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ẋ = P(x , y), ẏ = Q(x , y),

where P(x , y) and Q(x , y) are polynomials with

n = max (degP, degQ), and such that P and Q have no

common zeros.

[L. Markus, Trans. Amer. Math. Soc. 1972] asked how many

chordal polynomial systems of degree n are there, up to

topological equivalence, and who are them?

[L. Markus, Trans. Amer. Math. Soc. 1954], following [W.

Kaplan, Duke Math. J. 1940 and 1941], proved that it is enough

to analyse some special leaves and their configuration in the

plane.
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We borrow the name chordal from Kaplan. It is because when

viewed in the disc D
1, the leaves of X are chords in S

1 and

satisfy some relations.

For instance, let X be the system ẋ = −x2, ẏ − 1 + 2xy .

Figure: Some leaves of X
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We first observe that three given leaves S1, S2 and S3 have two

possible relation in the plane: or one of them, say S2, separates

the other two (S1 and S3 are in different connected components

of R2 \ S2), in which case we denote S1|S2|S3, or they form a

cyclic triple, denoted by |S1S2S3|.
In the cyclic case, we can have a positive cycle, denoted by

|S1S2S3|
+ or a negative one, denoted by |S1S2S3|

−.
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+
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If the positive cycles are mapped to negative ones, we say the

subsets are anti-isomorphic.
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and cyclicity are preserved, and positive cycles are carried to

negative ones. So these two sets are anti-isomorphic. If we

define g(S1) = S′

5, g(S2) = S′

4, ..., g(S5) = S′

1, separation and

cyclicity are preserved, and now positive cycles go to positive

ones. So these sets are isomorphic as well.
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Two leaves S1 and S2 of a chordal system X are inseparable if

for any cross sections C1 and C2 through S1 and S2,

respectively, there exists another leaf cutting C1 and C2.

In the polynomial case, Markus proved there are finitely many

inseparable leaves, so we do not have to deal with limit

separatrices...

The canonical regions are the connected components of the

complement in R
2 of the reunion of inseparable leaves.

We denote by Σ the set of inseparable leaves and by XΣ the

set of inseparable leaves plus one leaf of each canonical

region. We call XΣ the inseparable configuration of X .

(By different chooses of canonical regions, the related

inseparable configurations are isomorphic).
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Kaplan - Markus result

Theorem
Two polynomial chordal systems X1 and X2 are topologically

equivalent if and only if the related inseparable configurations

X1Σ and X2Σ are isomorphic or anti-isomorphic by a map

carrying Σ1 to Σ2.

So the classification problem proposed by Markus depends

only on the inseparable configuration of chordal systems.
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We denote this number by s(n).
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degree 2 ẋ = (x − 1)(x + 1), ẏ = x ,
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ẋ =(x − 1)(x − 2) · · · (x − n),
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ẏ =(x − 1/2)(x − 3/2)2(x − 5/2)



Markus proved in his paper that s(n) ≤ 6n.



Markus proved in his paper that s(n) ≤ 6n.

Consider the Bendixon compactification of X .



Markus proved in his paper that s(n) ≤ 6n.

Consider the Bendixon compactification of X . It is simple to

observe that the inseparable leaves are the separatrices of

hyperbolic sectors in the only singular point N of S2.



Markus proved in his paper that s(n) ≤ 6n.

Consider the Bendixon compactification of X . It is simple to

observe that the inseparable leaves are the separatrices of

hyperbolic sectors in the only singular point N of S2.

So s(n) ≤ 2h, where h is the number of hyperbolic sectors of N.



Markus proved in his paper that s(n) ≤ 6n.

Consider the Bendixon compactification of X . It is simple to

observe that the inseparable leaves are the separatrices of

hyperbolic sectors in the only singular point N of S2.

So s(n) ≤ 2h, where h is the number of hyperbolic sectors of N.

The index of N is 2.



Markus proved in his paper that s(n) ≤ 6n.

Consider the Bendixon compactification of X . It is simple to

observe that the inseparable leaves are the separatrices of

hyperbolic sectors in the only singular point N of S2.

So s(n) ≤ 2h, where h is the number of hyperbolic sectors of N.

The index of N is 2. So the index formula ((e − h)/2 + 1 = 2)

gives h − e = −2, where e is the number of elliptic sectors at N.



Markus proved in his paper that s(n) ≤ 6n.

Consider the Bendixon compactification of X . It is simple to

observe that the inseparable leaves are the separatrices of

hyperbolic sectors in the only singular point N of S2.

So s(n) ≤ 2h, where h is the number of hyperbolic sectors of N.

The index of N is 2. So the index formula ((e − h)/2 + 1 = 2)

gives h − e = −2, where e is the number of elliptic sectors at N.

Take now a circle x2 + y2 = r2.



Markus proved in his paper that s(n) ≤ 6n.

Consider the Bendixon compactification of X . It is simple to

observe that the inseparable leaves are the separatrices of

hyperbolic sectors in the only singular point N of S2.

So s(n) ≤ 2h, where h is the number of hyperbolic sectors of N.

The index of N is 2. So the index formula ((e − h)/2 + 1 = 2)

gives h − e = −2, where e is the number of elliptic sectors at N.

Take now a circle x2 + y2 = r2. For a big enough radius r , this

circle must cut each sector of N. In each hyperbolic and elliptic

one, there is a point of tangency with the trajectories, i.e., such

that xP(x , y) + yQ(x , y) = 0.



Markus proved in his paper that s(n) ≤ 6n.

Consider the Bendixon compactification of X . It is simple to

observe that the inseparable leaves are the separatrices of

hyperbolic sectors in the only singular point N of S2.

So s(n) ≤ 2h, where h is the number of hyperbolic sectors of N.

The index of N is 2. So the index formula ((e − h)/2 + 1 = 2)

gives h − e = −2, where e is the number of elliptic sectors at N.

Take now a circle x2 + y2 = r2. For a big enough radius r , this

circle must cut each sector of N. In each hyperbolic and elliptic

one, there is a point of tangency with the trajectories, i.e., such

that xP(x , y) + yQ(x , y) = 0.

From Bezout’s Theorem, there are at most 2(n+ 1) such points.



Markus proved in his paper that s(n) ≤ 6n.

Consider the Bendixon compactification of X . It is simple to

observe that the inseparable leaves are the separatrices of

hyperbolic sectors in the only singular point N of S2.

So s(n) ≤ 2h, where h is the number of hyperbolic sectors of N.

The index of N is 2. So the index formula ((e − h)/2 + 1 = 2)

gives h − e = −2, where e is the number of elliptic sectors at N.

Take now a circle x2 + y2 = r2. For a big enough radius r , this

circle must cut each sector of N. In each hyperbolic and elliptic

one, there is a point of tangency with the trajectories, i.e., such

that xP(x , y) + yQ(x , y) = 0.

From Bezout’s Theorem, there are at most 2(n+ 1) such points.

Therefore h + e ≤ 2n + 2, and hence



s(n) ≤ 2h ≤ 2n.



s(n) ≤ 2h ≤ 2n.

The above proof is from [S. Schecter and M. Singer, PAMS

1980], but the result was independently obtained earlier in [M-P.

Muller, Bol. Soc. Mat. Mexicana (1976)].



s(n) ≤ 2h ≤ 2n.

The above proof is from [S. Schecter and M. Singer, PAMS

1980], but the result was independently obtained earlier in [M-P.

Muller, Bol. Soc. Mat. Mexicana (1976)].

Schecter and Singer, in the same paper, produced examples

with 2n − 4 inseparable leaves for all even n ≥ 4.



s(n) ≤ 2h ≤ 2n.

The above proof is from [S. Schecter and M. Singer, PAMS

1980], but the result was independently obtained earlier in [M-P.

Muller, Bol. Soc. Mat. Mexicana (1976)].

Schecter and Singer, in the same paper, produced examples

with 2n − 4 inseparable leaves for all even n ≥ 4.

[X. Jarque and J. LLibre, Pacific J. Math., 2001] proved that

s(n) ≥ 2n − 4 for all n ≥ 7 or n = 5, and that s(4) ≥ 6 and

s(6) ≥ 9.



s(n) ≤ 2h ≤ 2n.

The above proof is from [S. Schecter and M. Singer, PAMS

1980], but the result was independently obtained earlier in [M-P.

Muller, Bol. Soc. Mat. Mexicana (1976)].

Schecter and Singer, in the same paper, produced examples

with 2n − 4 inseparable leaves for all even n ≥ 4.

[X. Jarque and J. LLibre, Pacific J. Math., 2001] proved that

s(n) ≥ 2n − 4 for all n ≥ 7 or n = 5, and that s(4) ≥ 6 and

s(6) ≥ 9.

Moreover, it is simple to prove that s(0) = s(1) = 0.



s(n) ≤ 2h ≤ 2n.

The above proof is from [S. Schecter and M. Singer, PAMS

1980], but the result was independently obtained earlier in [M-P.

Muller, Bol. Soc. Mat. Mexicana (1976)].

Schecter and Singer, in the same paper, produced examples

with 2n − 4 inseparable leaves for all even n ≥ 4.

[X. Jarque and J. LLibre, Pacific J. Math., 2001] proved that

s(n) ≥ 2n − 4 for all n ≥ 7 or n = 5, and that s(4) ≥ 6 and

s(6) ≥ 9.

Moreover, it is simple to prove that s(0) = s(1) = 0.

From the classification of polynomial chordal systems of degree

2 of [A. Gasull, L.R. Sheng and J. Llibre, Rocky Mountain J.

Math., 1986] it follows that s(2) = 3.



s(n) ≤ 2h ≤ 2n.

The above proof is from [S. Schecter and M. Singer, PAMS

1980], but the result was independently obtained earlier in [M-P.

Muller, Bol. Soc. Mat. Mexicana (1976)].

Schecter and Singer, in the same paper, produced examples

with 2n − 4 inseparable leaves for all even n ≥ 4.

[X. Jarque and J. LLibre, Pacific J. Math., 2001] proved that

s(n) ≥ 2n − 4 for all n ≥ 7 or n = 5, and that s(4) ≥ 6 and

s(6) ≥ 9.

Moreover, it is simple to prove that s(0) = s(1) = 0.

From the classification of polynomial chordal systems of degree

2 of [A. Gasull, L.R. Sheng and J. Llibre, Rocky Mountain J.

Math., 1986] it follows that s(2) = 3.

Finally, as consequence of [A. Cima and J. Llibre, Proc. 7th

congress dif. eq. app., 1985] and [M. Carbonell and J. Llibre,

Publ. Mat., 1989], it follows that s(3) = 3.
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So it follows that

s(0) = s(1) = 0, s(2) = s(3) = 3,

and
6 ≤ s(4) ≤ 8,

9 ≤ s(6) ≤ 12 and

2n − 4 ≤ s(n) ≤ 2n if n = 5 or n ≥ 7.

In joint work with F. Fernandes, we prove that

s(n) ≥ 2n − 1, for all n ≥ 4.
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Let p : R2 → R be a polynomial submersion of degree n + 1,

and consider the chordal Hamiltonian system of degree n,

henceforward denoted by Hp:

ẋ = −py(x , y), ẏ = px(x , y),
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We define sH(n) the maximal number of inseparable leaves a

chordal Hamiltonian polynomial vector field of degree n can

have.

It is clear that sH(n) ≤ s(n).

Theorem
sH(n) ≥ 2n − 1 for all n ≥ 4.
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Let T : Γ∁ → Γ∁ be defined by T (x , y) = (x , y/x), with inverse

T−1(x , y) = (x , xy).

Let p(x , y) = p̃ ◦ T−1(x , y) = p̃(x , xy).

T

(a) Hyperbolic sectors

T

(b) Tangency

T

(c) Orbit through the origin

T

(d) Tangency at the origin

Figure: Some orbits of Hp̃ and Hp.



Lemma
Let p̃ : R2 → R be a submersion away from Γ. Then p : R2 → R

defined by

p(x , y) = p̃(x , xy),

is a submersion in R
2 if and only if p̃x (0,0) 6= 0 and

p̃y (0,0) = 0.



Theorem
Let p̃ and p as above. The following statements hold true:

1. Each pair of inseparable leaves of Hp̃|Γ∁ induces a pair of

inseparable leaves of Hp.

2. Any hyperbolic sector of a singular point (0, y0) of Hp̃

contained in Γ∁ ∪ {(0, y0)} produces a pair of inseparable

leaves of Hp.

3. Each leaf of Hp̃, different from Γ, tangent to Γ induces a

pair of inseparable leaves of Hp.

4. A regular orbit of Hp̃ intersecting Γ in exactly k points

induces k + 1 orbits of Hp.

5. The curve Γ is an orbit of Hp.

6. If y 7→ p̃y(0, y) is not the zero polynomial, then there are

two orbits of Hp that are inseparable with Γ.
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We have p̃x = (y − 1)2 and p̃y = 2(y − 1)x + 2y satisfy the

assumptions of the theorem. Here there are no singular points

and the only tangent point to Γ is (0,0).

(a) Some leaves of Hp̃ (b) Some leaves with the in-

separable configuration of Hp

Let p(x , y) = p̃(x , xy) = (xy − 1)2x + x2y2. By the theorem,

Hp, of degree 4, has 7 inseparable leaves.
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In our general construction we will always have these 7

inseparable leaves. We will get more by adding tangencies to Γ
and saddle points of Hp̃, in different level sets, paying the price

of increasing the degree of the system.



Let a polynomial f : R → R, with degree k + 1, satisfying:

1. f (0) = 0 and f (1) 6= 0.



Let a polynomial f : R → R, with degree k + 1, satisfying:

1. f (0) = 0 and f (1) 6= 0.

2. The real zeros of f are simple.



Let a polynomial f : R → R, with degree k + 1, satisfying:

1. f (0) = 0 and f (1) 6= 0.

2. The real zeros of f are simple.

3. If A1, . . . , Ar be the real zeros of f , set c0 =
∫ 1

0
f (s)ds and

ci =
∫ Ai

0
f (s)ds, i = 1, . . . r . Then c0, c1, . . . , cr are pairwise

distinct.



Let a polynomial f : R → R, with degree k + 1, satisfying:

1. f (0) = 0 and f (1) 6= 0.

2. The real zeros of f are simple.

3. If A1, . . . , Ar be the real zeros of f , set c0 =
∫ 1

0
f (s)ds and

ci =
∫ Ai

0
f (s)ds, i = 1, . . . r . Then c0, c1, . . . , cr are pairwise

distinct.

We factorize f (y) = yg(y)h(y), with g and h polynomials.



Let a polynomial f : R → R, with degree k + 1, satisfying:

1. f (0) = 0 and f (1) 6= 0.

2. The real zeros of f are simple.

3. If A1, . . . , Ar be the real zeros of f , set c0 =
∫ 1

0
f (s)ds and

ci =
∫ Ai

0
f (s)ds, i = 1, . . . r . Then c0, c1, . . . , cr are pairwise

distinct.

We factorize f (y) = yg(y)h(y), with g and h polynomials.

We define

p̃(x , y) = g(y)(y − 1)2x +

∫ y

0

f (s)ds, and p(x , y) = p̃(x , xy).



Let a polynomial f : R → R, with degree k + 1, satisfying:

1. f (0) = 0 and f (1) 6= 0.

2. The real zeros of f are simple.

3. If A1, . . . , Ar be the real zeros of f , set c0 =
∫ 1

0
f (s)ds and

ci =
∫ Ai

0
f (s)ds, i = 1, . . . r . Then c0, c1, . . . , cr are pairwise

distinct.

We factorize f (y) = yg(y)h(y), with g and h polynomials.

We define

p̃(x , y) = g(y)(y − 1)2x +

∫ y

0

f (s)ds, and p(x , y) = p̃(x , xy).

It is simple to see that p̃x(0,0) 6= 0 and p̃y(0,0) = 0.



Let a polynomial f : R → R, with degree k + 1, satisfying:

1. f (0) = 0 and f (1) 6= 0.

2. The real zeros of f are simple.

3. If A1, . . . , Ar be the real zeros of f , set c0 =
∫ 1

0
f (s)ds and

ci =
∫ Ai

0
f (s)ds, i = 1, . . . r . Then c0, c1, . . . , cr are pairwise

distinct.

We factorize f (y) = yg(y)h(y), with g and h polynomials.

We define

p̃(x , y) = g(y)(y − 1)2x +

∫ y

0

f (s)ds, and p(x , y) = p̃(x , xy).

It is simple to see that p̃x(0,0) 6= 0 and p̃y(0,0) = 0. So p and

p̃ are in the assumptions of our theorem.



Let a polynomial f : R → R, with degree k + 1, satisfying:

1. f (0) = 0 and f (1) 6= 0.

2. The real zeros of f are simple.

3. If A1, . . . , Ar be the real zeros of f , set c0 =
∫ 1

0
f (s)ds and

ci =
∫ Ai

0
f (s)ds, i = 1, . . . r . Then c0, c1, . . . , cr are pairwise

distinct.

We factorize f (y) = yg(y)h(y), with g and h polynomials.

We define

p̃(x , y) = g(y)(y − 1)2x +

∫ y

0

f (s)ds, and p(x , y) = p̃(x , xy).

It is simple to see that p̃x(0,0) 6= 0 and p̃y(0,0) = 0. So p and

p̃ are in the assumptions of our theorem.

So Hp is a chordal Hamiltonian system of even degree

n = 2(k + 2) if h is constant, and of odd degree

n = 2(k + 2)− 1 if h is not constant.
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The singular points of Hp̃ are (0,Ai), i = 1, . . . ,u, u ≤ r , where

A1, . . . ,Au are the zeros of g(y). Each of them is a saddle point

with two separatrices in the region x < 0 and two separatrices

in the region x > 0.

The separatrices of the saddle (0,Ai) are in the level ci . So

separatrices of different saddles cannot connect to each other.

Therefore

Hp has at least 4u inseparable leaves,

where u is the number of zeros of g(y).
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If h(y) is not constant and Ai is one of its zeros, let ci as above

Lemma
There is a connected component of the level set p̃−1(ci)
containing the point (0,Ai). This curve is tangent to Γ in (0,Ai).

By our theorem, and properties, it follows that

Hp has 2v more inseparable leaves,

where v is the number of zeros of h.
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properties, and obtain at least

4u + 2v + 4 + 3

inseparable leaves, where u is the number of zeros of g and v

is the number of zeros of h.

If f has k + 1 zeros, we have k = u + v .

In this situation, if h is constant, and so v = 0, we have 4k + 7

inseparable leaves.

In this case the degree of Hp is the even number n = 2(k + 2),
so in terms of n we get 2n − 1 inseparable leaves.

On the other hand, if h has degree 1, and so v = 1, it follows

that Hp has 4k + 5 inseparable leaves.

Here the degree of Hp is the odd number n = 2(k + 2)− 1, so

in terms of n we get 2n − 1 inseparable leaves.

In the first case we can consider all k ≥ 0 and in the other one

we can consider all k ≥ 1. Therefore sH(n) ≥ 2n − 1 for all

n ≥ 4.
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For each z ∈ R, we define the polynomial

fz(y) = yΠk
i=1(y − z i) =

k∑

i=1

z(k−i)(k−i+1)/2vi(z)y
i+1,

where vi(z) are suitable polynomials (Vieta’s relations).

We now consider the polynomials in the variable z

C(z j , z) =

∫ z j

0

fz(s)ds =
k∑

i=1

zτ(i) vi(z)

i + 2
,

where τ(i) = (k − i)(k − i + 1)/2 + j(i + 2).
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By considerations on τ and vi , we can write

C(z j , z) = zτ(k−j)

(
(−1)j

(k − j + 2)(k − j + 3)
+ zmj(z)

)
,

where mj(z) is a suitable polynomial with rational coefficients.

Since j 7→ τ(k − j) is strictly increasing for all j < k + 5/2, it

follows that the polynomials z 7→ C(z j , z) are pairwise distinct

for j = 0,1, . . . , k .

By taking a transcendental number z0 ∈ R, it follows that

C(z j
0, z0) are pairwise distinct and different from 0.

So the polynomial fz0
(y) satisfies what we wanted.
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Open natural questions:

We know from [B and J.R. Santos, DCDSA, 2010] and [B and

B. Oréfice-Okamoto, JMAA, 2016] that

sH(2) = sH(3) = 3.

Moreover, sH(0) = sH(1) = 0, because s(0) = s(1) = 0.

First question: sH(n) = s(n) for n ≥ 4?

Second question: Since 2n − 1 ≤ sH(n) ≤ s(n) ≤ 2n, are there

chordal polynomial systems of degree n (Hamiltonian or not)

with exactly 2n inseparable leaves?

Third question (Markus original question): what are the

possible inseparable configurations of chordal polynomial

systems of degree n, Hamiltonian and in general?
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Thank you!


