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MAIN QUESTION

HOW MANY PHASE PORTRAITS OF PLANAR REAL
QUADRATIC DIFFERENTIAL SYSTEMS EXISTS?
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ARE YOU KIDDING???

HAVE SOMEONE HAVE ALREADY SOLVED 16TH HILBERT’S
PROBLEM?

A) YES

SOMEONE DESERVES ABEL PRIZE!!!

B) NO

Please, reformulate your question
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REFORMULATED MAIN QUESTION

HOW MANY PHASE PORTRAITS OF PLANAR REAL
QUADRATIC DIFFERENTIAL SYSTEMS EXISTS ...

MODULO LIMIT CYCLES?
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A BIT OF HISTORY

1 Systems with centers (Vulpe, 1983)
2 Systems with a 3rd order weak focus (Artes, Llibre,

Schlomiuk, 1984 & 2004)
3 Chordal systems (Gasull, Li Ren, Llibre, 1986) (Reyn 1996)
4 Systems with two invariant straight lines (Reyn 1987)
5 Systems with a single finite singularity (Coll, Gasull, Llibre

1988) (Reyn, 1997)
6 Systems with a nilpotent finite singularity (Jager, 1990)
7 Systems with finite multiplicity 2 (Reyn, Kooij, 1997)
8 Systems with finite multiplicity 3 (Reyn, Huang, 1997)
9 Structurally stable quadratic systems (Artes, Kooij, Llibre,

1998)
10 Systems with a 2nd order weak focus (Artes, Llibre,

Schlomiuk, 2006)
11 Systems with a finite and an infinite saddle-node (Artes,

Carlucci, Oliveira, 2015)
12 Structurally unstable quadratic systems of codimension 1
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A BIT OF ORDER

To avoid intersections, there are 3 possible ways:

1 According number of finite singularities (stopped at 1∼2).

2 According number of finite multiplicity (stopped at 2∼3).

3 According codimension (currently running at 2).

The study according codimension has been completely done by
topological and combinatorial up to now.
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A BIT OF ALGEBRAIC HELP

In 2008 J. C. Artés, J. Llibre and N. Vulpe published “Singular
points of quadratic systems: A complete classification in the
coefficient space R

12” at International J. of Bifurcation and Chaos.
All topological combinations of finite singularities were classified
using invariant polynomials. Also focus were distinguished from
nodes with those tools.
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WHY INVARIANT POLYNOMIALS?

Assume we have a quadratic system with 4 finite singularities. We
have the four determinants of the Jacobian matrices at those
points: δ1, δ2, δ3 and δ4.
Assume one can get expressions which capture:

1 J1 = δ1δ2δ3δ4;

2 J2 = δ1δ2δ3 + δ1δ2δ4 + δ1δ3δ4 + δ2δ3δ4;

3 J3 = δ1δ2 + δ1δ3 + δ1δ4 + δ2δ3 + δ2δ4 + δ3δ4;

4 J4 = δ1 + δ2 + δ3 + δ4;

If one can obtain these expressions, he will get the discriminants of
the polynomial x4 − J4x

3 + J3x
2 − J2x + J1, and their signs will be

invariant upon any affine change of coordinates. There is no need
of normal forms. They work on the 12-parameter space of
coefficients.
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SIBIRSCHI SCHOOL

With the use of these invariants, the Sibirschi School in Chisinau
(Moldavia) has been able to obtain invariants for every imaginable
geometric feature related to quadratic systems.
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SIBIRSCHI SCHOOL

1 How many finite singularities;

2 How many infinite singularities;

3 How many multiple singularities;

4 How many weak singularities and their order (foci and/or
saddles);

5 How many nilpotent singularities and their type;

6 How is the tangential behavior around every singularity;

7 Distinction between different nodes;

8 Existence of centers;

9 Isochronicity of centers;

10 Existence of invariant straight lines;

11 Existence of some types of first integrals:
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GEOMETRICAL CLASSIFICATION

We have defined this way of classifying singularities as Geometrical

Classification. A Geometrical equivalence class has been defined
and the singularities (finite and infinite) are classified according to
it.
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NOTATION

A notation system to describe all these singularities and their
geometrical properties has been developed.

1 s, s(3), n, nd ; S ,N∞,N∞

2 f , f (3), c©, c©;
(0
2

)
SN,S

3 s, nd , f (2);
(1
1

)
SN, c©, c©

4 c⊙, c©, c©;
(̂1
2

) y

PfE
x

Pf−H,S

5 $, $, ĉp(2); N
f ,N f ,N f

6 s, $, n, n∗; S , N∞, N∗
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BIFURCATION DIAGRAM (1765 configurations)

The full diagram takes 70 pages to be written.
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REDUCTION TO TOPOLOGICAL (208 configurations)

This “only” needs 13 pages.
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CURRENT STATE OF RESEARCH

1 157 configurations completed;

2 Many configurations have a single possible phase portrait;

3 Only some few configurations have more than 10 phase
portraits;

4 22 easy to complete;

5 29 on work;

6 814 phase portraits up to now, 231 of them from those
uncomplete 29 families;

7 maximum of phase portraits in one completed configuration
(up to now): 97;
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FINAL BET

1 Please, make your bet.

2

3

4

5

6

7 THANKS FOR YOUR COLLABORATION.
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