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Abstract

Let F" be a planar analytic map having a parabolic fixed point with nilpotent part. Given the normal
form of F', we provide an algorithm to compute an approximation up to any order of a stable curve
associated with this point. Then, we prove the existence of such a curve as an a posteriori result using
the parameterization method for invariant manifolds. Concretely, we show that the approximation
obtained from the algorithm converges to a parameterization of the invariant curve and we provide
the analyticity of the curve in an open set that does not contain the fixed point.

Introduction

Let U C R? be an open set, 0 € U, and let F: U — R? be an analytic map with F(0) =0 and

DF(0) = ((1) D |

The origin is a fixed point of F' of parabolic type and with nilpotent part. This class of maps
appear as Poincaré maps at infinity in some problems of celestial mechanics [2].

Via a polynomial change of variables, F' can be written in the normal form
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whereap, #0,0 #0;2 < k<r,2<[<r.

We study the existence and properties of invariant manifolds of F' associated with the fixed
point at the origin.

We look for a parameterization K (t) of an invariant curve of F' and for a one-dimensional map
R(t) representing the dynamics of F' restricted to the invariant curve. The maps K and R must
satisfy the equation

FoK—-KoR=0. (2)

We shall consider tree cases [3] in the normal form (1),

= Case 1,k < 20l —1,
= Case 2, k=2l —1,
= Case 3, k > 21 — 1.

Stable and unstable manifolds

The algorithm

The following statements show that one can obtain a polynomial K and a map R that approxi-
mate equation (3) up to any order.

Proposition 1 (Case 1)

Figures 1, 2 and 3 show the stable and unstable manifolds of the fixed point at the origin for
each case. The unstable manifolds are obtained as stable manifolds of F~1.

Figure 1: Case 1, with a; > 0.

Figure 2: Case 2. Left: a5 > 0, center: a;. <0, b; > 0, right: a; < 0, b; < 0.

Figure 3: Case 3. Left: b; > 0, right: b; < 0.

The parameterization method

The parameterization method [1] is a theoretical frame to study the existence and properties
of several types of invariant manifolds and to provide numerical algorithms to compute approx-
imations of those manifolds.

The approach of the parameterization method is to consider (2) as a functional equation defined

by an operator, namely,
T(F, K, R) =FoK—-—KoR=0, (3)

and to study the operator T in a suitable function space.

Let I be as in (1) and assume k < 2l — 1 and a;, > 0. Then, for all n > 2, there exists a
polynomial K (t) of the form
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and a map R of the form R(t) = t + Ryt" + Rop_1t**~1 such that

F(K (1) = K(R(t)) = (O@"F), O@¢"+*+71)).

Proposition 2 (Cases 2, 3)

Let F be as in (1) and assume k > 2] — 1. Then, for all n > 1, there exists a polynomial K (t)

of the form
- t+ -+ Kt
K@) =1 v y i1 |

and a map R of the form R(t) = t + Rjt' + Ry;_1t?'~1 such that
F(K(t)) — K(R(t) = (O™, O™ ~1).

The proof of Propositions 1 and 2 provide a recursive algorithm to obtain expressions for the
coefficients of K (t) and R(t).
For the first coefficients we obtain

= Case 1: K, =2R; = 42, /55—

k+1 2(k+1)’
by /b7 +dayl
" Case 2 K = R; = - ,

= Case 3: Kiy:Rl:bT.

The analytical setting

We use here the notation corresponding to case 1 (k < 21 — 1), but the setting is analogous for
cases 2 and 3.

If K and R are as in Proposition 1, with R, < 0 and K being a polynomial of degree (n, n+k—1),
to study (3) we may look for a solution A of

Fo(K+A)—(K+A)oR=0. (4)
Fixed K, the existence of such a solution will provide a stable invariant curve K = K + A of F.

We consider the family of Banach spaces

Xy ={f:5—=>C : feHollS), ||flln=-sup |{(|i)‘<oo}, n e N,
zeS |*

where S is a small sector in the complex plane, and we define the operators
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Then (4) can be written as
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where E:= Fo K — Ko R = O(t"*F ¢"*2k=1) and B |\ C X, 41 X X, is a closed ball
centered at 0 and of radius 7.

The following lemmas are the key tool to obtain the existence of a solution of (5).

Lemma 1. Given n € N, the operator S, : X, —>an has a bounded right inverse,
1 — 1
—1. —1 k—1

Syt Xy = Xy_pyr, and S < (p L ——

), where p and v are constants and p
can be chosen to be arbitrarily small.

Lemma 2. The family of linear operators {£,, 1 p+kfn>1 is uniformly bounded.

Lemma 3. The family of nonlinear operators {7, 11, n4k pn>1 is uniformly Lipschitz.

Existence of the stable manifold

By Lemmas 1, 2 and 3, equation (5) can be written as

A= (DnJrl,n—Hc A, Ac B?Z—I—l,n—i—lw (6)

where
, —1
Crptnak D= =S, o1 B+ Logt nak D+ Tngi sk D).

It follows that

o lcan’nJrk : B;+1,n+/~c — B?Z—I—l,?ﬁ—k IS a contraction mapping provided that n is sufficiently
arge.

* The Banach Fixed Point Theorem provides the existence of a unique solution A € B] | . ..
of equation (6).

* There exists a solution K = K + A of equation (4), which defines an analytic stable curve of
F" associated with the fixed point at the origin.

= \We obtain the existence of the invariant curve K as an a posteriori result. The polynomial K
given by the algorithm approximates a curve which is indeed an invariant manifold of F'.

Theorem 1 (Case 1)

let F : U — R? be an analytic map as given in (1), with & < 2/ — 1 and a; > 0. Then,
there exists p > 0 and an analytic function K : (0, p) — R?, and a map of the form R(t) =
t + Rpth + Ror 121 R, < 0, such that F(K (t)) = K(R(t)), t € (0, p).

Moreover, hif( - R — R?is a polynomial of degree (n,n + k — 1), with n > k, such that
F(K(t)) — K(R(t)) = (O("™), O("T2F1)), then there exists p > 0 and a unigue analytic
function K : (0, p) — R?such that F(K(t)) = K(R(t)), and K (t)— K (t) = (O™, O(t"5)).

Theorem 2 (Cases 2, 3)

let F: U — R? be an analytic map as given in (1), with & > 2] — 1.

For case 2, assume ag. > 0 or b; > 0.
For case 3, assume b; < 0.

Then, there exists p > 0 and an analytic function K : (0, p) — R? and a map of the form
R(t) =t + Rjt' + Ryp_1t?~1, R; < 0, such that F(K(t)) = K(R(t)), t € (0, p).

Moreover, if KJ R — R?is a polynomial of degree (n,n + 1 — 1), with n > [ — 1, such
that F(K (t)) — K(R(t)) = (O(™), O(#"2~1)), then there exists p > 0 and a unigue analytic
function K : (0, p) — R2suchthat F(K(t)) = K(R(t)), and K (t)— K (t) = (O™, O™ th).

= Note that in general we can not expect the curve K to be analytic at the origin. Explicit
counterexamples are given in [3].

= For other signs of the parameters a;. and b, we may obtain invariant manifolds in other
regions of the phase space, depending on whether k and [ are even or odd.
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