delta(0) = 1$ and $\sup_{|y| \leq 1} |\Delta(y) - 1| < \delta$

We start with a canard population inside [-1,1] imes [-1,1]

$$\left\{ egin{array}{rcl} \dot{x} &=& y-F(x) \ \dot{y} &=& \epsilon G(x) \end{array}
ight.$$

perturbations preserve canard configuration:

$$\begin{cases} \dot{x} = y - F(x) \\ \dot{y} = \epsilon \Delta(y) G(x) \end{cases}$$

where $\Delta(0) = 1$ and $\sup_{|y| \le 1} |\Delta(y) - 1| < \delta$ multiplication preserves canard configuration:

$$\begin{cases} \dot{x} = y - F(x) \\ \dot{y} = \epsilon Q \Delta(y) G(x) \end{cases}$$

where Q > 0

We start with a canard population inside [-1,1] imes[-1,1]

$$\left\{ egin{array}{rcl} \dot{x} &=& y-F(x) \ \dot{y} &=& \epsilon G(x) \end{array}
ight.$$

perturbations preserve canard configuration:

$$\begin{cases} \dot{x} = y - F(x) \\ \dot{y} = \epsilon \Delta(y) G(x) \end{cases}$$

where $\Delta(0) = 1$ and $\sup_{|y| \le 1} |\Delta(y) - 1| < \delta$ multiplication preserves canard configuration:

where $\Delta(0) >$

$$\begin{cases} \dot{x} = y - F(x) \\ \dot{y} = \epsilon Q \Delta(y) G(x) \end{cases}$$

where Q > 0conclude: "big almost constant" perturbations preserve canard configuration

$$\left\{ egin{array}{rcl} \dot{x}&=&y-F(x)\ \dot{y}&=&\epsilon\Delta(y)G(x) \end{array}
ight.$$
) and $\sup_{|y|\leq 1}|\Delta(y)-\Delta(0)|<$

We consider a new system

where ρ is a polynomial of degree N that is yet to be constructed. We will ensure though that $Y \mapsto y = \rho(Y)$ covers the interval [-1, 1] N times. We consider a new system

where ρ is a polynomial of degree N that is yet to be constructed. We will ensure though that $Y \mapsto y = \rho(Y)$ covers the interval [-1, 1] N times. Let $y \mapsto Y = \alpha_i(y)$ be the inverses, i = 1, ..., N. Transforming the orange system via the coordinate change $Y = \alpha_i(y)$ gives

 $\begin{cases} \dot{x} = y - F(x) \\ \dot{y} = \epsilon \rho'(\alpha_i(y))G(x) \end{cases}$

If we ensure that $\sup_{|y|\leq 1} |\rho'(\alpha_i(y)) - \rho'(\alpha_i(0))| < \delta$ and $\rho'(\alpha_i(0)) > 0$, for each value of *i*, then the orange system has *N* copies of canard populations in the yellow system, each with configuration *k*.

We consider a new system

where ρ is a polynomial of degree N that is yet to be constructed. We will ensure though that $Y \mapsto y = \rho(Y)$ covers the interval [-1, 1] N times. Let $y \mapsto Y = \alpha_i(y)$ be the inverses, i = 1, ..., N. Transforming the orange system via the coordinate change $Y = \alpha_i(y)$ gives

 $\begin{cases} \dot{x} = y - F(x) \\ \dot{y} = \epsilon \rho'(\alpha_i(y))G(x) \end{cases}$

If we ensure that $\sup_{|y|\leq 1} |\rho'(\alpha_i(y)) - \rho'(\alpha_i(0))| < \delta$ and $\rho'(\alpha_i(0)) > 0$, for each value of *i*, then the orange system has *N* copies of canard populations in the yellow system, each with configuration *k*.

ightarrow only possible for half of the indexes i.

We are now ready to define $\rho(Y)$. Let $\rho_0(Y)$ be an arbitrary polynomial with N simple roots.

We are now ready to define $\rho(Y)$. Let $\rho_0(Y)$ be an arbitrary polynomial with N simple roots.

Clearly, there is an a > 0 and b > 0 so that ρ_0 covers the interval [-b, b] around intervals of radius a centered around each root, i.e. if Y_i is a root, then $\rho_0([Y_i - a, Y_i + a]) \supseteq [-b, b]$. Let M be the sup of $|\rho'_0(Y) - \rho'_0(Y_i)|$ on the union of these intervals.

We are now ready to define $\rho(Y)$. Let $\rho_0(Y)$ be an arbitrary polynomial with N simple roots.

Clearly, there is an a > 0 and b > 0 so that ρ_0 covers the interval [-b, b] around intervals of radius a centered around each root, i.e. if Y_i is a root, then $\rho_0([Y_i - a, Y_i + a]) \supseteq [-b, b]$. Let M be the sup of $|\rho'_0(Y) - \rho'_0(Y_i)|$ on the union of these intervals. Define

$$\rho(Y) = rac{1}{b}
ho_0(\delta b Y/M).$$

Clearly ρ has N simple roots $Y_i \frac{M}{b\delta}$, and it covers the interval [-1, 1] in any root-centered interval with radius $\frac{Ma}{b\delta}$. Finally

$$ho'(\mathbf{Y}) -
ho'(\mathbf{Y}_i \frac{M}{b\delta}) = \frac{\delta}{M} (
ho_0'(\delta b \mathbf{Y}/M) -
ho_0'(\mathbf{Y}_i)),$$

so it is bounded in absolute value by δ .

We return to

$\dot{x} = \rho(Y) - F(x)$ $\dot{Y} = \epsilon G(x)$

The number of canard nests is N/2 times the number of canard nests of the original Liénard system. We then proceed to consider

$$\begin{vmatrix} \dot{x} &= \rho(y) - F(x) \\ \dot{y} &= \epsilon \left[G(x) + F(x, y) \right]$$

with

 ${\cal P}(x,y) = \sum_{k,\ell}
ho_{k\ell}(a_{ij}) x^k y^\ell$

We use two-dimensional interpolation theory on rectangular grids and proceed by induction to find control curves $\mathbf{a} = \mathbf{a}_{ij}(\mathbf{c})$ along which the canard configuration is realized. We return to

$\dot{x} = \rho(Y) - F(x)$ $\dot{Y} = \epsilon G(x)$

The number of canard nests is N/2 times the number of canard nests of the original Liénard system. We then proceed to consider

$$\begin{vmatrix} \dot{x} &= \rho(y) - F(x) \\ \dot{y} &= \epsilon \left[G(x) + F(x, y) \right]$$

with

${\cal P}(x,y) = \sum_{k,\ell} ho_{k\ell}(a_{ij}) x^k y^\ell$

We use two-dimensional interpolation theory on rectangular grids and proceed by induction to find control curves $\mathbf{a} = \mathbf{a}_{ij}(\mathbf{c})$ along which the canard configuration is realized.

$$\implies \frac{N}{2} \times O\left(\frac{N \log N}{\log 2}\right) \text{ hyperbolic limit cycles.}$$

Thank you for the attention.